Skip to main content

Regulation of Cardiac Hypertrophy by T-Type Ca2+ Channel

  • Chapter
  • First Online:
T-type Calcium Channels in Basic and Clinical Science

Abstract

Congestive heart failure is a terminal condition whose progression is determined by both cardiomyocyte and ventricular remodeling. Among the pathways contributing to remodeling are the calcium-dependent calcineurin–NFAT and CREB hypertrophic pathways. While the T-type Ca2+ channel and the transient receptor potential anion channel superfamily assume central roles in initiation of cardiac hypertrophy involving the calcineurin–NFAT pathway, the T-type Ca2+ channel appears to regulate the calcineurin–NFAT hypertrophic pathway. The T-type Ca2+ channel also modulates the development of pathological hypertrophy via the CREB hypertrophic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for β2–adrenergic regulation. Proc Natl Acad Sci USA 103:7500–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berbey C, Weiss N, Legrand C, Allard B (2009) Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. J Biol Chem 284:36387–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bers DM (2001) Excitation-contraction coupling and cardiac contractile force. Kluwer, Dordrecht, Netherlands

    Book  Google Scholar 

  • Bkaily G, Sculptoreanu A, Wang S, Nader M, Hazzouri KM, Jacques D, Regoli D, D’Orleans-Juste P, Avendanian L (2005) Angiotensin II-induced increase of T-type Ca2+ current and decrease of L-type Ca2+ current in heart cells. Peptides 26:1410–7

    Article  CAS  PubMed  Google Scholar 

  • Brette F, Leroy J, Le Guennec J-Y, Salle L (2006) Ca2+ currents in cardiac myocytes: old story, new insight. Prog Biophys Mol Biol 91:1–82

    Article  CAS  PubMed  Google Scholar 

  • Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–96

    Article  CAS  PubMed  Google Scholar 

  • Cappola TP, Cope L, Cernetich A, Barouch LA, Minhas K, Irizarry RA, Parmigiani G, Durrani S, Lavoie T, Hoffman EP, Ye SQ, Garcia JG, Hare JM (2003) Deficiency of different nitric oxide synthase isoforms activates divergent transcriptional programs in cardiac hypertrophy. Physiol Genomics 14:25–34

    CAS  PubMed  Google Scholar 

  • Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Mokentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:460–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC (2009) The Cav32. T-type Ca2+ channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522–30

    Article  CAS  PubMed  Google Scholar 

  • Cribbs LL, Lee JH, Ynag J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha 1H from human heart, a member of the T-type Ca2+ channel family. Circ Res 83:103–10

    Article  CAS  PubMed  Google Scholar 

  • Eder P, Mokentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108:265–72

    Article  CAS  PubMed  Google Scholar 

  • Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG, Mejia-Alvarez R (2004) Developmental changes of intracellular Ca2+ transients in beating rat hears. Am J Physiol 286:H971–8

    Article  CAS  Google Scholar 

  • Feng S-L, Sun M-R, T-t L, Yin X, Xu C-Q, Sun Y-H (2011) Activation of calcium-sensing receptor increases TRPC3 expression. Biochem Biophys Res Commun 406:278–84

    Article  CAS  PubMed  Google Scholar 

  • Ferron L, Capuano V, Ruchon Y, Deroubaix E, Coulombe A, Renaud JF (2003) Signaling pathways mediate expression of cardiac T-type calcium channels. Circ Res 93:1241–8

    Article  CAS  PubMed  Google Scholar 

  • Ferron L, Ruchon Y, Renaud J-F, Capuano V (2011) T-type Ca2+ signaling regulates aldosterone-induced CREB activation and cell death through PP2A activation in neonatal cardiomyocytes. Cardiovasc Res 90:105–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedrich O, Wagner S, Battle AR, Schurmann S, Bartinac B (2012) Mechano-regulation of the beating heart at the cellular level—mechanosensitive channels in normal and diseased heart. Prog Biophys Mol Biol 110:226–38

