T-Type Calcium Channels and Management of Pain

  • Brian M. Keyser


T-type Ca2+ channels exhibit small, transient currents that are relatively insensitive to dihydropyridines and exhibit “window current” in the physiological range for voltage. A role for T-type Ca2+ channels in nociceptor sensitization was reported in 2001, an effect confirmed in studies using Cav3.1 and Cav3.2 knockout animals. The Cav3.2 channel is involved in both central and peripheral termini of primary afferent neurons and is now considered an important player in the processing of pain. The analgesic effect of T-type calcium channels has been tested in different pain models. In addition to neuropathic pain reduction, the inhibition of T-type calcium channels is efficacious in formalin injection into the hind paw, which models an acute inflammatory pain. T-type Ca2+ channel blockers also produce a dose-dependent reduction in IBS-induced pain in a rat model of irritable bowel syndrome (IBS). T-type Ca2+ channel antagonists present obvious advantages over opioid analgesics; they directly act on the cytoplasmic membrane of neurons and most likely from the extracellular side. Therefore their antinociceptive effect may not cause profound drug tolerance and dependence.


Neuropathic Pain Irritable Bowel Syndrome Diabetic Neuropathy Spinal Nerve Ligation Formalin Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atreja A, Bellam N, Levy SR (2005) Strategies to enhance patient adherence: making it simple. Med Gen Med 7:4Google Scholar
  2. Belardetti F, Zamponi GW (2008) Linking calcium-channel isoforms to potential therapies. Curr Opin Investig Drugs 9:707–715PubMedGoogle Scholar
  3. Bie B, Peng Y, Zhang Y, Pan ZZ (2005) cAMP-mediated mechanisms for pain sensitization during opioid withdrawal. J Neurosci 25:3824–3832PubMedCrossRefGoogle Scholar
  4. Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324PubMedCentralPubMedCrossRefGoogle Scholar
  5. Brogden RN, Markham A (1997) Mibefradil—a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of hypertension and angina pectoris. Drugs 54:774–793PubMedCrossRefGoogle Scholar
  6. Calcutt NA (2013) Location, location, location?: Is the pain of diabetic neuropathy generated by hyperactive sensory neurons? Diabetes 62:3658–3660PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen WK, Liu IY, Chang YT, Chen YC, Chen CC, Yen CT, Shin HS, Chen CC (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30:10360–10368PubMedCrossRefGoogle Scholar
  8. Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, Jevtovic-Todorovic V, Todorovic SM (2011) TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol 80:900–910PubMedCentralPubMedCrossRefGoogle Scholar
  9. Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6:425–431PubMedCrossRefGoogle Scholar
  10. Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F (2003) Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 105:159–168PubMedCrossRefGoogle Scholar
  11. Dziegielewska B, Gray LS, Dziegielewski J (2014) T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch 466:801–810PubMedCrossRefGoogle Scholar
  12. Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109:150–161PubMedCrossRefGoogle Scholar
  13. Francois A, Kerckhove N, Meleine M, Alloui A, Barrere C, Gelot A, Uebele VN, Renger JJ, Eschalier A, Ardid D, Bourinet E (2013) State-dependent properties of a new T-type calcium channel blocker enhance Ca(V)3.2 selectivity and support analgesic effects. Pain 154:283–293PubMedCrossRefGoogle Scholar
  14. Gray LS, Schiff D, Macdonald TL (2013) A model for the regulation of T-type Ca(2+) channels in proliferation: roles in stem cells and cancer. Expert Rev Anticancer Ther 13:589–595PubMedCrossRefGoogle Scholar
  15. Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P (2009) Regulation of T-type calcium channels: signaling pathways and functional implications. Biochem Biophys Acta 1793:947–952PubMedCrossRefGoogle Scholar
  16. Iftinca MC (2011) Neuronal T-type calcium channels: what’s new? Iftinca: T-type channel regulation. J Med Life 4:126–138PubMedCentralPubMedGoogle Scholar
  17. Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27:3305–3316PubMedCrossRefGoogle Scholar
  19. Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99:3151–3156PubMedCentralPubMedCrossRefGoogle Scholar
  20. Jarvis MF, Scott VE, McGaraughty S, Chu KL, Xu J, Niforatos W, Milicic I, Joshi S, Zhang Q, Xia Z (2014) A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats. Biochem Pharmacol 89:536–544PubMedCrossRefGoogle Scholar
  21. Kam YL, Rhee HK, Rhim H, Back SK, Na HS, Choo HY (2010) Synthesis and T-type calcium channel blocking activity of novel diphenylpiperazine compounds, and evaluation of in vivo analgesic activity. Bioorg Med Chem 18:5938–5944PubMedCrossRefGoogle Scholar
  22. Keyser BM, Taylor JT, Choi S-K, Lu Y, Bhattacharjee A, Huang L, Pottle J, Matrougui K, Xu Z, Li M (2014) Role of T-type Ca2+ channels in basal [Ca2+]i regulation and basal insulin secretion in rat islet cells. Curr Trend EndocrinolGoogle Scholar
  23. Khomula EV, Viatchenko-Karpinski VY, Borisyuk AL, Duzhyy DE, Belan PV, Voitenko NV (2013) Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochim Biophys Acta 1832:636–649PubMedCrossRefGoogle Scholar
