Skip to main content

Trichomonas

  • Chapter
  • First Online:
Molecular Parasitology

Abstract

Trichomonas vaginalis is a flagellated eukaryotic microorganism, which parasitizes the human urogenital mucosa. This pathogen is responsible for the most prevalent, nonviral, sexually transmitted infection worldwide; despite the high prevalence of the disease, relevant aspects of the pathophysiology of T. vaginalis are still obscure, and the impact of the infection on public health is greatly underestimated, especially in developing countries. Recently, trichomoniasis has been classified as a neglected infection. In order to establish the infection in humans, T. vaginalis has evolved a number of sophisticated and multifaceted colonization and virulence strategies, based both on production of toxic molecules and enzymes and on subversion of the host immune response. Even if trichomoniasis is primarily considered as a source of morbidity in the human reproductive tract, increasing interests of parasitologists and clinicians have recently focused on severe complications associated with Trichomonas infection, such as adverse pregnancy outcomes, facilitation of HIV transmission, and association with cervical and prostate cancer. Nitroimidazole derivatives remain the sole treatment of trichomoniasis, and despite an ever increasing number of metronidazole-resistant isolates has been reported in the last years, effective alternative therapies are not yet available. All these aspects of pathobiology of T. vaginalis will be discussed in the present chapter, on the basis of the most recent results of molecular and “omics” investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addis MF, Rappelli P, Delogu G, Carta F, Cappuccinelli P, Fiori PL (1998) Cloning and molecular characterization of a cDNA clone coding for Trichomonas vaginalis Alpha-Actinin and intracellular localization of the protein. Infect Immun 66(10):4924–4931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Addis MF, Rappelli P, Fiori PL (2000) Host and tissue specificity of Trichomonas vaginalis is not mediated by its known adhesion proteins. Infect Immun 68(7):4358–4360. doi:10.1128/IAI.68.7.4358-4360.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • al Salihi FL, Curran JP, Wang J (1974) Neonatal Trichomonas vaginalis: report of three cases and review of the literature. Pediatrics 53:196–200

    CAS  PubMed  Google Scholar 

  • Alderete JF, Newton E, Dennis C, Neale KA (1991) The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases. Genitourin Med 67(6):469–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alderete JF, O'Brien JL, Arroyo R, Engbring JA, Musatovova O, Lopez O, Lauriano C, Nguyen J (1995) Cloning and molecular characterization of two genes encoding adhesion proteins involved in Trichomonas vaginalis cytoadherence. Mol Microbiol 17(1):69–83

    Article  CAS  PubMed  Google Scholar 

  • Alderete JF, Millsap KW, Lehker MW, Benchimol M (2001) Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol 3(6):359–370

    Article  CAS  PubMed  Google Scholar 

  • Alsmark UC, Foster PG, Sicheritz-Ponten T, Nakjang S, Embley TM, Hirt RP (2013) Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol 14:R19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez-Sanchez ME, Carvajal-Gamez BI, Solano-Gonzalez E, Martinez-Benitez M, Garcia AF, Alderete JF, Arroyo R (2008) Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP a 65-kDa cysteine proteinase involved in cellular damage. Int J Biochem Cell Biol 40 65 SRC – GoogleScholar:2442–2451

    Google Scholar 

  • Arese P, Cappuccinelli P (1974) Glycolysis and pentose phosphate cycle in Trichomonas vaginalis: I. Enzyme activity pattern and the constant proportion quintet. Int J Biochem 5:859–865

    Article  CAS  Google Scholar 

  • Barbera MJ, Ruiz-Trillo I, Tufts JY, Bery A, Silberman JD, Roger AJ (2010) Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell 9:1913–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barykova YA, Logunov DY, Shmarov MM, Vinarov AZ, Fiev DN, Vinarova NA, Rakovskaya IV, Baker PS, Shyshynova I, Stephenson AJ, Klein EA, Naroditsky BS, Gintsburg AL, Gudkov AV (2011) Association of Mycoplasma hominis infection with prostate cancer. Oncotarget 2(4):289–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastida-Corcuera FD, Okumura CY, Colocoussi A, Johnson PJ (2005) Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot Cell 4(11):1951–1958. doi:10.1128/EC.4.11.1951-1958.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastida-Corcuera FD, Singh BN, Gray GC, Stamper PD, Davuluri M, Schlangen K, Corbeil RR, Corbeil LB (2013) Antibodies to Trichomonas vaginalis surface glycolipid. Sex Transm Infect 89(6):467–472. doi:10.1136/sextrans-2012-051013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12(2):883–897. doi:10.1021/pr300947g

    Article  CAS  PubMed  Google Scholar 

  • Beltran NC, Horvathova L, Jedelsky PL, Sedinova M, Rada P, Marcincikova M, Hrdy I, Tachezy J (2013a) Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One 8(5):e65148. doi:10.1371/journal.pone.0065148

    Google Scholar 

  • Beltran NC, Horvathova L, Jedelsky PL, Sedinova M, Rada P, Marcincikova M, Hrdy I, Tachezy J (2013b) Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One e65148 8 SRC – GoogleScholar

    Google Scholar 

  • Blazejewski T, Nursimulu N, Pszenny V, Dangoudoubiyam S, Namasivayam S, Chiasson MA, Chessman K, Tonkin M, Swapna LS, Hung SS, Bridgers J, Ricklefs SM, Boulanger MJ, Dubey JP, Porcella SF, Kissinger JC, Howe DK, Grigg ME, Parkinson J (2015) Systems-based analysis of the Sarcocystis neurona genome identifies pathways that contribute to a heteroxenous life cycle. MBio 6(1). pii: e02445-14. doi: 10.1128/mBio.02445-14.

