Skip to main content

Acanthamoeba

  • Chapter
  • First Online:
Molecular Parasitology

Abstract

Acanthamoebae are ubiquitous free-living amoebae that occur abundantly in water and soil worldwide, being among the most versatile protozoan organisms. They generally do not need a host, but when they accidentally have contact to the human eye, lung or skin, they can cause severe disease. They are the causative agents of Acanthamoeba keratitis (AK), on the one hand, and of several disseminating infections in the immunocompromised host eventually leading to granulomatous amoebic encephalitis (GAE), on the other hand. The infective and invasive form of Acanthamoeba is the trophozoite; nevertheless, the cyst plays an important role in the distribution of the amoebae as well as in the course of disease. Acanthamoebae can form cysts within the host tissue, and these cysts are resistant against treatment and also often lead to reinfections.

Altogether, around 25 different species divided into three morphological groups have been described; however, the validity of many species has been challenged by molecular analyses. Currently, the genus is divided into 20 genotypes based on 18S rDNA sequencing, but the number of genotypes is growing constantly. Genotype T4 seems to be the most abundant one in most habitats and also the most common genotype in human infections; however, a classification into virulent and non-virulent genotypes is not possible. Acanthamoebae pathogenicity depends on cell-cell contact, the cytolytic event being triggered by an intimate contact between the amoebae with the target cells, established primarily via lectin-like amoebic adherence molecules. The ability of acanthamoebae to lyse cells is mainly based on lysosomal hydrolases and phospholipases.

In 2013, a first genome has become available revealing a significant number of genes presumably acquired by lateral gene transfer and a rather complex cell communication repertoire. However, the genetics of Acanthamoeba spp. is far from being fully elucidated. Fact is that acanthamoebae have unusually broad metabolic and biosynthetic capabilities, being able to synthesise most amino acids (even multiple steps), co-factors and vitamins and nucleotides de novo. Moreover, they can digest a wide range of nutrients, they are among the few protozoa with a cellulase, and they are the only protozoans known to date with an alginate lyase. Although acanthamoebae generally divide by binary fission and there is no convincing evidence for genetic recombination, even their asexual nature has been challenged recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid (AA)

AcAtg:

Acanthamoeba autophagy-related proteins

AIF:

Apoptosis-inducing factor

AK:

Acanthamoeba keratitis

AOX:

Alternative oxidase

aPA:

Acanthamoeba plasminogen activator

cAMP:

Cyclic adenosine monophosphate

CPE:

Cytopathic effect

CRD:

Carbohydrate recognition domains

CSCP:

Cyst-specific cysteine protease

CXCL2:

Chemokine (C-X-C motif) ligand 2

cPLA:

Cytosolic phospholipase A

DAG:

Diacylglycerol

DH:

Dehydrogenase

ECM:

Extracellular matrix

ERMES:

ER-mitochondria encounter structure

EST:

Expressed sequence tag

ETC:

Electron transport chain

FFA:

Free fatty acid

GAE:

Granulomatous amoebic encephalitis

GMP:

Guanosine monophosphate

GPCR:

G protein-coupled receptors

HBMEC:

Human brain microvascular endothelial cells

HCE:

Human corneal epithelial cells

HNE:

4-Hydroxy-2-nonenal

ICL:

Isocitrate lyase

LBP:

Laminin-binding protein

LGT:

Lateral gene transfer

MalS:

Malate synthase

MAPK:

Mitogen-activated protein kinase

MBP:

Mannose-binding protein

MIP:

Mannose-induced protein

MMP:

Matrix metalloprotease

ORF:

Open reading frame

PAR:

Protease-activated receptor

PDH:

Pyruvate dehydrogenase

PHB:

Polyhydroxybutyrate

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C-like gene

PMN:

Polymorphonuclear leukocyte

PN:

Purine nucleotide

pTyr:

Phosphotyrosine

ROS:

Reactive oxygen species

SAPLIP:

Saposin-like protein

TCA:

Tricarboxylic acid

TLR:

Toll-like receptors (TLR)

UCP:

Uncoupling protein

References

  • Achar SB, Weisman RA (1980) Adenylate cyclase activity during growth and encystment of Acanthamoeba castellanii. Biochim Biophys Acta 629(2):225–234

    Article  CAS  PubMed  Google Scholar 

  • Akins RA, Byers TJ (1980) Differentiation promoting factors induced in Acanthamoeba by inhibitors of mitochondrial macromolecule synthesis. Dev Biol 78(1):126–140

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, He YG, McCulley JP, Ma D, Stewart GL, Via M, Haehling E, Niederkorn JY (1995) Successful immunization against Acanthamoeba in a pig model. Cornea 14:180–186

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Neelam S, Niederkorn JY (2007) Effect of immunization with the mannose-induced Acanthamoeba protein and Acanthamoeba plasminogen activator in mitigating Acanthamoeba keratitis. Invest Ophthalmol Vis Sci 48(12):5597–5604

    Article  PubMed  Google Scholar 

  • Alizadeh H, Tripathi T, Abdi M, Smith AD (2014) Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea. PLoS One 9(3):e92375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alizadeh H, Li H, Neelam S, Niederkorn JY (2008) Modulation of corneal and stromal matrix metalloproteinase by the mannose-induced Acanthamoeba cytolytic protein. Exp Eye Res 87(3):286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsam S, Sissons J, Jayasekera S, Khan NA (2005) Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood–brain barrier. J Infect 51(2):150–156

    Article  PubMed  Google Scholar 

  • Anderson IJ, Watkins RF, Samuelson J, Spencer DF, Majoros WH, Gray MW, Loftus BJ (2005) Gene discovery in the Acanthamoeba castellanii genome. Protist 156(2):203–214

    Article  PubMed  Google Scholar 

  • Antos-Krzeminska N, Jarmuszkiewicz W (2014) External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria. Protist 165(5):580–593

