Skip to main content

Leishmania

  • Chapter
  • First Online:
Molecular Parasitology
  • 1551 Accesses

Abstract

It is more than 125 years since Piotr Fokich Borovsky reported in 1898 on Leishmania parasites as the etiologic agent of oriental cutaneous leishmaniasis. Publication of the first Leishmania genome in 2005 propelled research on this organism into a new dimension. Genome information together with reverse genetics, -omics methodologies, and bioinformatics have become the modern point of departure to study also these pathogens. In the following chapter, selected aspects of the biology of Leishmania spp. are introduced with a non-familiar reader in mind. The aim was to integrate genome information into the presentation of cell morphology, sub-cellular organization, molecular biology, and metabolic adaptation to different habitats as these unicellular protozoans revolve through their lifecycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Akiyoshi B, Gull K (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM, Sacks DL (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC (2011) Morphological events during the cell cycle of Leishmania major. Eukaryot Cell 10:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atayde VD, Shi H, Franklin JB, Carriero N, Notton T, Lye LF, Owens K, Beverley SM, Tschudi C, Ullu E (2013) The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol Microbiol 87:580–593

    Article  CAS  PubMed  Google Scholar 

  • Besteiro S, Williams RA, Coombs GH, Mottram JC (2007) Protein turnover and differentiation in Leishmania. Int J Parasitol 37:1063–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besteiro S, Tonn D, Tetley L, Coombs GH, Mottram JC (2008) The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J Cell Sci 121:561–570

    Article  CAS  PubMed  Google Scholar 

  • Beverley SM (2003) Protozomics: trypanosomatid parasite genetics comes of age. Nat Rev Genet 4:11–19

    Article  CAS  PubMed  Google Scholar 

  • Bohnsack MT, Schleiff E (2010) The evolution of protein targeting and translocation systems. Biochim Biophys Acta 1803:1115–1130

    Article  CAS  PubMed  Google Scholar 

  • Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016147

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavali AK, Blazier AS, Tlaxca JL, Jensen PA, Pearson RD, Papin JA (2012) Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst Biol 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton C (2013) The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog 9, e1003680

    Article  PubMed  PubMed Central  Google Scholar 

  • Colasante C, Voncken F, Manful T, Ruppert T, Tielens AG, van Hellemond JJ, Clayton C (2013) Proteins and lipids of glycosomal membranes from Leishmania tarentolae and Trypanosoma brucei. F1000Research 2:27

    Google Scholar 

  • da Silva MS, Monteiro JP, Nunes VS, Vasconcelos EJ, Perez AM, Freitas-Junior Lde H, Elias MC, Cano MI (2013) Leishmania amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation during cell cycle. PLoS One 8, e81397

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol 5:140197

    Article  PubMed  PubMed Central  Google Scholar 

  • Dostalova A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasites Vectors 5:276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle MA, MacRae JI, De Souza DP, Saunders EC, McConville MJ, Likic VA (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 3:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckers E, Cyrklaff M, Simpson L, Deponte M (2012) Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol Chem 393:513–524

    Article  CAS  PubMed  Google Scholar 

  • Field MC, Carrington M (2004) Intracellular membrane transport systems in Trypanosoma brucei. Traffic 5:905–913

    Article  CAS  PubMed  Google Scholar 

  • Field MC, Carrington M (2009) The trypanosome flagellar pocket. Nat Rev Microbiol 7:775–786

    Article  CAS  PubMed  Google Scholar 

  • Flegontov PN, Zhirenkina EN, Gerasimov ES, Ponirovsky EN, Strelkova MV, Kolesnikov AA (2009) Selective amplification of maxicircle classes during the life cycle of Leishmania major. Mol Biochem Parasitol 165:142–152

    Article  CAS  PubMed  Google Scholar 

  • Garami A, Mehlert A, Ilg T (2001) Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 21:8168–8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldston AM, Sharma AI, Paul KS, Engman DM (2014) Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 30:350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilley JD, Zawadzki JL, McConville MJ, Coombs GH, Mottram JC (2000) Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI):protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins. Mol Biol Cell 11:1183–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilg T (2000a) Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J 19:1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilg T (2000b) Proteophosphoglycans of Leishmania. Parasitol Today 16:489–497