  • Bradley PJ, Lahti CJ, Plümper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16(12):3484–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bricheux G, Coffe G, Brugerolle G (2007) Identification of a new protein in the centrosome-like “atractophore” of Trichomonas vaginalis. Mol Biochem Parasitol 153(2):133–140, http://dx.doi.org/10.1016/j.molbiopara.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Upcroft JA, Dodd HN, Chen N, Upcroft P (1999) Alternative 2-keto acid oxidoreductase activities in Trichomonas vaginalis. Mol Biochem Parasitol 98(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Burstein D, Gould SB, Zimorski V, Kloesges T, Kiosse F, Major P, Martin WF, Pupko T, Dagan T (2012) A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis. Eukaryot Cell 11(2):217–228. doi:10.1128/EC.05225-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caler E, Lorenzi H (2010) Entamoeba histolytica: genome status and web resources. In: Johnson PJ, Adam RD (eds) Anaerobic Parasitic Protozoa: genomics and molecular biology. Caister Academic Press, Norfolk, pp 1–22

    Google Scholar 

  • Cárdenas-Guerra RE, Arroyo R, Rosa de Andrade I, Benchimol M, Ortega-López J (2013) The iron-induced cysteine proteinase TvCP4 plays a key role in Trichomonas vaginalis haemolysis. Microbes Infect 15(13):958–968. doi:10.1016/j.micinf.2013.09.002

    Article  PubMed  CAS  Google Scholar 

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM, Jr., Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315(5809):207–212. 315/5809/207 [pii] doi:10.1126/science.1132894

    Google Scholar 

  • Carlton JM, Malik SB, Sullivan SA, Sicheritz-Ponten T, Tang P, Hirt RP (2010) The genome of Trichomonas vaginalis. In: Clark CG, Johnson PJ, Adam RD (eds) Anaerobic Parasitic Protozoa: genomics and molecular biology. Caister Academic Press, Norfolk, UK, pp 45–77

    Google Scholar 

  • Carvajal-Gamez BI, Arroyo R, Camacho-Nuez M, Lira R, Martínez-Benitez M, Alvarez-Sánchez ME (2011) Putrescine is required for the expression of eif-5a in Trichomonas vaginalis. Mol Biochem Parasitol 180(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Gamez BI, Quintas-Granados LI, Arroyo R, Vázquez-Carrillo LI, Ramón-Luing LD, Carrillo-Tapia E, Alvarez-Sánchez ME (2014) Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity. PloS One 9(9):e107293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. doi:10.1016/j.cell.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Cerkasov J, Cerkasovová A, Kulda J, Vilhelmová D (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. I ADP-dependent oxidation of malate and pyruvate. J Biol Chem 253(4):1207–1214

    CAS  PubMed  Google Scholar 

  • Chapman A, Cammack R, Linstead D, Lloyd D (1985) The generation of metronidazole radicals in hydrogenosomes isolated from Trichomonas vaginalis. J Gen Microbiol 131(9):2141–2144

    CAS  PubMed  Google Scholar 

  • Charrin S, Jouannet S, Boucheix C, Rubinstein E (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648. doi:10.1242/jcs.154906

    Article  CAS  PubMed  Google Scholar 

  • Chen KC, Amsel R, Eschenbach DA, Holmes KK (1982) Biochemical diagnosis of vaginitis: determination of diamines in vaginal fluid. J Infect Dis 145(3):337–345

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Krinsky BH, Long M (2013) New genes as drivers of phenotypic evolution. Nat Rev Genet 14(9):645–660. doi:10.1038/nrg3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark CG, Johnson PJ, Adam RD (eds) (2010) Anaerobic Parasitic Protozoa: genomics and molecular biology. Caister Academic Press, Norfolk

    Google Scholar 

  • Clemens DL, Johnson PJ (2000) Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol 106(2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Coceres VM, Alonso AM, Nievas YR, Midlej V, Frontera L, Benchimol M, Johnson PJ, de Miguel N (2015) The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis. Cell Microbiol. doi:10.1111/cmi.12431

    PubMed  Google Scholar 

  • Collins LJ (2011) Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology. Front Genet 2:96. doi:10.3389/fgene.2011.00096

    PubMed  PubMed Central  Google Scholar 

  • Conrad MD, Gorman AW, Schillinger JA, Fiori PL, Arroyo R, Malla N, Dubey ML, Gonzalez J, Blank S, Secor WE, Carlton JM (2012) Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted Parasite Trichomonas vaginalis. PLoS Negl Trop Dis 6(3), e1573. doi:10.1371/journal.pntd.0001573

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad MD, Bradic M, Warring SD, Gorman AW, Carlton JM (2013) Getting trichy: tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends Parasitol 29(1):17–25

    Article  PubMed  Google Scholar 

  • Coombs GH, Müller M (1995) Energy Metabolism in Anaerobic Parasitic Protozoa. In: J.J.Marr, M.Müller (eds) Biochemistry and molecular biology of parasites. Academic Press, pp 33–47. SRC – GoogleScholar

    Google Scholar 

  • Coombs GH, Westrop GD, Suchan P, Puzova G, Hirt RP, Embley TM, Mottram JC, Müller S (2004) The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J Biol Chem 279(7):5249–5256

    Article  CAS  PubMed  Google Scholar 

  • Cuervo P, Cupolillo E, Britto C, González LJ, E Silva-Filho FC, Lopes LC, Domont GB, De Jesus JB (2008) Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J Proteomics 71(1):109–122

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Das S, Smith TF, Samuelson J (2010) Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Negl Trop Dis 4(8), e782. doi:10.1371/journal.pntd.0000782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Andrade Rosa I, de Souza W, Benchimol M (2013) High-resolution scanning electron microscopy of the cytoskeleton of Tritrichomonas foetus. J Struct Biol 183(3):412–418, http://dx.doi.org/10.1016/j.jsb.2013.07.002

    Article  PubMed  Google Scholar 

  • De Jesus JB, Cuervo P, Britto C, Sabóia-Vahia L, Costa E Silva-Filho F, Borges-Veloso A, Barreiros Petrópolis D, Cupolillo E, Barbosa Domont G (2009) Cysteine peptidase expression in Trichomonas vaginalis Isolates displaying high- and low-virulence phenotypes. J Proteome Res 8(3):1555–1564. doi:10.1021/pr8009066

    Article  PubMed  CAS  Google Scholar 

  • de Miguel N, Lustig G, Twu O, Chattopadhyay A, Wohlschlegel JA, Johnson PJ (2010a) Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol Cell Proteomics 9(7):1554–1566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Miguel N, Lustig G, Twu O, Chattopadhyay A, Wohlschlegel JA, Johnson PJ (2010b) Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mole Cell Proteomics MCP 9(7):1554–1566. doi:10.1074/mcp.M000022-MCP201

