Skip to main content

Plasmodium

  • Chapter
  • First Online:
  • 1553 Accesses

Abstract

Malaria is the most important parasitic disease worldwide in terms of numbers of affected people and mortality. It is caused by parasites of the genus Plasmodium, which have a complex life cycle including insect vectors that are in the case of human malaria exclusively Anopheles mosquitoes. To date the genomes of several Plasmodium species have been sequenced. The overall genome organization is rather conserved, but highly divers species-specific gene families have been identified as well. The different life cycle stages exhibit a very variable morphology reflecting their respective needs. The change in cell shape during development is genetically inherited, but epigenetic factors also appear to play an important role. In the vertebrate host cell invasion and egress are crucial steps for the survival of the parasite and have evolved to highly orchestrated events, and some molecular details have been deciphered to date. Invasion occurs by invagination of the host cell membrane, and the parasite finally resides in a parasitophorous vacuole. From there it controls the behavior of its host cell by secretion of proteins into the host cell cytoplasm and to its surface. Exposed parasite proteins at the surface of an infected red blood cell allow cytoadherence and are responsible for the pathogenicity of a Plasmodium infection. Egress is a two-step process initiated by the rupture of the parasitophorous vacuole membrane and followed by disintegration of the host cell membrane that involves the activation of proteases, kinases, and membrane lytic enzymes. Recent discoveries revealed completely new parasite strategies to switch from asexual to sexual development during the blood stage and to avoid elimination by cytosolic immune responses of host cells during infection of hepatocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abkarian M, Massiera G, Berry L, Roques M, Braun-Breton C (2011) A novel mechanism for egress of malarial parasites from red blood cells. Blood 117(15):4118–4124. doi:10.1182/blood-2010-08-299883

    Article  CAS  PubMed  Google Scholar 

  • Aikawa M, Miller LH, Rabbege J (1975) Caveola – vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P cynomolgi. Unique structures related to Schuffner’s dots. Am J Pathol 79(2):285–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alano P, Carter R (1990) Sexual differentiation in malaria parasites. Annu Rev Microbiol 44:429–449. doi:10.1146/annurev.mi.44.100190.002241

    Article  CAS  PubMed  Google Scholar 

  • Aly AS, Matuschewski K (2005) A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J Exp Med 202(2):225–230. doi:10.1084/jem.20050545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Menard R (2006) Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12(2):220–224

    Article  CAS  PubMed  Google Scholar 

  • Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, Prevost MC, Ishino T, Yuda M, Menard R (2008) Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 3(2):88–96

    Article  CAS  PubMed  Google Scholar 

  • Amino R, Bassat Q, Baum J, Billker O, Bogyo M, Bousema T, Christophides G, Deitsch K, Dinglasan R, Djimde A, Duraisingh M, Dzinjalamala F, Happi C, Heussler V, Kramarik J, de Koning-Ward T, Lacerda M, Laufer M, Lim P, Llinas M, McGovern V, Martinez-Barnetche J, Mota M, Mueller I, Okumu F, Rasgon J, Serazin A, Sharma P, Sinden R, Wirth D, Gilberger T (2011) A research agenda for malaria eradication: basic science and enabling technologies. PLoS Med 8(1), e1000399. doi:10.1371/journal.pmed.1000399

    Article  Google Scholar 

  • Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M (2013) Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10(2):125–127. doi:10.1038/nmeth.2301

    Article  CAS  PubMed  Google Scholar 

  • Annoura T, Ploemen IH, van Schaijk BC, Sajid M, Vos MW, van Gemert GJ, Chevalley-Maurel S, Franke-Fayard BM, Hermsen CC, Gego A, Franetich JF, Mazier D, Hoffman SL, Janse CJ, Sauerwein RW, Khan SM (2012) Assessing the adequacy of attenuation of genetically modified malaria parasite vaccine candidates. Vaccine 30(16):2662–2670. doi:10.1016/j.vaccine.2012.02.010

    Article  PubMed  Google Scholar 

  • Annoura T, van Schaijk BC, Ploemen IH, Sajid M, Lin JW, Vos MW, Dinmohamed AG, Inaoka DK, Rijpma SR, van Gemert GJ, Chevalley-Maurel S, Kielbasa SM, Scheltinga F, Franke-Fayard B, Klop O, Hermsen CC, Kita K, Gego A, Franetich JF, Mazier D, Hoffman SL, Janse CJ, Sauerwein RW, Khan SM (2014) Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development. FASEB J 28(5):2158–2170. doi:10.1096/fj.13-241570

    Article  CAS  PubMed  Google Scholar 

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Menard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Menard D (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505(7481):50–55. doi:10.1038/nature12876

    Article  PubMed  CAS  Google Scholar 

  • Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371(5):411–423. doi:10.1056/NEJMoa1314981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachmann A, Esser C, Petter M, Predehl S, von Kalckreuth V, Schmiedel S, Bruchhaus I, Tannich E (2009) Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PLoS One 4(10), e7459. doi:10.1371/journal.pone.0007459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baer K, Klotz C, Kappe SH, Schnieder T, Frevert U (2007) Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog 3(11), e171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balaji S, Babu MM, Iyer LM, Aravind L (2005) Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33(13):3994–4006. doi:10.1093/nar/gki709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bano N, Romano JD, Jayabalasingham B, Coppens I (2007) Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int J Parasitol 37(12):1329–1341