    Article  CAS  PubMed  Google Scholar 

  • Ilgoutz SC, McConville MJ (2001) Function and assembly of the Leishmania surface coat. Int J Parasitol 31:899–908

    Article  CAS  PubMed  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Madeira da Silva L, Beverley SM (2010) Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity. Proc Natl Acad Sci U S A 107:11965–11970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD (2002) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154; table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T (2007) Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 23:368–375

    Article  CAS  PubMed  Google Scholar 

  • Merlen T, Sereno D, Brajon N, Rostand F, Lemesre JL (1999) Leishmania spp: completely defined medium without serum and macromolecules (CDM/LP) for the continuous in vitro cultivation of infective promastigote forms. Am J Trop Med Hyg 60:41–50

    CAS  PubMed  Google Scholar 

  • Michaeli S (2011) Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 6:459–474

    Article  CAS  PubMed  Google Scholar 

  • Murungi E, Barlow LD, Venkatesh D, Adung’a VO, Dacks JB, Field MC, Christoffels A (2014) A comparative analysis of trypanosomatid SNARE proteins. Parasitol Int 63:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opperdoes FR (1990) The glycosome of trypanosomes and Leishmania. Biochem Soc Trans 18:729–731

    Article  CAS  PubMed  Google Scholar 

  • Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158

    Article  CAS  PubMed  Google Scholar 

  • Opperdoes FR, Szikora JP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147:193–206

    Article  CAS  PubMed  Google Scholar 

  • Paape D, Aebischer T (2011) Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics 74:1614–1624

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Stierhof YD, Ilg T (1997) Proteophosphoglycan secreted by Leishmania mexicana amastigotes causes vacuole formation in macrophages. Infect Immun 65:783–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21:2129–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, Volf P, Berriman M, Cotton JA, Smith DF (2014) Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet 10, e1004092

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, Ribeiro-Gomes F, Barhoumi M, Grigg M, Shaik J, Dobson D et al (2014) Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci U S A 111:16808–16813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders EC, MacRae JI, Naderer T, Ng M, McConville MJ, Likic VA (2012) LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data. Methods Mol Biol 881:505–529

    Article  CAS  PubMed  Google Scholar 

  • Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, McConville MJ (2014) Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 10, e1003888

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders EC, de Souza DP, Chambers JM, Ng M, Pyke J, McConville MJ (2015) Use of (13)C stable isotope labelling for pathway and metabolic flux analysis in Leishmania parasites. Methods Mol Biol 1201:281–296

    Article  CAS  PubMed  Google Scholar 

  • Simpson L (1986) Kinetoplast DNA in trypanosomid flagellates. Int Rev Cytol 99:119–179

    Article  CAS  PubMed  Google Scholar 

  • Simpson L, Shaw J (1989) RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell 57:355–366

    Article  CAS  PubMed  Google Scholar 

  • Simpson L, Aphasizhev R, Lukes J, Cruz-Reyes J (2010) Guide to the nomenclature of kinetoplastid RNA editing: a proposal. Protist 161:2–6

    Article  CAS  PubMed  Google Scholar 

  • Ueno N, Wilson ME (2012) Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol 28:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler RJ, Gluenz E, Gull K (2011) The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 79:647–662

    Article  CAS  PubMed  Google Scholar 

  • Wideman JG, Leung KF, Field MC, Dacks JB (2014) The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb Perspect Biol 6:a016998

    Article  PubMed  PubMed Central  Google Scholar 

  • Yatawara L, Le TH, Wickramasinghe S, Agatsuma T (2008) Maxicircle (mitochondrial) genome sequence (partial) of Leishmania major: gene content, arrangement and composition compared with Leishmania tarentolae. Gene 424:80–86

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Aebischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Aebischer, A., Mrva, M. (2016). Leishmania . In: Walochnik, J., Duchêne, M. (eds) Molecular Parasitology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1416-2_7

Download citation

Publish with us

Policies and ethics