    Article  CAS  Google Scholar 

  • de Miguel N, Riestra A, Johnson PJ (2012) Reversible association of tetraspanin with Trichomonas vaginalis flagella upon adherence to host cells. Cell Microbiol 14(12):1797–1807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Vecchio MT, Tripodi SA, Arcuri F, Pergola L, Hako L, Vatti R, Cintorino M (2000) Macrophage migration inhibitory factor in prostatic adenocarcinoma: correlation with tumor grading and combination endocrine treatment-related changes. Prostate 45(1):51–57

    Article  PubMed  Google Scholar 

  • Dessi D, Delogu G, Emonte E, Catania MR, Fiori PL, Rappelli P (2005) Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun 73(2):1180–1186. doi:10.1128/IAI.73.2.1180-1186.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dessi D, Rappelli P, Diaz N, Cappuccinelli P, Fiori PL (2006) Mycoplasma hominis and Trichomonas vaginalis: a unique case of symbiotic relationship between two obligate human parasites. Front Biosci 11:2028–2034

    Article  PubMed  Google Scholar 

  • Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

    Article  CAS  PubMed  Google Scholar 

  • Dolezal P, Vanácová S, Tachezy J, Hrdý I (2004) Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene 329:81–92

    Article  CAS  PubMed  Google Scholar 

  • Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, Tachezy J (1996) Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol 83(2):221–234

    Article  CAS  PubMed  Google Scholar 

  • Drmota T, Tachezy J, Kulda J (1997) Isolation and characterization of cytosolic malate dehydrogenase from Trichomonas vaginalis. Folia Parasitol 44(2):103–108

    CAS  PubMed  Google Scholar 

  • Edwards T, Burke P, Smalley H, Hobbs G (2014) Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Critical reviews in microbiology:1–12. doi:papers3://publication/doi/10.3109/1040841X.2014.958050

    Google Scholar 

  • Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771. doi:10.1038/nrc3611

    Article  CAS  PubMed  Google Scholar 

  • Ellis JE, Cole D, Lloyd D (1992) Influence of oxygen on the fermentative metabolism of metronidazole-sensitive and resistant strains of Trichomonas vaginalis. Mol Biochem Parasitol 56(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440(7084):623–630

    Article  CAS  PubMed  Google Scholar 

  • Engbring JA, O'Brien JL, Alderete JF (1996) Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol 408:207–223

    Article  CAS  PubMed  Google Scholar 

  • Fang YK, Huang KY, Huang PJ, Lin R, Chao M, Tang P (2015) Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis. J Microbiol Immunol Infect 48(6):662–675. doi: 10.1016/j.jmii.2014.07.013. Epub 2014 Nov 1

    Google Scholar 

  • Farage MA, Maibach HI (2011) Morphology and physiological changes of genital skin and mucosa. Curr Probl Dermatol 40:9–19

    Article  CAS  PubMed  Google Scholar 

  • Feng SH, Tsai S, Rodriguez J, Lo SC (1999) Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol Cell Biol 19(12):7995–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fettweis JM, Serrano MG, Huang B, Brooks JP, Glascock AL, Sheth NU, Consortium VM, Strauss JF 3rd, Jefferson KK, Buck GA (2014) An emerging Mycoplasma associated with trichomoniasis, vaginal infection and disease. PLoS One 9(10), e110943. doi:10.1099/mic.0.081034-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fichorova RN (2009) Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J Reprod Immunol 83(1–2):185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN (2006) Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 74(10):5773–5779. doi:10.1128/IAI.00631-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichorova RN, Lee Y, Yamamoto HS, Takagi Y, Hayes GR, Goodman RP, Chepa-Lotrea X, Buck OR, Murray R, Kula T, Beach DH, Singh BN, Nibert ML (2012) Endobiont Viruses Sensed by the Human Host – Beyond Conventional Antiparasitic Therapy. PLoS One 7(11), e48418. doi:10.1371/journal.pone.0048418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa-Angulo EE, Rendon-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cardenas-Guerra RE, Ortega-Lopez J, Quintas-Granados LI, Alvarez-Sanchez ME, Arroyo R (2012a) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infec/Institut Pasteur 14(15):1411–1427

    Article  CAS  Google Scholar 

  • Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J, Quintas-Granados LI, Alvarez-Sánchez ME, Arroyo R (2012b) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 14(15):1411–1427. doi:10.1016/j.micinf.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Fiori PL, Rappelli P, Rocchigiani AM, Cappuccinelli P (1993) Trichomonas vaginalis haemolysis: evidence of functional pores formation on red cell membranes. FEMS Microbiol Lett 109(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Fiori PL, Rappelli P, Addis MF, Sechi A, Cappuccinelli P (1996) Trichomonas vaginalis haemolysis: pH regulates a contact-independent mechanism based on pore-forming proteins. Microb Pathog 20(2):109–118. doi:10.1006/mpat.1996.0010

    Article  CAS  PubMed  Google Scholar 

  • Fiori PL, Rappelli P, Addis MF, Mannu F, Cappuccinelli P (1997) Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infect Immun 65(12):5142–5148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiori PL, Rappelli P, Addis MF (1999) The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes Infect 1(2):149–156. doi:10.1016/S1286-4579(99)80006-9

    Article  CAS  PubMed  Google Scholar 

  • Fiori PL, Diaz N, Cocco AR, Rappelli P, Dessi D (2013) Association of Trichomonas vaginalis with its symbiont Mycoplasma hominis synergistically upregulates the in vitro proinflammatory response of human monocytes. Sex Transm Infect 89(6):449–454. doi:10.1136/sextrans-2012-051006. http://sti.bmj.com/content/early/2013/04/29/sextrans-2012-051006.abstract

    Google Scholar 

  • Freeman M (2008) Rhomboid Proteases and their Biological Functions. Annu Rev Genet 42(1):191–210. doi:10.1146/annurev.genet.42.110807.091628