    Article  CAS  PubMed  Google Scholar 

  • Aqeel Y, Siddiqui R, Khan NA (2013) Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii. Parasitol Res 112(3):1221–1227

    Article  PubMed  Google Scholar 

  • Aqeel Y, Siddiqui R, Manan Z, Khan NA (2015) The role of G protein coupled receptor-mediated signaling in the biological properties of Acanthamoeba castellanii of the T4 genotype. Microb Pathog 81:22–27

    Article  CAS  PubMed  Google Scholar 

  • Baines IC, Brzeska H, Korn ED (1992) Differential localization of Acanthamoeba myosin I isoforms. J Cell Biol 119(5):1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Bamforth SS (1985) Symposium on protozoan ecology – the role of protozoa in litters and soils. Journal of Protozoology 32(3):404–409

    Article  Google Scholar 

  • Band RN, Mohrlok S (1973) The cell cycle and induced amitosis in Acanthamoeba. J Protozool 20(5):654–657

    Article  CAS  PubMed  Google Scholar 

  • Baumann O, Murphy DB (1995) Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Cell Motil Cytoskeleton 32(4):305–317

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Herrmann RG (1974) The genomic complexity of Acanthamoeba castellanii mitochondrial DNA. Eur J Biochem 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA (2005) Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol 43(4):1689–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bora NS, Jha P, Bora PS (2008) The role of complement in ocular pathology. Semin Immunopathol 30(2):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers B, Korn ED (1968) The fine structure of Acanthamoeba castellanii. I. The trophozoite. J Cell Biol 39(1):95–111

    Google Scholar 

  • Bowers B, Korn ED (1969) The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 41(3):786–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers B, Korn ED (1973) Cytochemical identification of phosphatase activity in the contractile vacuole of Acanthamoeba castellanii. J Cell Biol 59(3):784–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouyer S, Rodier MH, Guillot A, Héchard Y (2009) Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Exp Parasitol 123(1):90–94

    Article  CAS  PubMed  Google Scholar 

  • Boyer M, Azza S, Barrassi L, Klose T, Campocasso A, Pagnier I, Fournous G, Borg A, Robert C, Zhang X, Desnues C, Henrissat B, Rossmann MG, La Scola B, Raoult D (2011) Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc Natl Acad Sci U S A 108(25):10296–10301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162

    Article  PubMed  Google Scholar 

  • Burger G, Plante I, Lonergan KM, Gray MW (1995) The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol 245:522–537

    Article  CAS  PubMed  Google Scholar 

  • Byers TS, Hugo ER, Stewart VJ (1990) Genes of Acanthamoeba: DNA, RNA and protein sequences. J Protozool 37:17S–25S

    Article  CAS  PubMed  Google Scholar 

  • Byers TJ, Kim BG, King LE, Hugo ER (1991) Molecular aspects of the cell cycle and encystment of Acanthamoeba. Rev Infect Dis 13(Suppl 5):S373–S384

    Article  CAS  PubMed  Google Scholar 

  • Byers TJ (1986) Molecular biology of DNA in Acanthamoeba, Amoeba, Entamoeba, and Naegleria. Int Rev Cytol 99:311–341

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Jefferson DM, Panjwani N (1998) Role of carbohydrate-mediated adherence in cytopathogenic mechanisms of Acanthamoeba. J Biol Chem 273(25):15838–15845

    Article  CAS  PubMed  Google Scholar 

  • Castellani A (1930) Amoeba found in culture of yeast. J Trop Med Hyg 33:160

    Google Scholar 

  • Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Bonilla P, Martínez-Palomo A (2005) Ultrastructural study of encystation and excystation in Acanthamoeba castellanii. J Eukaryot Microbiol 52(2):153–158

    Article  PubMed  Google Scholar 

  • Chen L, Orfeo T, Gilmartin G, Bateman E (2004) Mechanism of cyst specific protein 21 mRNA induction during Acanthamoeba differentiation. Biochim Biophys Acta 1691(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Choi DH, Na BK, Seo MS, Song HR, Song CY (2000) Purification and characterization of iron superoxide dismutase and copper-zinc superoxide dismutase from Acanthamoeba castellanii. J Parasitol 86(5):899–907

    Google Scholar 

  • Chusattayanond AD, Boonsilp S, Kasisit J, Boonmee A, Warit S (2010) Thai. Acanthamoeba isolate (T4) induced apoptotic death in neuroblastoma cells via the Bax-mediated pathway. Parasitol Int 59(4):512–516

    Article  CAS  PubMed  Google Scholar 

  • Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan CS, Hutchins AP, Weinmeier T, Rattei T, Chu JS, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ (2013) Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 14(2):R11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper JA, Blum JD, Williams RC Jr, Pollard TD (1986) Purification and characterization of actophorin, a new 15,000-dalton actin-binding protein from Acanthamoeba castellanii. J Biol Chem 261(1):477–485

    CAS  PubMed  Google Scholar 

  • Cursons RT, Brown TJ, Keys EA, Moriarty KM, Till D (1980) Immunity to pathogenic free-living amoebae: role of humoral antibody. Infect Immun 29:401–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czarna M, Jarmuszkiewicz W (2005) Activation of alternative oxidase and uncoupling protein lowers hydrogen peroxide formation in amoeba Acanthamoeba castellanii mitochondria. FEBS Lett 579(14):3136–3140

    Article  CAS  PubMed  Google Scholar 

  • Czarna M, Sluse FE, Jarmuszkiewicz W (2007) Mitochondrial function plasticity in Acanthamoeba castellanii during growth in batch culture. J Bioenerg Biomembr 39(2):149–157

    Article  CAS  PubMed  Google Scholar 

  • Dearborn DG, Korn ED (1974) Lipophosphonoglycan of the plasma membrane of Acanthamoeba castellanii. Fatty acid composition. J Biol Chem 249(11):3342–3346