    Article  CAS  PubMed  Google Scholar 

  • Baum J, Gilberger TW, Frischknecht F, Meissner M (2008) Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol 24(12):557–563. doi:10.1016/j.pt.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  • Beck JR, Muralidharan V, Oksman A, Goldberg DE (2014) PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511(7511):592–595. doi:10.1038/nature13574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besteiro S, Dubremetz JF, Lebrun M (2011) The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 13(6):797–805. doi:10.1111/j.1462-5822.2011.01597.x

    Article  CAS  PubMed  Google Scholar 

  • Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392(6673):289–292. doi:10.1038/32667

    Article  CAS  PubMed  Google Scholar 

  • Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117(4):503–514

    Article  CAS  PubMed  Google Scholar 

  • Blackman MJ (2008) Malarial proteases and host cell egress: an ‘emerging’ cascade. Cell Microbiol 10(10):1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddey JA, Cowman AF (2013) Plasmodium nesting: remaking the erythrocyte from the inside out. Annu Rev Microbiol 67:243–269. doi:10.1146/annurev-micro-092412-155730

    Article  CAS  PubMed  Google Scholar 

  • Boddey JA, Hodder AN, Gunther S, Gilson PR, Patsiouras H, Kapp EA, Pearce JA, de Koning-Ward TF, Simpson RJ, Crabb BS, Cowman AF (2010) An aspartyl protease directs malaria effector proteins to the host cell. Nature 463(7281):627–631. doi:10.1038/nature08728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddey JA, Carvalho TG, Hodder AN, Sargeant TJ, Sleebs BE, Marapana D, Lopaticki S, Nebl T, Cowman AF (2013) Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic 14(5):532–550. doi:10.1111/tra.12053

    Article  CAS  PubMed  Google Scholar 

  • Brancucci NM, Bertschi NL, Zhu L, Niederwieser I, Chin WH, Wampfler R, Freymond C, Rottmann M, Felger I, Bozdech Z, Voss TS (2014) Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16(2):165–176. doi:10.1016/j.chom.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Burda PC, Roelli MA, Schaffner M, Khan SM, Janse CJ, Heussler VT (2015) A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane. PLoS Pathog 11(3), e1004760. doi:10.1371/journal.ppat.1004760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabrera A, Neculai D, Kain KC (2014) CD36 and malaria: friends or foes? A decade of data provides some answers. Trends Parasitol 30(9):436–444. doi:10.1016/j.pt.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  • Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang’a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM (2008) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455(7214):757–763. doi:10.1038/nature07327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJ, Petter M, Chesson JM, Langer C, Warimwe GM, Duffy MF, Rogerson SJ, Bull PC, Cowman AF, Marsh K, Beeson JG (2012) Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Investig 122(9):3227–3238. doi:10.1172/JCI62182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DS, Barry AE, Leliwa-Sytek A, Smith TA, Peterson I, Brown SM, Migot-Nabias F, Deloron P, Kortok MM, Marsh K, Daily JP, Ndiaye D, Sarr O, Mboup S, Day KP (2011) A molecular epidemiological study of var gene diversity to characterize the reservoir of Plasmodium falciparum in humans in Africa. PLoS One 6(2), e16629. doi:10.1371/journal.pone.0016629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman BI, Skillman KM, Jiang RH, Childs LM, Altenhofen LM, Ganter M, Leung Y, Goldowitz I, Kafsack BF, Marti M, Llinas M, Buckee CO, Duraisingh MT (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16(2):177–186. doi:10.1016/j.chom.2014.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C, Baker DA, Blackman MJ (2013) Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog 9(5), e1003344. doi:10.1371/journal.ppat.1003344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2001) The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 50:1–86

    Article  CAS  PubMed  Google Scholar 

  • Coppi A, Pinzon-Ortiz C, Hutter C, Sinnis P (2005) The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med 201(1):27–33. doi:10.1084/jem.20040989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, Corradin G, Persson C, Tewari R, Sinnis P (2011) The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med 208(2):341–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124(4):755–766. doi:10.1016/j.cell.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  • Cowman AF, Berry D, Baum J (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198(6):961–971. doi:10.1083/jcb.201206112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, Turner G, Langhorne J (2012) The role of animal models for research on severe malaria. PLoS Pathog 8(2), e1002401. doi:10.1371/journal.ppat.1002401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cranston HA, Boylan CW, Carroll GL, Sutera SP, Williamson JR, Gluzman IY, Krogstad DJ (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223(4634):400–403

    Article  CAS  PubMed  Google Scholar 

  • Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, Rayner JC, Wright GJ (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480(7378):534–537. doi:10.1038/nature10606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cyrklaff M, Sanchez CP, Kilian N, Bisseye C, Simpore J, Frischknecht F, Lanzer M (2011) Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science 334(6060):1283–1286. doi:10.1126/science.1213775

    Article  CAS  PubMed  Google Scholar 

  • Cyrklaff M, Sanchez CP, Frischknecht F, Lanzer M (2012) Host actin remodeling and protection from malaria by hemoglobinopathies. Trends Parasitol 28(11):479–485. doi:10.1016/j.pt.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, Sanders PR, Lundie RJ, Maier AG, Cowman AF, Crabb BS (2009) A newly discovered protein export machine in malaria parasites. Nature 459(7249):945–949. doi:10.1038/nature08104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dembele L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CH, Le Grand R, Dereuddre-Bosquet N, van Gemert GJ, Sauerwein R, Vaillant JC, Hannoun L, Fuchter MJ, Diagana TT, Malmquist NA, Scherf A, Snounou G, Mazier D (2014) Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20(3):307–312. doi:10.1038/nm.3461