    Article  CAS  PubMed  Google Scholar 

  • Garcia AF, Benchimol M, Alderete JF (2005) Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infect Immun 73(5):2602–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrell TE, Yarlett N, Müller M (1984) Isolation and characterization of Trichomonas vaginalis ferredoxin. Carlsberg Res Commun 49:259–268

    Article  CAS  Google Scholar 

  • Gould SB, Woehle C, Kusdian G, Landan G, Tachezy J, Zimorski V, Martin WF (2013) Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol 43(9):707–719. doi:10.1016/j.ijpara.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  • Han I-H, Goo SY, Park S-J, Hwang S-J, Kim Y-S, Yang MS, Ahn M-H, Ryu J-S (2009) Proinflammatory cytokine and nitric oxide production by human macrophages stimulated with Trichomonas vaginalis. Korean J Parasitol 47 (3):205–212. http://parasitol.kr/journal/view.php?id=10.3347/kjp.2009.47.3.205

    Google Scholar 

  • Harp DF, Chowdhury I (2011) Trichomoniasis: evaluation to execution. Eur J Obstet Gynecol Reprod Biol 157(1):3–9. doi:10.1016/j.ejogrb.2011.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez HM, Marcet R, Sarracent J (2014) Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite 21:54. doi:10.1051/parasite/2014054

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirt RP, Harriman N, Kajava AV, Embley TM (2002) A novel potential surface protein in Trichomonas vaginalis contains a leucine-rich repeat shared by micro-organisms from all three domains of life. Mol Biochem Parasitol 125(1–2):195–199

    Article  CAS  PubMed  Google Scholar 

  • Hirt RP, Noel CJ, Sicheritz-Ponten T, Tachezy J, Fiori PL (2007) Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol 23(11):540–547. S1471-4922(07)00254-1 [pii]. doi:10.1016/j.pt.2007.08.020

    Google Scholar 

  • Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu YC, Diaz N, Rappelli P, Acosta-Serrano A, Fiori PL, Mottram JC (2011) Trichomonas vaginalis pathobiology new insights from the genome sequence. Adv Parasitol 77:87–140

    Article  PubMed  Google Scholar 

  • Hirt RP, Alsmark C, Embley TM (2015) Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Curr Opin Microbiol 23:155–162.

    Google Scholar 

  • Hobbs MM, Seña AC (2013) Modern diagnosis of Trichomonas vaginalis infection. Sex Transm Infect 89(6):434–438. doi:10.1136/sextrans-2013-051057

    Article  PubMed  PubMed Central  Google Scholar 

  • Honigberg BM (1990) Host cell-Trichomonad interactions and virulence assays in in vitro systems. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York, pp 155–212

    Chapter  Google Scholar 

  • Horváthová L, Šafaríková L, Basler M, Hrdy I, Campo NB, Shin JW, Huang KY, Huang PJ, Lin R, Tang P, Tachezy J (2012) Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol Evol 4 SRC – GoogleScholar:1017–1029

    Google Scholar 

  • Hrdy I, Müller M (1995a) Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J Euk Microbiol 42 SRC – GoogleScholar:593–603

    Google Scholar 

  • Hrdy I, Müller M (1995a) Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote, Trichomonas vaginalis. J Mol Evol 41:388–396

    Article  CAS  PubMed  Google Scholar 

  • Hrdy I, Müller M (2008) Metabolism of trichomonad hydrogenosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer-Verlag, Berlin Heidelberg, pp 114–145. SRC – GoogleScholar

    Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432(7017):618–622

    Article  CAS  PubMed  Google Scholar 

  • Huang KY, Chien KY, Lin YC, Hsu WM, Fong IK, Huang PJ, Yueh YM, Gan RR, Tang P (2009) A proteome reference map of Trichomonas vaginalis. Parasitol Res 104(4):927–933. doi:10.1007/s00436-008-1274-z

    Article  PubMed  Google Scholar 

  • Huang K-Y, Huang P-J, Ku F-M, Lin R, Alderete JF, Tang P (2012) Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun 80(11):3900–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang KY, Chen YY, Fang YK, Cheng WH, Cheng CC, Chen YC, Wu TE, Ku FM, Chen SC, Lin R, Tang P (2014) Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta 1840(1):53–64. doi:10.1016/j.bbagen.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Hwang UW, Shin KS, Ryu JS, Min DY, Ahn MH (2002) Phylogenetic relationships between the six superoxide dismutase proteins (FeSOD) of Trichomonas vaginalis and FeSOD6 genetic diversity. Parasite (Paris, France) 9(1):37–42

    Article  CAS  Google Scholar 

  • Iulek J, Alphey MS, Westrop GD, Coombs GH, Hunter WN (2006) High-resolution structure of recombinant Trichomonas vaginalis thioredoxin. Acta Crystallogr D Biol Crystallogr 62(Pt 2):216–220

    Article  PubMed  CAS  Google Scholar 

  • Jeelani G, Sato D, Husain A, Escueta-de Cadiz A, Sugimoto M, Soga T, Suematsu M, Nozaki T (2012) Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation. PLoS One 7(5):e37740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins TM, Gorrell TE, Müller M, Weitzman PD (1991) Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and Trichomonas vaginalis. Biochem Biophys Res Commun 179(2):892–896

    Article  CAS  PubMed  Google Scholar 

  • Jerlstrom-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svard SG (2013) Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 2493 4 SRC – GoogleScholar

    Google Scholar 

  • Johnson G, Trussell RE (1943) Experimental basis for chemotherapy of Trichomonas vaginalis infestation. Proc Soc Exp Biol Med 54 SRC – GoogleScholar:245–249

    Google Scholar 

  • Kedzierski L, Montgomery J, Bullen D, Curtis J, Gardiner E, Jimenez-Ruiz A, Handman E (2004) A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3. J Immunol 172(8):4902–4906

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Taylor S, Su C, Sibley LD, Paulsen I, Ajioka JW (2007) Genetic and genome organization of Toxoplasma gondii. In: Ajioka JW, Soldati D (eds) Toxoplasma: molecular and cellular biology. Horizon Bioscience, Norfolk, pp 193–207

    Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11(6):725–732

    Article  CAS  PubMed  Google Scholar 

  • Kulda J, Honigberg BM (1990) Employment of experimental animals in studies of trichomonas vaginalis infection. In Trichomonads parasitic in humans, Springer-Verlag, New York, pp. 112–120.