    CAS  PubMed  Google Scholar 

  • Di Gregorio C, Rivasi F, Mongiardo N, De Rienzo B, Wallace S, Visvesvara GS (1992) Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 116:1363–1365

    PubMed  Google Scholar 

  • Du Q, Schilde C, Birgersson E, Chen ZH, McElroy S, Schaap P (2014) The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas. Cell Signal 26(2):453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley R, Jarroll EL, Khan NA (2009) Carbohydrate analysis of Acanthamoeba castellanii. Exp Parasitol 122(4):338–343

    Article  CAS  PubMed  Google Scholar 

  • Edwards SW, Lloyd D (1978) Properties of mitochondria isolated from cyanide-sensitive and cyanide-stimulated cultures of Acanthamoeba castellanii. Biochem J 174(1):203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante A, Abell TJ (1986) Conditioned medium from stimulated mononuclear leukocytes augments human neutrophil-mediated killing of a virulent Acanthamoeba sp. Infect Immun 51(2):607–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira GA, Magliano AC, Pral EM, Alfieri SC (2009) Elastase secretion in Acanthamoeba polyphaga. Acta Trop 112(2):156–163

    Google Scholar 

  • Ferrante A, Rowan-Kelly B (1983) Activation of the alternative pathway of complement by Acanthamoeba culbertsoni. Clin Exp Immunol 54:477–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fini ME, Girard MT, Matsubara M (1992) Collagenolytic/gelatinolytic enzymes in corneal wound healing. Acta Ophthalmol Suppl 202:26–33

    PubMed  Google Scholar 

  • Fouque E, Trouilhé MC, Thomas V, Hartemann P, Rodier MH, Héchard Y (2012) Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot Cell 11(4):382–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fučíková K, Lahr DJ (2016) Uncovering Cryptic Diversity in Two Amoebozoan Species Using Complete Mitochondrial Genome Sequences. J Eukaryot Microbiol 63(1):112–122

    Article  PubMed  CAS  Google Scholar 

  • Fuerst PA, Booton GC, Crary M (2015) Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J Eukaryot Microbiol 62(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Garate M, Cao Z, Bateman E, Panjwani N (2004) Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. J Biol Chem 279(28):29849–29856

    Article  CAS  PubMed  Google Scholar 

  • Garate M, Cubillos I, Marchant J, Panjwani N (2005) Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect Immun 73(9):5775–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gast RJ, Fuerst PA, Byers TJ (1994) Discovery of group I introns in the nuclear small subunit ribosomal RNA genes of Acanthamoeba. Nucleic Acids Res 22(4):592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gast RJ, Ledee DR, Fuerst PA, Byers T (1996) Subgenus systematics of Acanthamoeba: Four nuclear 18S rDNA sequence types. J Euk Microbiol 43:498–504

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk RM, Chisholm KA, Pinto DM, Gray MW (2012) Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights. Biochim Biophys Acta 1817(11):2027–2037

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk RM, Chisholm KA, Pinto DM, Gray MW (2014) Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 109:400–416

    Article  CAS  PubMed  Google Scholar 

  • González-Robles A, Castañón G, Hernández-Ramírez VI, Salazar-Villatoro L, González-Lázaro M, Omaña-Molina M, Talamás-Rohana P, Martínez-Palomo A (2008) Acanthamoeba castellanii: identification and distribution of actin cytoskeleton. Exp Parasitol 119(3):411–417

    Article  PubMed  CAS  Google Scholar 

  • Gordon VR, Asem EK, Vodkin MH, McLaughlin GL (1993) Acanthamoeba binds to extracellular matrix proteins in vitro. Invest Ophthalmol Vis Sci 34:658–662

    CAS  PubMed  Google Scholar 

  • Gordon DJ, Eisenberg E, Korn ED (1976) Characterization of cytoplasmic actin isolated from Acanthamoeba castellanii by a new method. J Biol Chem 251(15):4778–4786

    CAS  PubMed  Google Scholar 

  • Griffin JL (1972) Temperature tolerance of pathogenic and nonpathogenic free-living amoebae. Science 178:869–870

    Article  CAS  PubMed  Google Scholar 

  • Hadas E, Mazur T (1993) Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp. Trop Med Parasitol 44(3):197–200

    CAS  PubMed  Google Scholar 

  • Hirukawa Y, Nakato H, Izumi S, Tsuruhara T, Tomino S (1998) Structure and expression of a cyst specific protein of Acanthamoeba castellanii. Biochim Biophys Acta 1398(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Hong YC, Lee WM, Kong HH, Jeong HJ, Chung DI (2004) Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi. Exp Parasitol 106(3–4):95–102

    Article  CAS  PubMed  Google Scholar 

  • Horn M, Wagner M (2004) Bacterial endosymbionts of free-living amoebae. J Eukaryot Microbiol 51(5):509–514

    Article  PubMed  Google Scholar 

  • Hryniewiecka L (1986) Malate oxidation in mitochondria of Acanthamoeba castellanii Neff. Bull Soc Sci Lett 25:15–31

    Google Scholar 

  • Hryniewiecka L, Jenek J, Michejda JW (1980) Necessity of iron for the alternative respiratory pathway in Acanthamoeba castellanii. Biochem Biophys Res Commun 93(1):141–148

    Article  CAS  PubMed  Google Scholar 

  • Hug H, Sarre TF (1993) Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 291(Pt 2):329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurt M, Neelam S, Niederkorn J, Alizadeh H (2003a) Pathogenic Acanthamoeba spp secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease. Infect Immun 71(11):6243–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurt M, Proy V, Niederkorn JY, Alizadeh H (2003b) The interaction of Acanthamoeba castellanii cysts with macrophages and neutrophils. J Parasitol 89(3):565–572

    Article  PubMed  Google Scholar 

  • Im K, Kim DS (1998) Acanthamoebiasis in Korea: two new cases with clinical cases review. Yonsei Med J 39(5):478–484