    Article  CAS  PubMed  Google Scholar 

  • Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM (2012) Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 186(2):95–116. doi:10.1016/j.molbiopara.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  • Deschermeier C, Hecht LS, Bach F, Rutzel K, Stanway RR, Nagel A, Seeber F, Heussler VT (2012) Mitochondrial lipoic acid scavenging is essential for Plasmodium berghei liver stage development. Cell Microbiol 14(3):416–430. doi:10.1111/j.1462-5822.2011.01729.x

    Article  CAS  PubMed  Google Scholar 

  • Dixon MW, Dearnley MK, Hanssen E, Gilberger T, Tilley L (2012) Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends Parasitol 28(11):471–478. doi:10.1016/j.pt.2012.07.007

    Article  PubMed  Google Scholar 

  • Douglas AD, Williams AR, Knuepfer E, Illingworth JJ, Furze JM, Crosnier C, Choudhary P, Bustamante LY, Zakutansky SE, Awuah DK, Alanine DG, Theron M, Worth A, Shimkets R, Rayner JC, Holder AA, Wright GJ, Draper SJ (2014) Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. J Immunol 192(1):245–258. doi:10.4049/jimmunol.1302045

    Article  CAS  PubMed  Google Scholar 

  • Dowse TJ, Koussis K, Blackman MJ, Soldati-Favre D (2008) Roles of proteases during invasion and egress by Plasmodium and Toxoplasma. Subcell Biochem 47:121–139

    Article  PubMed  Google Scholar 

  • Duffy MF, Tham WH (2007) Transcription and coregulation of multigene families in Plasmodium falciparum. Trends Parasitol 23(5):183–186. doi:10.1016/j.pt.2007.02.010; discussion 186–187

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Dlugosz LS, Drew DR, Ge X, Ababacar D, Rovira YI, Moch JK, Shi M, Long CA, Foley M, Beeson JG, Anders RF, Miura K, Haynes JD, Batchelor AH (2013) Overcoming antigenic diversity by enhancing the immunogenicity of conserved epitopes on the malaria vaccine candidate apical membrane antigen-1. PLoS Pathog 9(12), e1003840. doi:10.1371/journal.ppat.1003840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ejigiri I, Sinnis P (2009) Plasmodium sporozoite-host interactions from the dermis to the hepatocyte. Curr Opin Microbiol 12(4):401–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsworth B, Crabb BS, Gilson PR (2014) Protein export in malaria parasites: an update. Cell Microbiol 16(3):355–363. doi:10.1111/cmi.12261

    Article  CAS  PubMed  Google Scholar 

  • Fowkes FJ, Richards JS, Simpson JA, Beeson JG (2010) The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med 7(1), e1000218. doi:10.1371/journal.pmed.1000218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francia ME, Jordan CN, Patel JD, Sheiner L, Demerly JL, Fellows JD, de Leon JC, Morrissette NS, Dubremetz JF, Striepen B (2012) Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. PLoS Biol 10(12), e1001444. doi:10.1371/journal.pbio.1001444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123. doi:10.1146/annurev.micro.51.1.97

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C, Guinet F, Nehrbass U, Wellems TE, Scherf A (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407(6807):1018–1022. doi:10.1038/35039531

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511. doi:10.1038/nature01097

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Agarwal S, Kumar S, Yazdani SS, Chitnis CE, Singh S (2013) Calcium-dependent permeabilization of erythrocytes by a perforin-like protein during egress of malaria parasites. Nat Commun 4:1736. doi:10.1038/ncomms2725

    Article  PubMed  CAS  Google Scholar 

  • Gilson PR, Crabb BS (2009) Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol 39(1):91–96. doi:10.1016/j.ijpara.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Santos CS, Itoe MA, Afonso C, Henriques R, Gardner R, Sepulveda N, Simoes PD, Raquel H, Almeida AP, Moita LF, Frischknecht F, Mota MM (2012) Highly dynamic host actin reorganization around developing Plasmodium inside hepatocytes. PLoS One 7(1), e29408. doi:10.1371/journal.pone.0029408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez V, Combe A, David V, Malmquist NA, Delorme V, Leroy C, Blazquez S, Menard R, Tardieux I (2009) Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe 5(3):259–272

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Tham WH, Cowman AF, McFadden GI, Waller RF (2008) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25(6):1219–1230. doi:10.1093/molbev/msn070

    Article  CAS  PubMed  Google Scholar 

  • Graewe S, Stanway RR, Rennenberg A, Heussler VT (2012) Chronicle of a death foretold: Plasmodium liver stage parasites decide on the fate of the host cell. FEMS Microbiol Rev 36(1):111–130. doi:10.1111/j.1574-6976.2011.00297.x

    Article  CAS  PubMed  Google Scholar 

  • Gratzer WB, Dluzewski AR (1993) The red blood cell and malaria parasite invasion. Semin Hematol 30(3):232–247

    CAS  PubMed  Google Scholar 

  • Gruring C, Heiber A, Kruse F, Ungefehr J, Gilberger TW, Spielmann T (2011) Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat Commun 2:165. doi:10.1038/ncomms1169

    Article  PubMed  CAS  Google Scholar 

  • Gruring C, Heiber A, Kruse F, Flemming S, Franci G, Colombo SF, Fasana E, Schoeler H, Borgese N, Stunnenberg HG, Przyborski JM, Gilberger TW, Spielmann T (2012) Uncovering common principles in protein export of malaria parasites. Cell Host Microbe 12(5):717–729. doi:10.1016/j.chom.2012.09.010