    Google Scholar 

  • Kummer S, Hayes GR, Gilbert RO, Beach DH, Lucas JJ, Singh BN (2008) Induction of human host cell apoptosis by Trichomonas vaginalis cysteine proteases is modulated by parasite exposure to iron. Microb Pathog 44(3):197–203. doi:10.1016/j.micpath.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  • Kupferberg AB, Johnson G, Sprince H (1948) Nutritional requirements of Trichomonas vaginalis. Proc Soc Exp Biol Med 67:304–308

    Article  CAS  PubMed  Google Scholar 

  • Kusdian G, Gould SB (2014) The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol Biochem Parasitol 198:92–99

    Article  CAS  PubMed  Google Scholar 

  • Kusdian G, Woehle C, Martin WF, Gould SB (2013) The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol 15(10):1707–1721. doi:10.1111/cmi.12144

    CAS  PubMed  Google Scholar 

  • Lahti CJ, d'Oliveira CE, Johnson PJ (1992) Beta-succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174(21):6822–6830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66(2):309–318

    Article  CAS  PubMed  Google Scholar 

  • Lal K, Noel CJ, Field MC, Goulding D, Hirt RP (2006) Dramatic reorganisation of Trichomonas endomembranes during amoebal transformation: a possible role for G-proteins. Mol Biochem Parasitol 148(1):99–102. S0166-6851(06)00080-6 [pii]. doi:10.1016/j.molbiopara.2006.02.022

    Google Scholar 

  • Leger MM, Gawryluk RMR, Gray MW, Roger AJ (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 8(9), e69532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehker MW, Alderete JF (2000) Biology of trichomonosis. Curr Opin Infect Dis 13(1):37–45. http://journals.lww.com/co-infectiousdiseases/pages/articleviewer.aspx?year=2000&issue=02000&article=00007&type=abstract

  • Leippe M, Bruhn H, HECHT O, GROTZINGER J (2005) Ancient weapons: the three-dimensional structure of amoebapore A. Trends Parasitol 21(1):5–7. doi:10.1016/j.pt.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, Duchêne M (2009) Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol Microbiol 72(2):518–536

    Article  CAS  PubMed  Google Scholar 

  • Leitsch D, Williams CF, Lloyd D, Duchêne M (2013) Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites. Exp Parasitol 134(3):374–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitsch D, Janssen BD, Kolarich D, Johnson PJ, Duchêne M (2014) Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance. Mol Microbiol 91(1):198–208

    Article  CAS  PubMed  Google Scholar 

  • León-Sicairos CR, León-Félix J, Arroyo R (2004) tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene. Microbiology 150(Pt 5):1131–1138. doi:10.1099/mic.0.26927-0

    Article  PubMed  CAS  Google Scholar 

  • Liapounova NA, Hampl V, Gordon PMK, Sensen CW, Gedamu L, Dacks JB (2006) Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. Eukaryot Cell 5(12):2138–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindmark DG (1976) Acetate production by tritrichomonas foetus. In: H Van den Bossche (ed). Biochemistry of parasites and host-parasite relationships. Elsevier/North Holland, Amsterdam, pp. 15–21

    Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248(22):7724–7728

    CAS  PubMed  Google Scholar 

  • Lindmark DG, Müller M, Shio H (1975) Hydrogenosomes in trichomonas vaginalis. J Parasitol 61 SRC – GoogleScholar:552–554

    Google Scholar 

  • Linstead DJ, Bradley S (1988) The purification and properties of two soluble reduced nicotinamide: acceptor oxidoreductases from Trichomonas vaginalis. Mol Biochem Parasitol 27(2–3):125–133

    Article  CAS  PubMed  Google Scholar 

  • Linstead D, Cranshaw MA (1983) The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol 8(3):241–252

    Article  CAS  PubMed  Google Scholar 

  • Lockwood BC, Coombs GH (1991) Purification and characterization of methionine gamma-lyase from Trichomonas vaginalis. Biochem J 279(Pt 3):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe PN, Rowe AF (1986) Aminotransferase activities in Trichomonas vaginalis. Mol Biochem Parasitol 21(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Lubick KJ, Burgess DE (2004) Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis. Infect Immun 72(3):1284–1290. doi:10.1128/IAI.72.3.1284-1290.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustig G, Ryan CM, Secor WE, Johnson PJ (2013) Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infect Immun 81(5):1411–1419. doi:10.1128/IAI.01244-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack SR, Muller M (1980) End products of carbohydrate metabolism in Trichomonas vaginalis. Comp Biochem Physiol 67B:213–216

    CAS  Google Scholar 

  • Malla N, Goyal K, Dhanda RS, Yadav M (2014) Immunity in urogenital protozoa. Parasite Immunol 36(9):400–408. doi:10.1111/pim.12114

    Article  CAS  PubMed  Google Scholar 

  • Maritz JM, Land KM, Carlton JM, Hirt RP (2014) What is the importance of zoonotic trichomonads for human health? Trends Parasitol 30(7):333–341. doi:10.1016/j.pt.2014.05.005

    Article  PubMed  Google Scholar 

  • Martin WF (2008) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Berlin SRC – GoogleScholar

    Google Scholar 

  • McClelland RS, Sangare L, Hassan WM, Lavreys L, Mandaliya K, Kiarie J, Ndinya-Achola J, Jaoko W, Baeten JM (2007) Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis 195(5):698–702. doi:10.1086/511278

    Article  PubMed  Google Scholar 

  • McKie AE, Edlind T, Walker J, Mottram JC, Coombs GH (1998) The primitive protozoon Trichomonas vaginalis contains two methionine gamma-lyase genes that encode members of the gamma-family of pyridoxal 5'-phosphate-dependent enzymes. J Biol Chem 273(10):5549–5556

    Article  CAS  PubMed  Google Scholar 

  • Mertens E (1993) ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitol Today (Personal ed) 9(4):122–126

    Article  CAS  Google Scholar 

  • Mertens E, Müller M (1990) Glucokinase and fructokinase of Trichomonas vaginalis and Tritrichomonas foetus. J Protozool 37(5):384–388