    Article  CAS  PubMed  Google Scholar 

  • Isenberg G, Aebi U, Pollard TD (1980) An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature 288(5790):455–459

    Article  CAS  PubMed  Google Scholar 

  • James TE, Byers TJ (1967) The induction of multinuclearity in agitated and in aging cultures of Acanthamoeba sp. Neff. J Cell Physiol 70(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Jaison PL, Cao Z, Panjwani N (1998) Binding of Acanthamoeba to [corrected] mannose-glycoproteins of corneal epithelium: effect of injury. Curr Eye Res 17(8):770–776. Erratum in: Curr Eye Res 1998 Oct;17(10):103

    Article  CAS  PubMed  Google Scholar 

  • Jantzen H, Schulze I, Stohr M (1988) Relationship between the timing of DNA replication and the developmental competence in Acanthamoeba castellanii. J Cell Sci 91:389–399

    PubMed  Google Scholar 

  • Jarmuszkiewicz W, Czarna M, Sluse FE (2005) Substrate kinetics of the Acanthamoeba castellanii alternative oxidase and the effects of GMP. Biochim Biophys Acta 1708(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W, Fraczyk O, Hryniewiecka L (2001) Effect of growth at low temperature on the alternative pathway respiration in Acanthamoeba castellanii mitochondria. Acta Biochim Pol 48(3):729–737

    CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W, Sluse-Goffart CM, Hryniewiecka L, Sluse FE (1999) Identification and characterization of a protozoan uncoupling protein in Acanthamoeba castellanii. J Biol Chem 274(33):23198–23202

    Article  CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W, Woyda-Ploszczyca A, Antos-Krzeminska N, Sluse FE (2010) Mitochondrial uncoupling proteins in unicellular eukaryotes. Biochim Biophys Acta 1797(6–7):792–799

    Article  CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W, Hryniewiecka L, Sluse FE (2002a) The effect of pH on the alternative oxidase activity in isolated Acanthamoeba castellanii mitochondria. J Bioenerg Biomembr 34(3):221–226

    Article  CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W, Sluse FE, Hryniewiecka L, Sluse-Goffart CM (2002b) Interactions between the cytochrome pathway and the alternative oxidase in isolated Acanthamoeba castellanii mitochondria. J Bioenerg Biomembr 34(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W, Wagner AM, Wagner MJ, Hryniewiecka L (1997) Immunological identification of the alternative oxidase of Acanthamoeba castellanii mitochondria. FEBS Lett 411(1):110–114

    Article  CAS  PubMed  Google Scholar 

  • Jones DB, Visvesvara GS, Robinson NM (1975) Acanthamoeba polyphaga keratitis and Acanthamoeba uveitis associated with fatal meningoencephalitis. Trans Ophthalmol Soc UK 95:221–232

    CAS  PubMed  Google Scholar 

  • Kennett MJ, Hook RR Jr, Franklin CL, Riley LK (1999) Acanthamoeba castellanii: characterization of an adhesin molecule. Exp Parasitol 92(3):161–169

    Article  CAS  PubMed  Google Scholar 

  • Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30(4):564–595

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Siddiqui R (2015) Is there evidence of sexual reproduction (meiosis) in Acanthamoeba? Pathog Glob Health 109(4):193–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhsler M, Leitsch D, Duchêne M, Nagl M, Walochnik J (2009) Acanthamoeba castellanii : growth on human cell layers reactivates attenuated properties after prolonged axenic culture. FEMS Microbiol Lett 299(2):121–127

    Article  CAS  Google Scholar 

  • Köhsler M, Leitsch D, Fürnkranz U, Duchêne M, Aspöck H, Walochnik J (2008) Acanthamoeba strains lose their abilities to encyst synchronously upon prolonged axenic culture. Parasitol Res 102(5):1069–1072

    Article  PubMed  Google Scholar 

  • Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K (2005) Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J Biol Chem 280(50):41125–41128

    Article  CAS  PubMed  Google Scholar 

  • Kong HH, Kim TH, Chung DI (2000) Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE. J Parasitol 86:12–17

    Article  CAS  PubMed  Google Scholar 

  • Krishna Murti C, Shukla OP (1984) Differentiation of pathogenic amoebae: encystation and excystation of Acanthamoeba culbertsoni - a model. J Biosci 6(4):475–489

    Article  Google Scholar 

  • Lang R, Song PI, Legat FJ, Lavker RM, Harten B, Kalden H, Grady EF, Bunnett NW, Armstrong CA, Ansel JC (2003) Human corneal epithelial cells express functional PAR-1 and PAR-2. Invest Ophthalmol Vis Sci 44(1):99–105

    Article  PubMed  Google Scholar 

  • Leger MM, Gawryluk RM, Gray MW, Roger AJ (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 8(9):e69532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leher H, Kinoshita K, Alizadeh H, Zaragoza FL, He Y, Niederkorn J (1998a) Impact of oral immunization with Acanthamoeba antigens on parasite adhesion and corneal infection. Invest Ophthalmol Vis Sci 39:2237–2243

    Google Scholar 

  • Leher HF, Alizadeh H, Taylor WM, Shea AS, Silvany RS, Van Klink F, Jager MJ, Niederkorn JY (1998b) Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest Ophthalmol Vis Sci 39:2666–2673

    CAS  PubMed  Google Scholar 

  • Leippe M, Andrä J, Nickel R, Tannich E, Müller-Eberhard HJ (1994) Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. Mol Microbiol 14(5):895–904

    Article  CAS  PubMed  Google Scholar 

  • Leippe M, Bruhn H, Hecht O, Grötzinger J (2005) Ancient weapons: the three-dimensional structure of amoebapore A. Trends Parasitol 21:5–7

