Skip to main content

Role of T-Type Calcium Channels in Neuroendocrine Differentiation

  • Chapter
  • First Online:
T-type Calcium Channels in Basic and Clinical Science

Abstract

Neuroendocrine cells release their secretory products into the extracellular environment via a calcium-dependent pathway. These particular cells share common morphological and molecular features, such as the expression of specific biomarkers, neurite outgrowth and dense-core secretory granules. In order to elucidate the signalling pathways leading from undifferentiated to differentiated neuroendocrine cells, the role of voltage-dependent calcium channels and central actors in excitation–secretion coupling has been comprehensively investigated. T-type calcium channels, comprising of three different molecular isoforms, appear to be one of the important calcium channel families involved in the neuroendocrine differentiation process. They also may participate in the development of neuroendocrine tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson PA (1999) Neuroendocrine differentiation in prostatic carcinoma. Prostate 39:135–148

    CAS  PubMed  Google Scholar 

  • Andres D, Keyser BM, Petrali J, Benton B, Hubbard KS, McNutt PM, Ray R (2013) Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid. BMC Neurosci 14:49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrew A (1974) Further evidence that enterochromaffin cells are not derived from the neural crest. J Embryol Exp Morphol 31:589–598

    CAS  PubMed  Google Scholar 

  • Angelsen A, Sandvik AK, Syversen U, Stridsberg M, Waldum HL (1998) NGF-beta, NE-cells and prostatic cancer cell lines. A study of neuroendocrine expression in the human prostatic cancer cell lines DU-145, PC-3, LNCaP, and TSU-pr1 following stimulation of the nerve growth factor-beta. Scand J Urol Nephrol 32:7–13

    CAS  PubMed  Google Scholar 

  • Arnhold S, Andressen C, Angelov DN, Vajna R, Volsen SG, Hescheler J, Addicks K (2000) Embryonic stem-cell derived neurones express a maturation dependent pattern of voltage-gated calcium channels and calcium-binding proteins. Int J Dev Neurosci 18:201–212

    CAS  PubMed  Google Scholar 

  • Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76

    CAS  PubMed  Google Scholar 

  • Bang YJ, Pirnia F, Fang WG, Kang WK, Sartor O, Whitesell L, Ha MJ, Tsokos M, Sheahan MD, Nguyen P et al (1994) Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc Natl Acad Sci USA 91:5330–5334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banno Y, Nemoto S, Murakami M, Kimura M, Ueno Y, Ohguchi K, Hara A, Okano Y, Kitade Y, Onozuka M, Murate T, Nozawa Y (2008) Depolarization-induced differentiation of PC12 cells is mediated by phospholipase D2 through the transcription factor CREB pathway. J Neurochem 104:1372–1386

    CAS  PubMed  Google Scholar 

  • Berenguer C, Boudouresque F, Dussert C, Daniel L, Muracciole X, Grino M, Rossi D, Mabrouk K, Figarella-Branger D, Martin PM, Ouafik L (2008) Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates ‘neuroendocrine phenotype’ in LNCaP prostate tumor cells. Oncogene 27:506–518

    CAS  PubMed  Google Scholar 

  • Bergeron F, Leduc R, Day R (2000) Subtilase-like pro-protein convertases: from molecular specificity to therapeutic applications. J Mol Endocrinol 24:1–22

    CAS  PubMed  Google Scholar 

  • Bertolesi GE, Jollimore CA, Shi C, Elbaum L, Denovan-Wright EM, Barnes S, Kelly ME (2003) Regulation of alpha1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation. Eur J Neurosci 17:1802–1810

    PubMed  Google Scholar 

  • Bertolesi GE, Walia Da Silva R, Jollimore CA, Shi C, Barnes S, Kelly ME (2006) Ca(v)3.1 splice variant expression during neuronal differentiation of Y-79 retinoblastoma cells. Neuroscience 141:259–268

    CAS  PubMed  Google Scholar 

  • Boczek T, Lisek M, Kowalski A, Pikula S, Niewiarowska J, Wiktorska M, Zylinska L (2012) Downregulation of PMCA2 or PMCA3 reorganizes Ca(2+) handling systems in differentiating PC12 cells. Cell Calcium 52:433–444

    CAS  PubMed  Google Scholar 

  • Bosch MA, Hou J, Fang Y, Kelly MJ, Ronnekleiv OK (2009) 17Beta-estradiol regulation of the mRNA expression of T-type calcium channel subunits: role of estrogen receptor alpha and estrogen receptor beta. J Comp Neurol 512:347–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bournaud R, Hidalgo J, Yu H, Jaimovich E, Shimahara T (2001) Low threshold T-type calcium current in rat embryonic chromaffin cells. J Physiol 537:35–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carabelli V, Marcantoni A, Comunanza V, Carbone E (2007a) Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+-dependence. Eur Biophys J 36:753–762