    Article  PubMed  CAS  Google Scholar 

  • Grutzke J, Rindte K, Goosmann C, Silvie O, Rauch C, Heuer D, Lehmann MJ, Mueller AK, Brinkmann V, Matuschewski K, Ingmundson A (2014) The spatiotemporal dynamics and membranous features of the Plasmodium liver stage tubovesicular network. Traffic 15(4):362–382. doi:10.1111/tra.12151

    Article  PubMed  CAS  Google Scholar 

  • Gunalan K, Gao X, Yap SS, Huang X, Preiser PR (2013) The role of the reticulocyte-binding-like protein homologues of Plasmodium in erythrocyte sensing and invasion. Cell Microbiol 15(1):35–44. doi:10.1111/cmi.12038

    Article  CAS  PubMed  Google Scholar 

  • Harding CR, Meissner M (2014) The inner membrane complex through development of Toxoplasma gondii and Plasmodium. Cell Microbiol 16(5):632–641. doi:10.1111/cmi.12285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegge S, Munter S, Steinbuchel M, Heiss K, Engel U, Matuschewski K, Frischknecht F (2010) Multistep adhesion of Plasmodium sporozoites. FASEB J 24(7):2222–2234. doi:10.1096/fj.09-148700

    Article  CAS  PubMed  Google Scholar 

  • Heiber A, Kruse F, Pick C, Gruring C, Flemming S, Oberli A, Schoeler H, Retzlaff S, Mesen-Ramirez P, Hiss JA, Kadekoppala M, Hecht L, Holder AA, Gilberger TW, Spielmann T (2013) Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog 9(8), e1003546. doi:10.1371/journal.ppat.1003546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann JK, Munter S, Kudryashev M, Schulz S, Heiss K, Muller AK, Matuschewski K, Spatz JP, Schwarz US, Frischknecht F (2011) Environmental constraints guide migration of malaria parasites during transmission. PLoS Pathog 7(6), e1002080. doi:10.1371/journal.ppat.1002080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner DG (2013) The malaria vaccine – status quo 2013. Travel Med Infect Dis 11(1):2–7. doi:10.1016/j.tmaid.2013.01.006

    Article  PubMed  Google Scholar 

  • Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306(5703):1934–1937. doi:10.1126/science.1102737

    Article  CAS  PubMed  Google Scholar 

  • Hollingdale MR, Leef JL, McCullough M, Beaudoin RL (1981) In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei from sporozoites. Science 213(4511):1021–1022

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, Engelberg K, Cheemadan S, Spielmann T, Preiser PR, Gilberger TW, Bozdech Z (2010) Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol 28(1):91–98. doi:10.1038/nbt.1597

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Brumell JH (2014) Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12(2):101–114. doi:10.1038/nrmicro3160

    Article  CAS  PubMed  Google Scholar 

  • Ishino T, Boisson B, Orito Y, Lacroix C, Bischoff E, Loussert C, Janse C, Menard R, Yuda M, Baldacci P (2009) LISP1 is important for the egress of Plasmodium berghei parasites from liver cells. Cell Microbiol 11(9):1329–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME, Fidock DA, Bosch J, Coppens I (2014) Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage: possible linkage between the apicoplastic and autophagic systems? Autophagy 10(2):269–284. doi:10.4161/auto.27166

    Article  CAS  PubMed  Google Scholar 

  • Khater EI, Sinden RE, Dessens JT (2004) A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. J Cell Biol 167(3):425–432. doi:10.1083/jcb.200406068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono M, Herrmann S, Loughran NB, Cabrera A, Engelberg K, Lehmann C, Sinha D, Prinz B, Ruch U, Heussler V, Spielmann T, Parkinson J, Gilberger TW (2012) Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol Biol Evol 29(9):2113–2132. doi:10.1093/molbev/mss081

    Article  CAS  PubMed  Google Scholar 

  • Kooij TW, Carlton JM, Bidwell SL, Hall N, Ramesar J, Janse CJ, Waters AP (2005) A Plasmodium whole-genome synteny map: indels and synteny breakpoints as foci for species-specific genes. PLoS Pathog 1(4), e44. doi:10.1371/journal.ppat.0010044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kriek N, Tilley L, Horrocks P, Pinches R, Elford BC, Ferguson DJ, Lingelbach K, Newbold CI (2003) Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol Microbiol 50(4):1215–1227

    Article  CAS  PubMed  Google Scholar 

  • Kudryashev M, Munter S, Lemgruber L, Montagna G, Stahlberg H, Matuschewski K, Meissner M, Cyrklaff M, Frischknecht F (2012) Structural basis for chirality and directional motility of Plasmodium sporozoites. Cell Microbiol 14(11):1757–1768. doi:10.1111/j.1462-5822.2012.01836.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER, Blatch GL, Crabb BS, Gilson PR, Przyborski JM (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14(11):1784–1795. doi:10.1111/j.1462-5822.2012.01840.x

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, van Pelt JF, O’Dowd CA, Hollingdale MR, Sinden RE (1994) Effects of hormones and cysteine protease modulators on infection of HepG2 cells by Plasmodium berghei sporozoites in vitro determined by ELISA immunoassay. J Parasitol 80(3):414–420

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Rosenshine I, Leong JM, Frankel G (2013) Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 15(11):1796–1808. doi:10.1111/cmi.12179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann C, Heitmann A, Mishra S, Burda PC, Singer M, Prado M, Niklaus L, Lacroix C, Menard R, Frischknecht F, Stanway R, Sinnis P, Heussler V (2014) A cysteine protease inhibitor of plasmodium berghei is essential for exo-erythrocytic development. PLoS Pathog 10(8), e1004336. doi:10.1371/journal.ppat.1004336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemgruber L, Lupetti P (2012) Crystalloid body, refractile body and virus-like particles in Apicomplexa: what is in there? Parasitology 139(3):285–293. doi:10.1017/S0031182011002034