    Article  CAS  PubMed  Google Scholar 

  • Leitsch D, Köhsler M, Marchetti-Deschmann M, Deutsch A, Allmaier G, Duchêne M, Walochnik J (2010) Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot Cell 9(4):611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemgruber L, Lupetti P, De Souza W, Vommaro RC, da Rocha-Azevedo B (2010) The fine structure of the Acanthamoeba polyphaga cyst wall. FEMS Microbiol Lett 305(2):170–176

    Article  CAS  PubMed  Google Scholar 

  • Leslie CC (1997) Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272(27):16709–16712

    Article  CAS  PubMed  Google Scholar 

  • Lloyd D, Griffiths AJ (1968) The isolation of mitochondria from the amoeba Hartmanella castellanii Neff. Exp Cell Res 51(2–3):291–300

    Article  CAS  PubMed  Google Scholar 

  • Lonergan KM, Gray MW (1996) Expression of a continuous open reading frame encoding subunits 1 and 2 of cytochrome c oxidase in the mitochondrial DNA of Acanthamoeba castellanii. J Mol Biol 257(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E, De Pablos LM, Profotova B, Nohynkova E, Osuna A, Valladares B (2008) Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryot Cell 7(3):509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marciano-Cabral F, Toney DM (1998) The interaction of Acanthamoeba spp. with activated macrophages and with macrophage cell lines. J Eukaryot Microbiol 45(4):452–458

    Article  CAS  PubMed  Google Scholar 

  • Matin A, Jung SY (2011) Phospholipase activities in clinical and environmental isolates of Acanthamoeba. Korean J Parasitol 49(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Endo T, Yagita K, Hirukawa Y, Tomino S, Matsugo S, Tsuruhara T (1998) Chromosome size polymorphisms in the genus acanthamoeba electrokaryotype by pulsed-field gel electrophoresis. Protist 149(4):323–340

    Article  CAS  PubMed  Google Scholar 

  • Mattana A, Cappai V, Alberti L, Serra C, Fiori PL, Cappuccinelli P (2002) ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines. Infect Immun 70(8):4424–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattana A, Tozzi MG, Costa M, Delogu G, Fiori PL, Cappuccinelli P (2001) By releasing ADP, Acanthamoeba castellanii causes an increase in the cytosolic free calcium concentration and apoptosis in wish cells. Infect Immun 69(6):4134–4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattar FE, Byers TJ (1971) Morphological changes and the requirements for macromolecule synthesis during excystment of acanthamoeba castellanii. J Cell Biol 49(2):507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews JL, Zwick MG, Paule MR (1995) Coordinate regulation of ribosomal component synthesis in Acanthamoeba castellanii: 5S RNA transcription is down regulated during encystment by alteration of TFIIIA activity. Mol Cell Biol 15(6):3327–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur T, Hadaś E, Iwanicka I (1995) The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates. Trop Med Parasitol 46(2):106–108

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Mehdi H, Garg NK (1987) Changes in the lipid composition and activities of isocitrate dehydrogenase and isocitrate lyase during encystation of Acanthamoeba culbertsoni strain A-1. Trans R Soc Trop Med Hyg 81(4):633–636

    Article  CAS  PubMed  Google Scholar 

  • Michalek M, Sönnichsen FD, Wechselberger R, Dingley AJ, Hung CW, Kopp A, Wienk H, Simanski M, Herbst R, Lorenzen I, Marciano-Cabral F, Gelhaus C, Gutsmann T, Tholey A, Grötzinger J, Leippe M (2013) Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba. Nat Chem Biol 9(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Mitra MM, Alizadeh H, Gerard RD, Niederkorn JY (1995) Characterization of a plasminogen activator produced by Acanthamoeba castellanii. Mol Biochem Parasitol 73(1–2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Moon EK, Chung DI, Hong YC, Kong HH (2008) Characterization of a serine proteinase mediating encystation of Acanthamoeba. Eukaryot Cell 7(9):1513–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon EK, Chung DI, Hong YC, Kong HH (2009) Autophagy protein 8 mediating autophagosome in encysting Acanthamoeba. Mol Biochem Parasitol 168(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Moon EK, Xuan YH, Chung DI, Hong Y, Kong HH (2011) Microarray analysis of differentially expressed genes between cysts and trophozoites of Acanthamoeba castellanii. Korean J Parasitol 49(4):341–7

    Google Scholar 

  • Moon EK, Hong Y, Chung DI, Goo YK, Kong HH (2014) Down-regulation of cellulose synthase inhibits the formation of endocysts in Acanthamoeba. Korean J Parasitol 52(2):131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon EK, Hong Y, Chung DI, Kong HH (2012) Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol Biochem Parasitol 185(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Moore MB, McCulley JP, Luckenbach M, Gelender H, Newton C, McDonald MB et al (1985) Acanthamoeba keratitis associated with soft contact lenses. Am J Ophthalmol 100:396–403

    Article  CAS  PubMed  Google Scholar 

  • Moura H, Wallace S, Visvesvara GS (1992) Acanthamoeba healyi n. sp. and the isoenzyme and immunoblot profiles of Acanthamoeba spp., groups 1 and 3. J Protozool 39(5):573–583

    Article  CAS  PubMed  Google Scholar 

  • Nagington F, Watson PG, Playfair TJ, McGill J, Hones BR, Steele ADM (1974) Amoebic infection of the eye. Lancet 2:1537–1540

    Article  Google Scholar 

  • Neff RJ, Benton WF (1962) Localization of cellulose in the cysts of Acanthamoeba sp. J Protozool 9:Suppl,11

    Google Scholar 

  • Neff RJ, Neff RH (1969) The biochemistry of amoebic encystment. Symp Soc Exp Biol 23:51–81

    CAS  PubMed  Google Scholar 

  • Nerad TA, Sawyer TK, Lewis EJ, McLaughlin SM (1995) Acanthamoeba pearcei n. sp. (Protozoa: Amoebida) from sewage contaminated sediments. J Eukaryot Microbiol 42(6):702–705