  24. Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, Lee WY, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2009) Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 58:2656–2665PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lee MJ, Shin TJ, Lee JE, Choo H, Koh HY, Chung HJ, Pae AN, Lee SC, Kim HJ (2010) KST5468, a new T-type calcium channel antagonist, has an antinociceptive effect on inflammatory and neuropathic pain models. Pharmacol Biochem Behav 97:198–204PubMedCrossRefGoogle Scholar
  26. Li W, Zhang SL, Wang N, Zhang BB, Li M (2011) Blockade of T-type Ca2+ channels inhibits human ovarian cancer cell proliferation. Cancer Invest 29:339–346PubMedCrossRefGoogle Scholar
  27. Liao YF, Tsai ML, Chen CC, Yen CT (2011) Involvement of the Cav3.2 T-type calcium channel in thalamic neuron discharge patterns. Mol Pain 7:43PubMedCentralPubMedCrossRefGoogle Scholar
  28. Maeda Y, Aoki Y, Sekiguchi F, Matsunami M, Takahashi T, Nishikawa H, Kawabata A (2009) Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142:127–132PubMedCrossRefGoogle Scholar
  29. Marcantoni A, Carabelli V, Comunanza V, Hoddah H, Carbone E (2008) Calcium channels in chromaffin cells: focus on L and T types. Acta Physiol 192:233–246CrossRefGoogle Scholar
  30. Marger F, Gelot A, Alloui A, Matricon J, Ferrer JF, Barrere C, Pizzoccaro A, Muller E, Nargeot J, Snutch TP, Eschalier A, Bourinet E, Ardid D (2011) T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci USA 108:11268–11273PubMedCentralPubMedCrossRefGoogle Scholar
  31. Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V (2009) In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145:184–195PubMedCentralPubMedCrossRefGoogle Scholar
  32. Na HS, Choi S, Kim J, Park J, Shin HS (2008) Attenuated neuropathic pain in Cav3.1 null mice. Mol Cells 25:242–246PubMedGoogle Scholar
  33. National Research Council (2009) Recognition and alleviation of pain in laboratory animals. The National Academies Press, Washington, DCGoogle Scholar
  34. Obradovic A, Hwang SM, Scarpa J, Hong SJ, Todorovic SM, Jevtovic-Todorovic V (2014) CaV3.2 T-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy. PLoS One 9:e91467PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ohkubo T, Yamazaki J (2012) T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol 41:267–275PubMedGoogle Scholar
  36. Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, Yamazaki J, Fukushima N, Yoshida S, Kawabata A (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156PubMedCrossRefGoogle Scholar
  37. Pottle J, Sun C, Gray L, Li M (2013) Exploiting MCF-7 cells’ calcium dependence with interlaced therapy. J Cancer Ther 4:32–40CrossRefGoogle Scholar
  38. Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, Evans C, Kieffer BL (2010) Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 30:16459–16468PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ripamonti CI, Bandieri E, Roila F, Group EGW (2011) Management of cancer pain: ESMO Clinical Practice Guidelines. Ann Oncol 22(Suppl 6):vi69–77Google Scholar
  40. Rupp T, Delaney KA (2004) Inadequate analgesia in emergency medicine. Ann Emerg Med 43:494–503PubMedCrossRefGoogle Scholar
  41. Sekiguchi F, Kawabata A (2013) T-type calcium channels: functional regulation and implication in pain signaling. J Pharmacol Sci 122:244–250PubMedCrossRefGoogle Scholar
  42. Shin HS, Cheong EJ, Choi S, Lee J, Na HS (2008) T-type Ca2+ channels as therapeutic targets in the nervous system. Curr Opin Pharmacol 8:33–41PubMedCrossRefGoogle Scholar
  43. Smith GF, Toonen TR (2007) Primary care of the patient with cancer. Am Fam Physician 75:1207–1214PubMedGoogle Scholar
  44. Takahashi T, Aoki Y, Okubo K, Maeda Y, Sekiguchi F, Mitani K, Nishikawa H, Kawabata A (2010) Upregulation of Ca(v)3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain 150:183–191PubMedCrossRefGoogle Scholar
  45. Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB, Li M (2008a) Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 267:116–124PubMedCrossRefGoogle Scholar
  46. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M (2008b) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991PubMedCentralPubMedCrossRefGoogle Scholar
  47. Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C, Olney JW, Zorumski CF (2001) Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31:75–85PubMedCrossRefGoogle Scholar
  48. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V (2002) Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res 951:336–340PubMedCrossRefGoogle Scholar
  49. Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818PubMedCentralPubMedCrossRefGoogle Scholar
  50. Wen XJ, Xu SY, Chen ZX, Yang CX, Liang H, Li H (2010) The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology 85:295–300PubMedCrossRefGoogle Scholar
  51. Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 27:621–676PubMedCrossRefGoogle Scholar
  52. Yue J, Liu L, Liu Z, Shu B, Zhang Y (2013) Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine 38:463–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Brian M. Keyser
    • 1
  1. 1.Cellular and Molecular Biology BranchU.S. Army Medical Research Institute of Chemical Defense Research DivisionAberdeen Proving GroundUSA

Personalised recommendations