    Article  PubMed  Google Scholar 

  • Liu J, Wetzel L, Zhang Y, Nagayasu E, Ems-McClung S, Florens L, Hu K (2013) Novel thioredoxin-like proteins are components of a protein complex coating the cortical microtubules of Toxoplasma gondii. Eukaryot Cell 12(12):1588–1599. doi:10.1128/EC.00082-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes da Silva M, Thieleke-Matos C, Cabrita-Santos L, Ramalho JS, Wavre-Shapton ST, Futter CE, Barral DC, Seabra MC (2012) The host endocytic pathway is essential for Plasmodium berghei late liver stage development. Traffic 13(10):1351–1363. doi:10.1111/j.1600-0854.2012.01398.x

    Article  CAS  PubMed  Google Scholar 

  • Maier AG, Rug M, O’Neill MT, Brown M, Chakravorty S, Szestak T, Chesson J, Wu Y, Hughes K, Coppel RL, Newbold C, Beeson JG, Craig A, Crabb BS, Cowman AF (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134(1):48–61. doi:10.1016/j.cell.2008.04.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel PY, Marti M (2014) The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol 16(3):344–354. doi:10.1111/cmi.12259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, Ghiran I, Toner M, Irimia D, Ivanov AR, Barteneva N, Marti M (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13(5):521–534. doi:10.1016/j.chom.2013.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti M, Spielmann T (2013) Protein export in malaria parasites: many membranes to cross. Curr Opin Microbiol 16(4):445–451. doi:10.1016/j.mib.2013.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306(5703):1930–1933. doi:10.1126/science.1102452

    Article  CAS  PubMed  Google Scholar 

  • Menard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R (2013) Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol 11(10):701–712. doi:10.1038/nrmicro3111

    Article  CAS  PubMed  Google Scholar 

  • Mercereau-Puijalon O, Menard D (2010) Plasmodium vivax and the Duffy antigen: a paradigm revisited. Trans Clin Biol 17(3):176–183. doi:10.1016/j.tracli.2010.06.005

    Article  CAS  Google Scholar 

  • Mikolajczak SA, Jacobs-Lorena V, MacKellar DC, Camargo N, Kappe SH (2007) L-FABP is a critical host factor for successful malaria liver stage development. Int J Parasitol 37(5):483–489

    Article  CAS  PubMed  Google Scholar 

  • Miller LH (1969) Distribution of mature trophozoites and schizonts of Plasmodium falciparum in the organs of Aotus trivirgatus, the night monkey. Am J Trop Med Hyg 18(6):860–865

    CAS  PubMed  Google Scholar 

  • Miller LH, Good MF, Milon G (1994) Malaria pathogenesis. Science 264(5167):1878–1883

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415(6872):673–679. doi:10.1038/415673a

    Article  CAS  PubMed  Google Scholar 

  • Millholland MG, Mishra S, Dupont CD, Love MS, Patel B, Shilling D, Kazanietz MG, Foskett JK, Hunter CA, Sinnis P, Greenbaum DC (2013) A host GPCR signaling network required for the cytolysis of infected cells facilitates release of apicomplexan parasites. Cell Host Microbe 13(1):15–28. doi:10.1016/j.chom.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Amaratunga C, Suon S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN, Tripura R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NP, Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z (2014) Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. doi:10.1126/science.1260403

    PubMed  Google Scholar 

  • Montagna GN, Buscaglia CA, Munter S, Goosmann C, Frischknecht F, Brinkmann V, Matuschewski K (2012) Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 287(4):2410–2422. doi:10.1074/jbc.M111.302109

    Article  CAS  PubMed  Google Scholar 

  • Montagna GN, Beigier-Bompadre M, Becker M, Kroczek RA, Kaufmann SH, Matuschewski K (2014) Antigen export during liver infection of the malaria parasite augments protective immunity. mBio 5(4):e01321–e01314. doi:10.1128/mBio.01321-14

  • Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U, Nussenzweig RS, Nussenzweig V, Rodriguez A (2001) Migration of Plasmodium sporozoites through cells before infection. Science 291(5501):141–144

    Article  CAS  PubMed  Google Scholar 

  • Mota MM, Hafalla JC, Rodriguez A (2002) Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 8(11):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Mueller AK, Camargo N, Kaiser K, Andorfer C, Frevert U, Matuschewski K, Kappe SH (2005) Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc Natl Acad Sci U S A 102(8):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA (2009) Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 9(9):555–566. doi:10.1016/S1473-3099(09)70177-X

    Article  CAS  PubMed  Google Scholar 

  • Mundwiler-Pachlatko E, Beck HP (2013) Maurer’s clefts, the enigma of Plasmodium falciparum. Proc Natl Acad Sci U S A 110(50):19987–19994. doi:10.1073/pnas.1309247110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, Engel U, Spatz JP, Matuschewski K, Schwarz US, Frischknecht F (2009) Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites. Cell Host Microbe 6(6):551–562. doi:10.1016/j.chom.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  • Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, Aravind L, Desai SA (2011) Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 145(5):665–677. doi:10.1016/j.cell.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noulin F, Manesia JK, Rosanas-Urgell A, Erhart A, Borlon C, Van Den Abbeele J, d’Alessandro U, Verfaillie CM (2014) Hematopoietic stem/progenitor cell sources to generate reticulocytes for Plasmodium vivax culture. PLoS One 9(11), e112496. doi:10.1371/journal.pone.0112496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberli A, Slater LM, Cutts E, Brand F, Mundwiler-Pachlatko E, Rusch S, Masik MF, Erat MC, Beck HP, Vakonakis I (2014) A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J. doi:10.1096/fj.14-256057