    Article  CAS  PubMed  Google Scholar 

  • Niederkorn JY (2002) The role of the innate and adaptive immune responses in Acanthamoeba keratitis. Arch Immunol Ther Exp (Warsz) 50(1):53–59

    Google Scholar 

  • Niederkorn JY, Alizadeh H, Leher H, Apte S, El Agha S, Ling L, Hurt M, Howard K, Cavanagh HD, McCulley JP (2002) Role of tear anti-acanthamoeba IgA in Acanthamoeba keratitis. Adv Exp Med Biol 506(Pt B):845–850

    Article  CAS  PubMed  Google Scholar 

  • Omaña-Molina M, Navarro-García F, González-Robles A, Serrano-Luna Jde J, Campos-Rodríguez R, Martínez-Palomo A, Tsutsumi V, Shibayama M (2004) Induction of morphological and electrophysiological changes in hamster cornea after in vitro interaction with trophozoites of Acanthamoeba spp. Infect Immun 72(6):3245–3251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orfeo T, Bateman E (1998) Transcription by RNA polymerase II during Acanthamoeba differentiation. Biochim Biophys Acta 1443(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Page FC (1987) The classification of the naked amoebae (Phylum Rhizopoda). Arch Protist 133:199–217

    Google Scholar 

  • Page FC (1991) Nackte Rhizopoda. In: Matthes D (ed) Protozoenfauna, Band 2. G. Fischer, Stuttgart., pp 3–145

    Google Scholar 

  • Page MA, Mathers WD (2013) Acanthamoeba keratitis: a 12-year experience covering a wide spectrum of presentations, diagnoses, and outcomes. J Ophthalmol 2013:670242

    Article  PubMed  PubMed Central  Google Scholar 

  • Panjwani N (2010) Pathogenesis of acanthamoeba keratitis. Ocul Surf 8(2):70–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Panjwani N, Ahmad S, Raizman MB (1995) Cell surface glycoproteins of corneal epithelium. Invest Ophthalmol Vis Sci 36(2):355–363

    CAS  PubMed  Google Scholar 

  • Pellegrin JL, Ortega-Barria E, Barza M, Baum J, Pereira ME (1991) Neuraminidase activity in acanthamoeba species trophozoites and cysts. Invest Ophthalmol Vis Sci 32(12):3061–3066

    CAS  PubMed  Google Scholar 

  • Pollard TD (1984) Purification of a high molecular weight actin filament gelation protein from Acanthamoeba that shares antigenic determinants with vertebrate spectrins. J Cell Biol 99(6):1970–1980

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Korn ED (1973a) Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248(13):4682–4690

    CAS  PubMed  Google Scholar 

  • Pollard TD, Korn ED (1973b) Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg 2+ adenosine triphosphatase activity. J Biol Chem 248(13):4691–4697

    CAS  PubMed  Google Scholar 

  • Preston TM (1985) A prominent microtubule cytoskeleton in Acanthamoeba. Cell Biol Int Rep 9(4):307–314

    Article  CAS  PubMed  Google Scholar 

  • Preston TM, King CA (1984) Amoeboid locomotion of Acanthamoeba castellanii with special reference to cell-substratum interactions. J Gen Microbiol 130(9):2317–2323

    CAS  PubMed  Google Scholar 

  • Pumidonming W, Koehsler M, Walochnik J (2010) Acanthamoeba strains show reduced temperature tolerance after long-term axenic culture. Parasitol Res 106(3):553–559

    Article  PubMed  Google Scholar 

  • Pumidonming W, Walochnik J, Dauber E, Petry F (2011) Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology 216(1–2):225–233

    Article  CAS  PubMed  Google Scholar 

  • Pussard M, Pons R (1977) Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 8:557–598

    Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu Rev Plant Biol 55:23–39

    Article  CAS  PubMed  Google Scholar 

  • Reichstein E, Korn ED (1979) Acanthamoeba profilin. A protein of low molecular weight from Acanpthamoeba castellanii that inhibits actin nucleation. J Biol Chem 254(13):6174–6179

    CAS  PubMed  Google Scholar 

  • Ren M, Gao L, Wu X (2010) TLR4: the receptor bridging Acanthamoeba challenge and intracellular inflammatory responses in human corneal cell lines. Immunol Cell Biol 88(5):529–536

    Article  CAS  PubMed  Google Scholar 

  • Ren MY, Wu XY (2011) Toll-like receptor 4 signalling pathway activation in a rat model of Acanthamoeba Keratitis. Parasite Immunol 33(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Azevedo BD, Jamerson M, Cabral GA, Silva-Filho FC, Marciano-Cabral F (2009) Acanthamoeba interaction with extracellular matrix glycoproteins: biological and biochemical characterization and role in cytotoxicity and invasiveness. J Eukaryot Microbiol 56(3):270–8. doi: 10.1111/j.1550-7408.2009.00399.x

    Google Scholar 

  • Rocha-Azevedo B, Jamerson M, Cabral GA, Marciano-Cabral F (2010) Acanthamoeba culbertsoni: analysis of amoebic adhesion and invasion on extracellular matrix components collagen I and laminin-1. Exp Parasitol 126(1):79–84

    Article  PubMed  CAS  Google Scholar 

  • Roti LW, Stevens AR (1975) DNA synthesis in growth and encystment of Acanthamoeba castellanii. J Cell Sci 17(3):503–515

    CAS  PubMed  Google Scholar 

  • Rowan-Kelly B, Ferrante A (1984) Immunization with killed Acanthamoeba culbertsoni antigen and amoeba culture supernatant antigen in experimental Acanthamoeba meningoencephalitis. Trans R Soc Trop Med Hyg 78(2):179–182

    Article  CAS  PubMed  Google Scholar 

  • Saheb E, Trzyna W, Bush J (2013) An Acanthamoeba castellanii metacaspase associates with the contractile vacuole and functions in osmoregulation. Exp Parasitol 133(3):314–326