    Article  CAS  PubMed  Google Scholar 

  • Mertens E, Van Schaftingen E, Müller M (1992) Pyruvate kinase from Trichomonas vaginalis, an allosteric enzyme stimulated by ribose 5-phosphate and glycerate 3-phosphate. Mol Biochem Parasitol 54(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Mertens E, Ladror US, Lee JA, Miretsky A, Morris A, Rozario C, Kemp RG, Müller M (1998) The pyrophosphate-dependent phosphofructokinase of the protist, Trichomonas vaginalis, and the evolutionary relationships of protist phosphofructokinases. J Mol Evol 47(6):739–750

    Article  CAS  PubMed  Google Scholar 

  • Mitteregger D, Aberle SW, Makristathis A, Walochnik J, Brozek W, Marberger M, Kramer G (2012) High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Med Microbiol Immunol 201(1):113–116. doi:10.1007/s00430-011-0205-2

    Article  PubMed  Google Scholar 

  • Morada M, Manzur M, Lam B, Tan C, Tachezy J, Rappelli P, Dessi D, Fiori PL, Yarlett N (2010) Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis. Microbiology 156(Pt 12):3734–3743. doi:10.1099/mic.0.042192-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morada M, Smid O, Hampl V, Sutak R, Lam B, Rappelli P, Dessì D, Fiori PL, Tachezy J, Yarlett N (2011) Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis. Mol Biochem Parasitol 176(1):51–54

    Article  CAS  PubMed  Google Scholar 

  • Moreno SN, Mason RP, Muniz RP, Cruz FS, Docampo R (1983) Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus. J Biol Chem 258(7):4051–4054

    CAS  PubMed  Google Scholar 

  • Müller M (1989) Biochemistry of Trichomonas Vaginalis. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York SRC – GoogleScholar, pp 53–83

    Google Scholar 

  • Müller M (1997) Evolutionary origins of trichomonad hydrogenosomes. Parasitol Today (Personal ed) 13(5):166–167

    Article  Google Scholar 

  • Müller M, Lindmark DG (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. II Effect of CoA on pyruvate oxidation. J Biol Chem 253(4):1215–1218

    PubMed  Google Scholar 

  • Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu R-Y, van der Giezen M, Tielens AGM, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mole Biol Rev MMBR 76(2):444–495

    Article  CAS  Google Scholar 

  • Nakjang S, Ndeh DA, Wipat A, Bolam DN, Hirt RP (2012) A Novel Extracellular Metallopeptidase Domain Shared by Animal Host-Associated Mutualistic and Pathogenic Microbes. PLoS One 7(1), e30287. doi:10.1371/journal.pone.0030287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namiki K, Goodison S, Porvasnik S, Allan RW, Iczkowski KA, Urbanek C, Reyes L, Sakamoto N, Rosser CJ (2009) Persistent Exposure to Mycoplasma Induces Malignant Transformation of Human Prostate Cells. PLoS One 4(9), e6872. doi:10.1371/journal.pone.0006872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen TJ, Pradhan P, Brittingham A, Wilson WA (2012) Glycogen accumulation and degradation by the trichomonads Trichomonas vaginalis and Trichomonas tenax. J Eukaryot Microbiol 59(4):359–366

    Article  CAS  PubMed  Google Scholar 

  • Noel CJ, Diaz N, Sicheritz-Ponten T, Safarikova L, Tachezy J, Tang P, Fiori PL, Hirt RP (2010) Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics 11:99. doi:10.1186/1471-2164-11-99 [pii]

    Google Scholar 

  • Nyvltova E, Stairs CW, Hrdy I, Ridl J, Mach J, Paces J, Roger AJ, Tachezy J (2015) Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 32(4):1039–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Lloyd D, Lindmark DG, Müller M (1980) Respiration of Tritrichomonas foetus: components detected in hydrogenosomes and in intact cells by electron paramagnetic resonance spectrometry. Mol Biochem Parasitol 2(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Okumura CY, Baum LG, Johnson PJ (2008) Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol 10(10):2078–2090. doi:10.1111/j.1462-5822.2008.01190.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget TA, Lloyd D (1990) Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for optimal growth. Mol Biochem Parasitol 41(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Payne MJ, Chapman A, Cammack R (1993) Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett 317(1–2):101–104

    Article  CAS  PubMed  Google Scholar 

  • Porta C, Riboldi E, Sica A (2011) Mechanisms linking pathogens-associated inflammation and cancer. Spec Issue Infect Hum Cancer 305(2):250–262

    CAS  Google Scholar 

  • Provenzano D, Alderete JF (1995) Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infect Immun 63(9):3388–3395. http://iai.asm.org/content/63/9/3388.long

  • Quintas-Granados LI, Villalpando JL, Vazquez-Carrillo LI, Arroyo R, Mendoza-Hernandez G, Alvarez-Sanchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 12(7):1953–1964. doi:10.1074/mcp.M112.022012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rada P, Dolezal P, Jedelsky PL, Bursac D, Perry AJ, Sedinova M, Smiskova K, Novotny M, Beltran NC, Hrdy I, Lithgow T, Tachezy J (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6(9), e24428. doi:10.1371/journal.pone.0024428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon-Luing LA, Rendon-Gandarilla FJ, Cardenas-Guerra RE, Rodriguez-Cabrera NA, Ortega-Lopez J, Avila-Gonzalez L, Angel-Ortiz C, Herrera-Sanchez CN, Mendoza-Garcia M, Arroyo R (2010) Immunoproteomics of the active degradome to identify biomarkers for Trichomonas vaginalis. Proteomics 10(3):435–444. doi:10.1002/pmic.200900479

    Article  CAS  PubMed  Google Scholar 

  • Rasoloson D, Tomková E, Cammack R, Kulda J, Tachezy J (2001) Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology 123(Pt 1):45–56

    CAS  PubMed  Google Scholar 

  • Rasoloson D, Vanácová S, Tomková E, Rázga J, Hrdy I, Tachezý J, Kulda J (2002) Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology 148(Pt 8):2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Ryan CM, de Miguel N, Johnson PJ (2011a) Trichomonas vaginalis: current understanding of host-parasite interactions. Essays Biochem 51:161–175