    PubMed  PubMed Central  Google Scholar 

  • Oh SS, Voigt S, Fisher D, Yi SJ, LeRoy PJ, Derick LH, Liu S, Chishti AH (2000) Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol Biochem Parasitol 108(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Orito Y, Ishino T, Iwanaga S, Kaneko I, Kato T, Menard R, Chinzei Y, Yuda M (2013) Liver-specific protein 2: a Plasmodium protein exported to the hepatocyte cytoplasm and required for merozoite formation. Mol Microbiol 87(1):66–79. doi:10.1111/mmi.12083

    Article  CAS  PubMed  Google Scholar 

  • Pachlatko E, Rusch S, Muller A, Hemphill A, Tilley L, Hanssen E, Beck HP (2010) MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer’s cleft tethers. Mol Microbiol 77(5):1136–1152. doi:10.1111/j.1365-2958.2010.07278.x

    Article  CAS  PubMed  Google Scholar 

  • Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ (2006) Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog 2(11), e117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasini EM, Braks JA, Fonager J, Klop O, Aime E, Spaccapelo R, Otto TD, Berriman M, Hiss JA, Thomas AW, Mann M, Janse CJ, Kocken CH, Franke-Fayard B (2013) Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics 12(2):426–448. doi:10.1074/mcp.M112.021238

    Article  CAS  PubMed  Google Scholar 

  • Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110(3):1036–1042. doi:10.1182/blood-2007-02-076919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pick C, Ebersberger I, Spielmann T, Bruchhaus I, Burmester T (2011) Phylogenomic analyses of malaria parasites and evolution of their exported proteins. BMC Evol Biol 11:167. doi:10.1186/1471-2148-11-167

    Article  PubMed  PubMed Central  Google Scholar 

  • Ploemen IH, Croes HJ, van Gemert GJ, Wijers-Rouw M, Hermsen CC, Sauerwein RW (2012) Plasmodium berghei Deltap52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells. PLoS One 7(12), e50772. doi:10.1371/journal.pone.0050772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin B, Patzewitz EM, Brady D, Silvie O, Wright MH, Ferguson DJ, Wall RJ, Whipple S, Guttery DS, Tate EW, Wickstead B, Holder AA, Tewari R (2013) Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite. Biol Open 2(11):1160–1170. doi:10.1242/bio.20136163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pradel G, Frevert U (2001) Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33(5):1154–1165

    Article  CAS  PubMed  Google Scholar 

  • Prado M, Eickel N, De Niz M, Heitmann A, Agop-Nersesian C, Wacker R, Schmuckli-Maurer J, Caldelari R, Janse CJ, Khan SM, May J, Meyer CG, Heussler VT (2015) Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms. Autophagy 11(9):1561–1579. doi:10.1080/15548627.2015.1067361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prudencio M, Rodriguez A, Mota MM (2006) The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol 4(11):849–856

    Article  CAS  PubMed  Google Scholar 

  • Ralph SA, Foth BJ, Hall N, McFadden GI (2004) Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol 21(12):2183–2194. doi:10.1093/molbev/msh233

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Docampo MD, Macrae JI, Pujol FM, Brooks CF, van Dooren GG, Hiltunen JK, Kastaniotis AJ, McConville MJ, Striepen B (2012) Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. J Biol Chem 287(7):4957–4971. doi:10.1074/jbc.M111.310144

    Article  CAS  PubMed  Google Scholar 

  • Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153(5):1120–1133. doi:10.1016/j.cell.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, Deschermeier C, Turk V, Hilgenfeld R, Heussler VT (2010) Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog 6(3), e1000825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J, Ralph SA, Norton RS, Cowman AF (2010) Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 285(19):14815–14822. doi:10.1074/jbc.M109.080770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter J, Franken G, Mehlhorn H, Labisch A, Haussinger D (2010) What is the evidence for the existence of Plasmodium ovale hypnozoites? Parasitol Res 107(6):1285–1290. doi:10.1007/s00436-010-2071-z

    Article  PubMed  Google Scholar 

  • Rodrigues CD, Hannus M, Prudencio M, Martin C, Goncalves LA, Portugal S, Epiphanio S, Akinc A, Hadwiger P, Jahn-Hofmann K, Rohl I, van Gemert GJ, Franetich JF, Luty AJ, Sauerwein R, Mazier D, Koteliansky V, Vornlocher HP, Echeverri CJ, Mota MM (2008) Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host Microbe 4(3):271–282

    Article  CAS  PubMed  Google Scholar 

  • Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49(1):179–191

    Article  CAS  PubMed  Google Scholar 

  • Salmon BL, Oksman A, Goldberg DE (2001) Malaria parasite exit from the host erythrocyte: a two-step process requiring extraerythrocytic proteolysis. Proc Natl Acad Sci U S A 98(1):271–276. doi:10.1073/pnas.011413198

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Wu Y, Garboczi DN (2007) Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines. Eukaryot Cell 6(8):1260–1265. doi:10.1128/EC.00060-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherf A, Riviere L, Lopez-Rubio JJ (2008) SnapShot: var gene expression in the malaria parasite. Cell 134(1):190. doi:10.1016/j.cell.2008.06.042