    Article  CAS  PubMed  Google Scholar 

  • Schiller B, Makrypidi G, Razzazi-Fazeli E, Paschinger K, Walochnik J, Wilson IB (2012) Exploring the unique N-glycome of the opportunistic human pathogen Acanthamoeba. J Biol Chem 287(52):43191–43204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder-Diedrich JM, Fuerst PA, Byers TJ (1998) Group-I introns with unusual sequences occur at three sites in nuclear 18S rRNA genes of Acanthamoeba lenticulata. Curr Genet 34(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui R, Dudley R, Khan NA (2012) Acanthamoeba differentiation: a two-faced drama of Dr Jekyll and Mr Hyde. Parasitology 139(7):826–834

    Article  PubMed  Google Scholar 

  • Siddiqui R, Khan NA (2012) Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality? Exp Parasitol 130:95–97

    Google Scholar 

  • Sissons J, Alsam S, Jayasekera S, Khan NA (2004) Ecto-ATPases of clinical and non-clinical isolates of Acanthamoeba. Microb Pathog 37(5):231–239

    Article  CAS  PubMed  Google Scholar 

  • Sissons J, Kim KS, Stins M, Jayasekera S, Alsam S, Khan NA (2005) Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism. Infect Immun 73(5):2704–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sissons J, Alsam S, Goldsworthy G, Lightfoot M, Jarroll EL, Khan NA (2006) Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol 3;6:42

    Google Scholar 

  • Song SM, Han BI, Moon EK, Lee YR, Yu HS, Jha BK, Danne DB, Kong HH, Chung DI, Hong Y (2012) Autophagy protein 16-mediated autophagy is required for the encystation of Acanthamoeba castellanii. Mol Biochem Parasitol 183(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Soto-Arredondo KJ, Flores-Villavicencio LL, Serrano-Luna JJ, Shibayama M, Sabanero-López M (2014) Biochemical and cellular mechanisms regulating Acanthamoeba castellanii adherence to host cells. Parasitology 141(4):531–541

    Article  CAS  PubMed  Google Scholar 

  • Speijer D, Lukeš J, Eliáš M (2015) Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci U S A 112(29):8827–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GL, Shupe K, Kim I, Silvany RE, Alizadeh H, McCulley JP, Niederkorn JY (1994) Antibody-dependent neutrophil-mediated killing of Acanthamoeba castellanii. Int J Parasitol 24(5):739–742

    Article  CAS  PubMed  Google Scholar 

  • Stothard DR, Schroeder-Dietrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers T (1998) The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rDNA gene sequence types. J Euk Microbiol 45:45–54

    Article  CAS  PubMed  Google Scholar 

  • Swida A, Woyda-Ploszczyca A, Jarmuszkiewicz W (2008) Redox state of quinone affects sensitivity of Acanthamoeba castellanii mitochondrial uncoupling protein to purine nucleotides. Biochem J 413(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Taketo MM, Sonoshita M (2002) Phospholipase A2 and apoptosis. Biochim Biophys Acta 1585:72–76

    Article  CAS  PubMed  Google Scholar 

  • Taylor WM, Pidherney MS, Alizadeh H, Niederkorn JY (1995) In vitro characterization of Acanthamoeba castellanii cytopathic effect. J Parasitol 81(4):603–609

    Article  CAS  PubMed  Google Scholar 

  • Thong Y, Ferrante A (1986) Migration patterns or pathogenic and non-pathogenic Naegleria spp. Infect Immun 51:177–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thyrell L, Hjortsberg L, Arulampalam V, Panaretakis T, Uhles S, Dagnell M, Zhivotovsky B, Leibiger I, Grandér D, Pokrovskaja K (2004) Interferon alpha-induced apoptosis in tumor cells is mediated through the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. J Biol Chem 279(23):24152–24162

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson G (1967) The Glyoxylate Pathway in Acanthamoeba Sp. J Protozool 14(1):114–116

    Article  CAS  Google Scholar 

  • Toney DM, Marciano-Cabral F (1998) Resistance of Acanthamoeba species to complement lysis. J Parasitol 84:338–344

    Article  CAS  PubMed  Google Scholar 

  • Tripathi T, Abdi M, Alizadeh H (2013) Role of phospholipase A2 (PLA2) inhibitors in attenuating apoptosis of the corneal epithelial cells and mitigation of Acanthamoeba keratitis. Exp Eye Res 113:182–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi T, Abdi M, Alizadeh H (2014) Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells. Invest Ophthalmol Vis Sci 55(6):3912–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi T, Smith AD, Abdi M, Alizadeh H (2012) Acanthamoeba-cytopathic protein induces apoptosis and proinflammatory cytokines in human corneal epithelial cells by cPLA2α activation. Invest Ophthalmol Vis Sci 53(13):7973–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trzyna WC, Legras XD, Cordingley JS (2008) A type-1 metacaspase from Acanthamoeba castellanii. Microbiol Res 163(4):414–23

    Google Scholar 

  • Ulsamer AG, Wright PL, Wetzel MG, Korn ED (1971) Plasma and phagosome membranes of Acanthamoeba castellanii. J Cell Biol 51(1):193–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma AK, Raizada MK, Shukla OP, Murti CR (1974) Degradation of cysts of Hartmannella culbertsoni by culture filtrates of Alternaria sp. J Gen Microbiol 80(1):307–309

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara GS (2010) Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr Opin Infect Dis 23(6):590–594

    Article  CAS  PubMed  Google Scholar 

  • Volkonsky M (1931) Hartmanella castellanii Douglas, et classification des hartmannelles. Arch Zool Exp Gen 72:317–339

    Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2000) Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl Environ Microbiol 66(10):4408–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2001) Anti-Acanthamoeba IgG, IgM, and IgA immunoreactivity of Acanthamoeba keratitis patients and asymptomatic individuals. Parasitol Res 87:651–656