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wang F, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Jolkentin JD, Houser SR (2012) Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol 53:657–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoglund C, Cifkova R, Mimran A, Tenczer J, Watt A, Wilkins MR, Lindberg E (1998) A comparison of the effects of mibefradil and atenolol on regression of left ventricular hypertrophy in hypertensive patients. Cardiology 89:263–70

    Article  CAS  PubMed  Google Scholar 

  • Hoischen S, Brixius K, Schwinger RH (1998) T- and L-type Ca2+ channel antagonists reduce contractility in guinea pig cardiac myocytes. J Cardiovasc Pharmacol 32:323–330

    Article  CAS  PubMed  Google Scholar 

  • Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K (2008) T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sci 82:554–60

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Qin D, Deng L, Boutjdir M, El-Sherif N (2000) Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res 46:442–9

    Article  CAS  PubMed  Google Scholar 

  • Ichinose F, Bloch KD, Wu JC, Hataishi R, Aretz HT, Picard MH, Scherrer-Crosbie M (2004) Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol 286:H1070–5

    CAS  Google Scholar 

  • Izumi T, Kihara Y, Sarai N, Yoneda T, Iwanaga Y, Inagaki K, Onozawa Y, Takenaka H, Kita T, Noma A (2003) Reinduction of T-type Ca2+ channels by endothelin-1 in failing hearts in vivo and in adult rat ventricular myocytes in vitro. Circulation 108:2530–5

    Article  CAS  PubMed  Google Scholar 

  • Jaleel N, Nakayama H, Chen X, Kubo H, MacDonnell S, Zhang H, Berretta R, Robbins J, Cribbs L, Mokentin JD, Houser SR (2008) Ca2+ influx through T- and L-type Ca2+ channels have different effects on myocyte contractility and induce unique cardiac phenotypes. Circ Res 103:1109–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase A signaling in the heart. Circ Res 106:1849–60

    Article  CAS  PubMed  Google Scholar 

  • Kitchens SA, Burch J, Creazzo TL (2003) T-type Ca2+ channel current contribution to Ca2+-induced Ca2+ release in developing myocardium. J Mol Cell Cardiol 35:515–23

    Article  CAS  PubMed  Google Scholar 

  • Klaiber M, Kruse M, Volker K, Schroter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Camacho Londono JE, Baba HA, Abramowitz J, Birnbaumer L, Penninger JM, Pongs O, Kuhn M (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 105:583–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurdi M, Booz GW (2011) Three 4-letter words of hypertension-related cardiac hypertrophy: TRPC, mTOR and HDAC. J Mol Cell Cardiol 50:964–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levine TB, Beernink PJLM, Caspi A, Elkayam U, Geltman EM, Greenberg B, McKenna WJ, Ghali JK, Giles TD, Marmor A, Reisin LH, Ammon S, Lindberg E (2000) Effect of mibefradil, a T-type Ca2+ channel blocker, on morbidity and mortality in moderate to severe congestive heart failure: the MACH-1 study. Circulation 101:758–64

    Article  CAS  PubMed  Google Scholar 

  • Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Mokentin JD, Houser SR (2012) A caveolae-targeted L-type Ca2+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110:669–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrates cells. Nat Cell Biol 7:179–85

    Article  CAS  PubMed  Google Scholar 

  • Martinez ML, Heredia MP, Delgado C (1999) Expression of T-type Ca2+ channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol 31:1617–25

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–28

    Article  CAS  PubMed  Google Scholar 

  • Monteil A, Chemin J, Leuranguer V, Altier C, Mennessier G, Bourinet E, Lory P, Nargeot J (2000) Specific properties of T-type calcium channel generated by the human alpha 1I subunit. J Biol Chem 275:16530–5

    Article  CAS  PubMed  Google Scholar 

  • Morishima M, Wang Y, Akiyoshi Y, Miyamoto S, Ono K (2009) Telmisartan, an angiotensin II type 1 receptor antagonist, attenuates T-type Ca2+ channel expression in neonatal rat cardiomyocytes. Eur J Pharmacol 609:105–112