    Article  PubMed  Google Scholar 

  • Schmidt-Christensen A, Sturm A, Horstmann S, Heussler VT (2008) Expression and processing of Plasmodium berghei SERA3 during liver stages. Cell Microbiol 10(8):1723–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siau A, Huang X, Yam XY, Bob NS, Sun H, Rajapakse JC, Renia L, Preiser PR (2014) Identification of a new export signal in Plasmodium yoelii: identification of a new exportome. Cell Microbiol 16(5):673–686. doi:10.1111/cmi.12293

    Article  CAS  PubMed  Google Scholar 

  • Sidjanski S, Vanderberg JP (1997) Delayed migration of Plasmodium sporozoites from the mosquito bite site to the blood. Am J Trop Med Hyg 57(4):426–429

    CAS  PubMed  Google Scholar 

  • Silva MD, Cooke BM, Guillotte M, Buckingham DW, Sauzet JP, Le Scanf C, Contamin H, David P, Mercereau-Puijalon O, Bonnefoy S (2005) A role for the Plasmodium falciparum RESA protein in resistance against heat shock demonstrated using gene disruption. Mol Microbiol 56(4):990–1003. doi:10.1111/j.1365-2958.2005.04603.x

    Article  CAS  PubMed  Google Scholar 

  • Silvestrini F, Lasonder E, Olivieri A, Camarda G, van Schaijk B, Sanchez M, Younis Younis S, Sauerwein R, Alano P (2010) Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 9(7):1437–1448. doi:10.1074/mcp.M900479-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Renia L, Hannoun L, Eling W, Levy S, Boucheix C, Mazier D (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Sinden RE, Talman A, Marques SR, Wass MN, Sternberg MJ (2010) The flagellum in malarial parasites. Curr Opin Microbiol 13(4):491–500. doi:10.1016/j.mib.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Buscaglia CA, Wang Q, Levay A, Nussenzweig DR, Walker JR, Winzeler EA, Fujii H, Fontoura BM, Nussenzweig V (2007) Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell 131(3):492–504. doi:10.1016/j.cell.2007.09.013

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, Religa AA, Bushell E, Graham AL, Cameron R, Kafsack BF, Williams AE, Llinas M, Berriman M, Billker O, Waters AP (2014) A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507(7491):253–257. doi:10.1038/nature12970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleebs BE, Lopaticki S, Marapana DS, O’Neill MT, Rajasekaran P, Gazdik M, Gunther S, Whitehead LW, Lowes KN, Barfod L, Hviid L, Shaw PJ, Hodder AN, Smith BJ, Cowman AF, Boddey JA (2014) Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol 12(7), e1001897. doi:10.1371/journal.pbio.1001897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith JD (2014) The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol Biochem Parasitol 195(2):82–87. doi:10.1016/j.molbiopara.2014.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow RW, Marsh K (1998) New insights into the epidemiology of malaria relevant for disease control. Br Med Bull 54(2):293–309

    Article  CAS  PubMed  Google Scholar 

  • Soldati D, Meissner M (2004) Toxoplasma as a novel system for motility. Curr Opin Cell Biol 16(1):32–40. doi:10.1016/j.ceb.2003.11.013

    Article  CAS  PubMed  Google Scholar 

  • Spielmann T, Gilberger TW (2010) Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol 26(1):6–10. doi:10.1016/j.pt.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  • Spielmann T, Montagna GN, Hecht L, Matuschewski K (2012) Molecular make-up of the Plasmodium parasitophorous vacuolar membrane. Int J Med Microbiol 302(4–5):179–186. doi:10.1016/j.ijmm.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  • Spitz S (1946) The pathology of acute falciparum malaria. Mil Surg 99(5):555–572

    CAS  PubMed  Google Scholar 

  • Staines HM, Rae C, Kirk K (2000) Increased permeability of the malaria-infected erythrocyte to organic cations. Biochim Biophys Acta 1463(1):88–98

    Article  CAS  PubMed  Google Scholar 

  • Stanway RR, Witt T, Zobiak B, Aepfelbacher M, Heussler VT (2009) GFP-targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites. Biol Cell 101(7):415–430

    Google Scholar 

  • Stanway RR, Mueller N, Zobiak B, Graewe S, Froehlke U, Zessin PJ, Aepfelbacher M, Heussler VT (2011) Organelle segregation into Plasmodium liver stage merozoites. Cell Microbiol 13(11):1768–1782. doi:10.1111/j.1462-5822.2011.01657.x

    Article  CAS  PubMed  Google Scholar 

  • Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Menard D, Fidock DA (2014) K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347 (6220):428–431. doi:10.1126/science.1260867

    Google Scholar 

  • Struck NS, de Souza DS, Langer C, Marti M, Pearce JA, Cowman AF, Gilberger TW (2005) Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. J Cell Sci 118(Pt 23):5603–5613. doi:10.1242/jcs.02673

    Article  CAS  PubMed  Google Scholar 

  • Struck NS, Herrmann S, Schmuck-Barkmann I, de Souza DS, Haase S, Cabrera AL, Treeck M, Bruns C, Langer C, Cowman AF, Marti M, Spielmann T, Gilberger TW (2008) Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Mol Microbiol 67(6):1320–1330. doi:10.1111/j.1365-2958.2008.06125.x

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A, Krueger A, Pollok JM, Menard R, Heussler VT (2006) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313(5791):1287–1290

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Graewe S, Franke-Fayard B, Retzlaff S, Bolte S, Roppenser B, Aepfelbacher M, Janse C, Heussler V (2009) Alteration of the parasite plasma membrane and the parasitophorous vacuole membrane during exo-erythrocytic development of malaria parasites. Protist 160(1):51–63