    Article  CAS  PubMed  Google Scholar 

  • Ryan CM, Mehlert A, Richardson JM, Ferguson MA, Johnson PJ (2011b) Chemical structure of Trichomonas vaginalis surface lipoglycan: a role for short galactose (beta1-4/3) N-acetylglucosamine repeats in host cell interaction. J Biol Chem 286(47):40494–40508. doi:10.1074/jbc.M111.280578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu J-S, Kang J-H, Jung S-Y, Shin M-H, Kim J-M, Park H, Min D-Y (2004) Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect Immun 72(3):1326–1332. doi:papers3://publication/uuid/47A688AC-80E8-4900-A44B-6F87CD5020F2

    Google Scholar 

  • Sánchez L, Horner D, Moore D, Henze K, Embley T, Müller M (2002) Fructose-1,6-bisphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. Gene 295(1):51–59

    Article  PubMed  Google Scholar 

  • Sanderson BE, White E, Baldson MJ (1983) Amine content of vaginal fluid from patients with trichomoniasis and gardnerella associated non-specific vaginitis. Br J Vener Dis 59(5):302–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41(13–14):1421–1434. doi:10.1016/j.ijpara.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman JM, Reiner NE (2010) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Proteomics 13(1):1–9. doi:papers3://publication/doi/10.1111/j.1462-5822.2010.01537.x

    Google Scholar 

  • Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9(2):R35. doi:10.1186/gb-2008-9-2-r35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simonetti G, Simonetti N, D'Auria FD (1989) Glycogen medium, antitrichomonal drug activity in vaginal liquids. Drugs Under Exp Clin Res 15(11–12):545–547

    CAS  Google Scholar 

  • Singh B, Hayes G, Lucas J, Sommer U, Viseux N, Mirgorodskaya E, Trifonova R, Sassi R, Costello C, Fichorova R (2009) Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function. Glycoconj J 26(1):3–17. doi:10.1007/s10719-008-9157-1

    Article  CAS  PubMed  Google Scholar 

  • Slamovits CH, Keeling PJ (2006) Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot Cell 5(1):148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith A, Johnson P (2011) Gene expression in the unicellular eukaryote Trichomonas vaginalis. Res Microbiol 162(6):646–654. doi:10.1016/j.resmic.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  • Smutna T, Goncalves VL, Saraiva LM, Tachezy J, Teixeira M, Hrdy I (2009) Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot Cell 8:47–55

    Article  CAS  PubMed  Google Scholar 

  • Song M-J, Lee J-J, Nam YH, Kim T-G, Chung YW, Kim M, Choi Y-E, Shin MH, Kim H-P (2015) Modulation of dendritic cell function by Trichomonas vaginalis-derived secretory products. BMB Rep 48(2):103–108. doi:10.5483/BMBRep.2015.48.2.116. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352611/

    Google Scholar 

  • Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ (2014) A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol CB 24(11):1176–1186

    Article  CAS  PubMed  Google Scholar 

  • Stark JR, Judson G, Alderete JF, Mundodi V, Kucknoor AS, Giovannucci EL, Platz EA, Sutcliffe S, Fall K, Kurth T, Ma J, Stampfer MJ, Mucci LA (2009) Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst 101(20):1406–1411. doi:10.1093/jnci/djp306

    Article  PubMed  PubMed Central  Google Scholar 

  • Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol CB 18(8):580–585

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Müller M (1986a) Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20(1):57–65

    Article  PubMed  Google Scholar 

  • Steinbüchel A, Müller M (1986b) Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol 20(1):45–55

    Article  PubMed  Google Scholar 

  • Sutak R, Tachezy J, Kulda J, Hrdý I (2004a) Pyruvate decarboxylase, the target for omeprazole in metronidazole-resistant and iron-restricted Tritrichomonas foetus. Antimicrob Agents Chemother 48(6):2185–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J (2004b) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101(28):10368–10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutak R, Hrdy I, Dolezal P, Cabala R, Sedinová M, Lewin J, Harant K, Müller M, Tachezy J (2012) Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis. FEBS J 279(15):2768–2780

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe S, Giovannucci E, Alderete JF, Chang T-H, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA (2006) Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cospons Am Soc Prev Oncol 15(5):939–945. doi:10.1158/1055-9965.EPI-05-0781

    Article  CAS  Google Scholar 

  • Tanabe M (1979) Trichomonas vaginalis: NADH oxidase activity. Exp Parasitol 48(1):135–143

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Han L, Li X, Gao Q, Pan L, Wu L, Luo Y, Wang W, Zheng Z, Guo X (2014) Prevalence and risk factors for cervical neoplasia: a cervical cancer screening program in Beijing. BMC Public Health 14(1):1185

    Article  PubMed  PubMed Central  Google Scholar 

  • ter Kuile BH (1994) Carbohydrate metabolism and physiology of the parasitic protist Trichomonas vaginalis studied in chemostats. Microbiology 140(Pt 9):2495–2502

    Article  PubMed  Google Scholar 

  • ter Kuile BH (1996) Metabolic adaptation of Trichomonas vaginalis to growth rate and glucose availability. Microbiology 142(Pt 12):3337–3345

    Article  PubMed  Google Scholar 

  • ter Kuile BH, Müller M (1993) Interaction between facilitated diffusion of glucose across the plasma membrane and its metabolism in Trichomonas vaginalis. FEMS Microbiol Lett 110(1):27–31

    Article  PubMed  Google Scholar 

  • ter Kuile BH, Hrdy I, Sanchez LB, Müller M (2000) Purification and specificity of two alpha-glucosidase isoforms of the parasitic protist Trichomonas vaginalis. J Eukaryot Microbiol 47:440–442

    Article  PubMed  Google Scholar 

  • Thong KW, Coombs GH, Sanderson BE (1987) L-methionine catabolism in trichomonads. Mol Biochem Parasitol 23(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40(4):387–397