    Article  CAS  PubMed  Google Scholar 

  • Muth JN, Yamaguchi H, Mikala G, Grupp IL, Lewis W, Cheng H, Song LS, Lakatta EG, Varadi G, Schwartz A (1999) Cardiac-specific overexpression of the alpha 1 subunit of the L-type Ca2+ channel in transgenic mice. Loss of isoproterenol-induced contraction. J Biol Chem 274:21503–6

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Wilkin BJ, Bodi I, Mokentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama H, Bodi L, Correll RN, Chen X, Lorenz J, Houser SR, Robbins J, Schwartz A, Molkentin JD (2009) Alpha 1G-dependent T-type Ca2+ channel current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J Clin Invest 119:3787–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Kurose H (2008) Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedebergs Arch Pharmacol 378:395–406

    Article  CAS  PubMed  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–3

    Article  CAS  PubMed  Google Scholar 

  • Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507

    Article  CAS  PubMed  Google Scholar 

  • Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage activated T-type calcium channel. Nature 391:896–900

    Article  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–95

    Article  CAS  PubMed  Google Scholar 

  • Poteser M, Schleifer H, Lichtenegger M, Schemthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci USA 108:10556–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reuter H (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol 192:479–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J (1998) Ca2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res 37:300–11

    Article  CAS  PubMed  Google Scholar 

  • Sandmann S, Spitznagel H, Chung O, Xia QG, Illner S, Jänichen G, Rossius B, Daemen MJ, Unger T (1998) Effects of the calcium channel antagonist mibefradil on haemodynamic and morphological parameters in myocardial infarction-induced cardiac failure in rats. Cardiovasc Res 39:339–350

    Article  CAS  PubMed  Google Scholar 

  • Sandmann S, Min JY, Meissner A, Unger T (1999) Effects of the calcium channel antagonist mibefradil on haemodynamic parameters and myocardial Ca(2+) handling in infarct-induced heart failure in rats. Cardiovasc Res 44:67–80

    Article  CAS  PubMed  Google Scholar 

  • Sandmann S, Claas R, Cleutjens JP, Daemen MJ, Unger T (2001) Calcium channel blockade limits cardiac remodeling and improves cardiac function in myocardial infarction-induced heart failure in rats. J Cardiovasc Pharmacol 37:64–77

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sugimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215

    Article  CAS  PubMed  Google Scholar 

  • Scheuer J (1999) Catecholamines in cardiac hypertrophy. Am J Cardiol 83:70H–74H

    Article  CAS  PubMed  Google Scholar 

  • Seth M, Zhang Z-S, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sipido KR, Carmeliet E, Van de Werf F (1998) T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J Physiol 508(2):439–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takebayshi S, Li Y, Kaku T, Inagaki S, Hashimoto Y, Kimura K, Miyamoto S, Hadama T, Ono K (2006) Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression. Biochem Biophys Res Commun 345:766–73

    Article  Google Scholar 

  • Talavera K, Nilius B (2006) Biophysics and structure-function of T-type Ca2+ channels. Cell Calcium 40:97–114

    Article  CAS  PubMed  Google Scholar 

  • Talavera K, Staes M, Janssen A, Klugbauer N, Droogmans G, Hofmann F, Nilius B (2001) Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca2+ channel α1G. J Biol Chem 276:45628–35

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–40

    Article  CAS  PubMed  Google Scholar 

  • Villame J, Massicotte J, Jasmin G, Dumont L (2001) Effects of mibefradil, a T- and L-type calcium channel blocker, on cardiac remodeling in the UM-X7.1 cardiomyopathic hamster. Cardiovasc Drugs Ther 15:41–48

    Article  CAS  PubMed  Google Scholar 

  • Wilkins BJ, DeWindt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Mokentin JD (2002) Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol 22:7603–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N (2003) Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-deficient mice. J Biol Chem 278:40837–41

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, January CT (1998) Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. Biophys J 74:1830–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Schaffer, S.W., Jong, C.J. (2015). Regulation of Cardiac Hypertrophy by T-Type Ca2+ Channel. In: Schaffer, S., Li, M. (eds) T-type Calcium Channels in Basic and Clinical Science. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1413-1_5

Download citation

Publish with us

Policies and ethics