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Scheikl U, Haller-Schober EM (2015) Twenty years of acanthamoeba diagnostics in Austria. J Eukaryot Microbiol 62(1):3–11

    Article  PubMed  Google Scholar 

  • Wang L, Asem EK, McLaughlin GL (1994) Calcium enhances Acanthamoeba polyphaga binding to extracellular matrix proteins. Invest Ophthalmol Vis Sci 35(5):2421–6

    Google Scholar 

  • Weisman RA (1976) Differentiation in Acanthamoeba castellanii. Annu Rev Microbiol 30:189–219

    Article  CAS  PubMed  Google Scholar 

  • Weisman RA, Korn ED (1967) Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties. Biochemistry 6(2):485–497

    Article  CAS  PubMed  Google Scholar 

  • Weisman RA, Spiegel RS, McCauley JG (1970) Differentiation in acanthamoeba: glycogen levels and glycogen synthetase activity during encystment. Biochim Biophys Acta 201(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Wideman JG, Gawryluk RM, Gray MW, Dacks JB (2013) The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol 30(9):2044–2049

    Article  CAS  PubMed  Google Scholar 

  • Wiley CA, Safrin RE, Davis CE, Lampert PW, Braude AI, Martinez AJ, Visvesvara GS (1987) Acanthamoeba meningoencephalitis in a patient with AIDS. J Infect Dis 155(1):130–3

    Google Scholar 

  • Witschel H, Sundmacher R, Seitz HM (1984) Amebic keratitis: clinico-histopathologic case report. Klin Monatsbl Augenheilkd 185:46–49

    Article  CAS  PubMed  Google Scholar 

  • Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM (2010) The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med 12(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Woyda-Ploszczyca AM, Jarmuszkiewicz W (2012) Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. J Bioenerg Biomembr 44(5):525–538

    Article  CAS  PubMed  Google Scholar 

  • Woyda-Ploszczyca A, Jarmuszkiewicz W (2013) Hydroxynonenal-stimulated activity of the uncoupling protein in Acanthamoeba castellanii mitochondria under phosphorylating conditions. Biol Chem 394(5):649–658

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signalling. J Immunol 169(12):6668–6672

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cao Z, Panjwani N (1997) Pathogenesis of Acanthamoeba keratitis: carbohydrate-mediated host-parasite interactions. Infect Immun 65(2):439–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Zwick MG, Paule MR (1994) Sequence organization of the Acanthamoeba rRNA intergenic spacer: identification of transcriptional enhancers. Nucleic Acids Res 22(22):4798–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JD, Lowrey DM (1989) Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri. J Biol Chem 264(2):1077–1083

    CAS  PubMed  Google Scholar 

  • Zwick MG, Wiggs M, Paule MR (1991) Sequence and organization of 5S RNA genes from the eukaryotic protist Acanthamoeba castellanii. Gene 101(1):153–157

    Article  CAS  PubMed  Google Scholar 

Further Reading (Examples)

  • Clarke DW, Niederkorn JY (2006a) The immunobiology of Acanthamoeba keratitis. Microbes Infect 8(5):1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Clarke DW, Niederkorn JY (2006b) The pathophysiology of Acanthamoeba keratitis. Trends Parasitol 22(4):175–180

    Article  CAS  PubMed  Google Scholar 

  • Ferrante A (1991a) Immunity to Acanthamoeba. Rev Inf Dis 13:S403–S409

    Article  Google Scholar 

  • Ferrante A (1991b) Free-living amoebae: pathogenicity and immunity. Parasite Immunol 13(1):31–47

    Article  CAS  PubMed  Google Scholar 

  • Ferreira GA, Magliano AC, Pral EM, Alfieri SC (2009) Elastase secretion in Acanthamoeba polyphaga. Acta Trop 112(2):156–163

    Google Scholar 

  • Khan NA (2015) Acanthamoeba: Biology and Pathogenesis, 2nd edn. Caister Academic Press, Norfolk, 334p

    Google Scholar 

  • Khan NA (2007) Acanthamoeba invasion of the central nervous system. Int J Parasitol 37(2):131–138

    Article  PubMed  Google Scholar 

  • Lloyd D (2014) Encystment in Acanthamoeba castellanii: a review. Exp Parasitol 145(Suppl):S20–S27

    Article  PubMed  Google Scholar 

  • Lorenzo-Morales J, Khan NA, Walochnik J (2015) An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16(2):273–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Page FC (1987b) The classification of the naked amoebae (Phylum Rhizopoda). Arch Protist 133:199–217

    Article  Google Scholar 

  • Page FC (1988) A new key to freshwater and soil gymnamoebae. Freshwater Biol. Ass., Ambleside

    Google Scholar 

  • Page FC (1991b) Nackte Rhizopoda. In: Matthes D (ed) Protozoenfauna, Band 2. G. Fischer, Stuttgart, pp 3–145

    Google Scholar 

  • Rondanelli EG (ed) (1987) Amphizoic amoebae. Human pathology. Infectious diseases color atlas monographs. Piccin Nuova Libraria, Padua, 279 p

    Google Scholar 

  • Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6

    Google Scholar 

  • Singh BN (1975) Pathogenic and non-pathogenic amoebae. Macmillan Publishing. 245 p

    Google Scholar 

  • Visvesvara GS (2013) Infections with free-living amebae. Handb Clin Neurol 114:153–168

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Michael Duchêne for critically reading the manuscript. Moreover, we would like to thank the Acanthamoeba community for all the excellent studies that have been performed, without which we would not have been able to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Walochnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Köhsler, M., Mrva, M., Walochnik, J. (2016). Acanthamoeba . In: Walochnik, J., Duchêne, M. (eds) Molecular Parasitology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1416-2_10

Download citation

Publish with us

Policies and ethics