    Article  CAS  PubMed  Google Scholar 

  • Tjaden J, Haferkamp I, Boxma B, Tielens AGM, Huynen M, Hackstein JHP (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51(5):1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JA, Johnson PJ (2013) Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host: parasite interactions. PLoS Pathog 9(7), e1003482. doi:10.1371/journal.ppat.1003482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twu O, Dessì D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ (2014) Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci 111(22):8179–8184. doi:10.1073/pnas.1321884111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H, Jespers V (2014) The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One 9(8), e105998. doi:10.1371/journal.pone.0105998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Grinsven KWA, Rosnowsky S, van Weelden SWH, Pütz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AGM, Henze K (2008) Acetate: succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 283(3):1411–1418

    Article  PubMed  CAS  Google Scholar 

  • van Ooij C, Tamez P, Bhattacharjee S, Hiller NL, Harrison T, Liolios K, Kooij T, Ramesar J, Balu B, Adams J, Waters AP, Janse CJ, Haldar K (2008) The malaria secretome: from algorithms to essential function in blood stage infection. PLoS Pathog 4(6), e1000084. doi:10.1371/journal.ppat.1000084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanacova S, Rasoloson D, Razga J, Hrdy I, Kulda J, Tachezy J (2001) Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. MicrobiologySgm 147 SRC – GoogleScholar:53–62

    Google Scholar 

  • Villaseca JM, Navarro-García F, Mendoza-Hernández G, Nataro JP, Cravioto A, Eslava C (2000) Pet toxin from enteroaggregative Escherichia coli produces cellular damage associated with fodrin disruption. Infect Immun 68(10):5920–5927. doi:10.1128/IAI.68.10.5920-5927.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viscogliosi E, Brugerolle G (1994) Striated fibers in trichomonads: costa proteins represent a new class of proteins forming striated roots. Cell Motil Cytoskeleton 29(1):82–93. doi:10.1002/cm.970290108

    Article  CAS  PubMed  Google Scholar 

  • Viscogliosi E, Durieux I, Delgado-Viscogliosi P, Bayle D, Dive D (1996) Phylogenetic implication of iron-containing superoxide dismutase genes from trichomonad species. Mol Biochem Parasitol 80(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Westrop GD, Goodall G, Mottram JC, Coombs GH (2006) Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J Biol Chem 281(35):25062–25075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westrop GD, Georg I, Coombs GH (2009) The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide. J Biol Chem 284(48):33485–33494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K, Lowe PN, Leadlay PF (1987) Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem J 246(2):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woehle C, Kusdian G, Radine C, Graur D, Landan G, Gould SB (2014) The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genomics 15(1):906. doi:10.1186/1471-2164-15-906

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2012) Global incidence and prevalence of selected curable sexually transmitted infections-2008. Geneve, WHO Press

    Google Scholar 

  • Wu G, Müller M (2003) Glycogen phosphorylase sequences from the amitochondriate protists, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica and Giardia intestinalis. J Eukaryot Microbiol 50(5):366–372

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fiser A, ter Kuile B, Sali A, Müller M (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc Natl Acad Sci U S A 96(11):6285–6290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarlett N (1988) Polyamine biosynthesis and inhibition in Trichomonas vaginalis. Parasitol Today (Personal ed) 4(12):357–360

    Article  CAS  Google Scholar 

  • Yarlett N, Bacchi CJ (1988) Effect of DL-alpha-difluoromethylornithine on polyamine synthesis and interconversion in Trichomonas vaginalis grown in a semi-defined medium. Mol Biochem Parasitol 31(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Yarlett N, Bacchi C (1991) Polyamine metabolism in anaerobic protozoa. Taylor & Francis, London

    Google Scholar 

  • Yarlett N, Hackstein JHP (2005) Hydrogenosomes: one organelle, multiple origins. BioScience 55:657–667

    Article  Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J 200(2):365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams AG (1983) Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol B Comp Biochem 74(2):357–364

    Article  CAS  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarlett N, Goldberg B, Moharrami MA, Bacchi CJ (1992) Inhibition of Trichomonas vaginalis ornithine decarboxylase by amino acid analogs. Biochem Pharmacol 44(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Yarlett N, Goldberg B, Moharrami MA, Bacchi CJ (1993) Trichomonas vaginalis: characterization of ornithine decarboxylase. Biochem J 293(Pt 2):487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarlett N, Lindmark DG, Goldberg B, Moharrami MA, Bacchi CJ (1994) Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Eukaryot Microbiol 41(6):554–559

    Article  CAS  PubMed  Google Scholar 

  • Yarlett N, Martinez MP, Moharrami MA, Tachezy J (1996) The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78(1–2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Yarlett N, Martinez MP, Goldberg B, Kramer DL, Porter CW (2000) Dependence of Trichomonas vaginalis upon polyamine backconversion. Microbiology 146(Pt 10):2715–2722

    Article  CAS  PubMed  Google Scholar 

  • Yusof AM, Kumar S (2012) Phenotypic ‘variant’ forms of Trichomonas vaginalis trophozoites from cervical neoplasia patients. Experimental Parasitology 131(3):267–273. http://dx.doi.org/10.1016/j.exppara.2012.03.015

    Google Scholar 

  • Zednikova V, Beltran NC, Tachezy J, Hrdy I (2012) Alternative 2-keto acid oxidoreductases in Trichomonas vaginalis: artifact of histochemical staining. Mol Biochem Parasitol 181:57–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Begg CB (1994) Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int J Epidemiol 23(4):682–690. doi:10.1093/ije/23.4.682

    Article  CAS  PubMed  Google Scholar 

  • Zubacova Z, Cimburek Z, Tachezy J (2008) Comparative analysis of trichomonad genome sizes and karyotypes. Mol Biochem Parasitol 161(1):49–54. S0166-6851(08)00159-X [pii]. doi:10.1016/j.molbiopara.2008.06.004

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione Banco di Sardegna (2013 and 2014), Legge Regionale 7/2007 Regione Autonoma della Sardegna (CRP 25578), the Czech Grant Foundation (13-09208 J), and the Biomedicine Centre of the Academy of Sciences and Charles University (CZ.1.05/1.1.00/02.0109) from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Fiori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Fiori, P.L. et al. (2016). Trichomonas . In: Walochnik, J., Duchêne, M. (eds) Molecular Parasitology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1416-2_5

Download citation

Publish with us

Policies and ethics