    Article  PubMed  Google Scholar 

  • Suarez C, Volkmann K, Gomes AR, Billker O, Blackman MJ (2013) The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLoS Pathog 9(12), e1003811. doi:10.1371/journal.ppat.1003811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, Nussenzweig RS, Menard R (1997) TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell 90(3):511–522

    Article  CAS  PubMed  Google Scholar 

  • Tavares J, Formaglio P, Thiberge S, Mordelet E, Van Rooijen N, Medvinsky A, Menard R, Amino R (2013) Role of host cell traversal by the malaria sporozoite during liver infection. J Exp Med 210(5):905–915. doi:10.1084/jem.20121130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SM, Cerami C, Fairhurst RM (2013) Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog 9(5), e1003327. doi:10.1371/journal.ppat.1003327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tham WH, Healer J, Cowman AF (2012) Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol 28(1):23–30. doi:10.1016/j.pt.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Tilley L, Sougrat R, Lithgow T, Hanssen E (2008) The twists and turns of Maurer’s cleft trafficking in P. falciparum-infected erythrocytes. Traffic 9(2):187–197. doi:10.1111/j.1600-0854.2007.00684.x

    Article  CAS  PubMed  Google Scholar 

  • Tomavo S, Slomianny C, Meissner M, Carruthers VB (2013) Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog 9(10), e1003629. doi:10.1371/journal.ppat.1003629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran JQ, Li C, Chyan A, Chung L, Morrissette NS (2012) SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. Eukaryot Cell 11(2):206–216. doi:10.1128/EC.05161-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremp AZ, Dessens JT (2011) Malaria IMC1 membrane skeleton proteins operate autonomously and participate in motility independently of cell shape. J Biol Chem 286(7):5383–5391. doi:10.1074/jbc.M110.187195

    Article  CAS  PubMed  Google Scholar 

  • Tremp AZ, Khater EI, Dessens JT (2008) IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes. J Biol Chem 283(41):27604–27611. doi:10.1074/jbc.M801302200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Sand C, Horstmann S, Schmidt A, Sturm A, Bolte S, Krueger A, Lutgehetmann M, Pollok JM, Libert C, Heussler VT (2005) The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol Microbiol 58(3):731–742

    Article  PubMed  CAS  Google Scholar 

  • van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, Stunnenberg HG, van Gemert GJ, Sauerwein RW, Eling W (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104(1):153–164

    Article  PubMed  Google Scholar 

  • van Dooren GG, Striepen B (2013) The algal past and parasite present of the apicoplast. Annu Rev Microbiol 67:271–289. doi:10.1146/annurev-micro-092412-155741

    Article  PubMed  CAS  Google Scholar 

  • Vinetz JM (2005) Plasmodium ookinete invasion of the mosquito midgut. Curr Top Microbiol Immunol 295:357–382

    CAS  PubMed  Google Scholar 

  • Voigt S, Hanspal M, LeRoy PJ, Zhao PS, Oh SS, Chishti AH, Liu SC (2000) The cytoadherence ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) binds to the P. falciparum knob-associated histidine-rich protein (KAHRP) by electrostatic interactions. Mol Biochem Parasitol 110(2):423–428

    Article  CAS  PubMed  Google Scholar 

  • Volkmann K, Pfander C, Burstroem C, Ahras M, Goulding D, Rayner JC, Frischknecht F, Billker O, Brochet M (2012) The alveolin IMC1h is required for normal ookinete and sporozoite motility behaviour and host colonisation in Plasmodium berghei. PLoS One 7(7), e41409. doi:10.1371/journal.pone.0041409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, Reeder JC, Crabb BS, Cowman AF (2006) A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439(7079):1004–1008. doi:10.1038/nature04407

    CAS  PubMed  Google Scholar 

  • Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19(8):1794–1802. doi:10.1093/emboj/19.8.1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, Cowman AF (2001) Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 20(20):5636–5649. doi:10.1093/emboj/20.20.5636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson LG, Carter LM, Reece SE (2013) High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms. Proc Natl Acad Sci U S A 110(47):18769–18774. doi:10.1073/pnas.1309934110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth CC, Glushakova S, Scheuermayer M, Repnik U, Garg S, Schaack D, Kachman MM, Weissbach T, Zimmerberg J, Dandekar T, Griffiths G, Chitnis CE, Singh S, Fischer R, Pradel G (2014) Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cell Microbiol 16(5):709–733. doi:10.1111/cmi.12288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright GJ, Rayner JC (2014) Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog 10(3), e1003943. doi:10.1371/journal.ppat.1003943

    Article  PubMed  PubMed Central  Google Scholar 

  • Yalaoui S, Huby T, Franetich JF, Gego A, Rametti A, Moreau M, Collet X, Siau A, van Gemert GJ, Sauerwein RW, Luty AJ, Vaillant JC, Hannoun L, Chapman J, Mazier D, Froissard P (2008) Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell Host Microbe 4(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Yeoh S, O’Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman MJ (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131(6):1072–1083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Klaus Jürries for providing the life cycle graphics in Fig. 9.1. We are also grateful to Annika Rennenberg for providing the graphics in Fig. 9.2 a and Nicole Struck and Marco Schaffner for the images in 9.2. b and c. Rebecca Stanway is thanked for the apicoplast images in Fig. 9.3 Ross Douglas is thanked for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Heussler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Heussler, V., Spielmann, T., Frischknecht, F., Gilberger, T. (2016). Plasmodium . In: Walochnik, J., Duchêne, M. (eds) Molecular Parasitology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1416-2_9

Download citation

Publish with us

Policies and ethics