    CAS  PubMed  Google Scholar 

  • Carabelli V, Marcantoni A, Comunanza V, de Luca A, Diaz J, Borges R, Carbone E (2007b) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carbone E, Giancippoli A, Marcantoni A, Guido D, Carabelli V (2006) A new role for T-type channels in fast “low-threshold” exocytosis. Cell Calcium 40:147–154

    CAS  PubMed  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    PubMed Central  PubMed  Google Scholar 

  • Cazillis M, Gonzalez BJ, Billardon C, Lombet A, Fraichard A, Samarut J, Gressens P, Vaudry H, Rostene W (2004) VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. Eur J Neurosci 19:798–808

    PubMed  Google Scholar 

  • Chafai M, Basille M, Galas L, Rostene W, Gressens P, Vaudry H, Gonzalez BJ, Louiset E (2011) Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide promote the genesis of calcium currents in differentiating mouse embryonic stem cells. Neuroscience 199:103–115

    CAS  PubMed  Google Scholar 

  • Chemin J, Nargeot J, Lory P (2002) Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. J Neurosci 22:6856–6862

    CAS  PubMed  Google Scholar 

  • Chemin J, Nargeot J, Lory P (2004) Ca(v)3.2 calcium channels control an autocrine mechanism that promotes neuroblastoma cell differentiation. Neuroreport 15:671–675

    CAS  PubMed  Google Scholar 

  • Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L, Yao JL, Shen S, Osunkoya AO, Liang C, Huang J (2012) Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer 19:321–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collado B, Gutierrez-Canas I, Rodriguez-Henche N, Prieto JC, Carmena MJ (2004) Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept 119:69–75

    CAS  PubMed  Google Scholar 

  • Collado B, Sanchez MG, Diaz-Laviada I, Prieto JC, Carmena MJ (2005) Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. Biochim Biophys Acta 1744:224–233

    CAS  PubMed  Google Scholar 

  • Cox ME, Deeble PD, Bissonette EA, Parsons SJ (2000) Activated 3',5'-cyclic AMP-dependent protein kinase is sufficient to induce neuroendocrine-like differentiation of the LNCaP prostate tumor cell line. J Biol Chem 275:13812–13818

    CAS  PubMed  Google Scholar 

  • Day R, Salzet M (2002) The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system. Neuro Endocrinol Lett 23:447–451

    PubMed  Google Scholar 

  • Deeble PD, Murphy DJ, Parsons SJ, Cox ME (2001) Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol 21:8471–8482

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeLellis RA (2001) The neuroendocrine system and its tumors: an overview. Am J Clin Pathol 115(Suppl):S5–S16

    PubMed  Google Scholar 

  • Diaz M, Abdul M, Hoosein N (1998) Modulation of neuroendocrine differentiation in prostate cancer by interleukin-1 and -2. Prostate Suppl 8:32–36

    CAS  PubMed  Google Scholar 

  • Dizeyi N, Hedlund P, Bjartell A, Tinzl M, Austild-Tasken K, Abrahamsson PA (2011) Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol Oncol 29:436–445

    CAS  PubMed  Google Scholar 

  • Elhamdani A, Brown ME, Artalejo CR, Palfrey HC (2000) Enhancement of the dense-core vesicle secretory cycle by glucocorticoid differentiation of PC12 cells: characteristics of rapid exocytosis and endocytosis. J Neurosci 20:2495–2503

    CAS  PubMed  Google Scholar 

  • Farini D, Puglianiello A, Mammi C, Siracusa G, Moretti C (2003) Dual effect of pituitary adenylate cyclase activating polypeptide on prostate tumor LNCaP cells: short- and long-term exposure affect proliferation and neuroendocrine differentiation. Endocrinology 144:1631–1643

    CAS  PubMed  Google Scholar 

  • Feyrter F (1938) Uber diffuse endokrine epitheliale Organe. JA Barth, Leipzig, Germany

    Google Scholar 

  • Flourakis M, Lehen’kyi V, Beck B, Raphael M, Vandenberghe M, Abeele FV, Roudbaraki M, Lepage G, Mauroy B, Romanin C, Shuba Y, Skryma R, Prevarskaya N (2010) Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis 1:e75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Froelich F (1949) Die “Helle Zelle” der Bronchialschleimhaut und ihre Beziehungen zum Problem der Chemoreceptoren. Frankfurt Z Pathol 60:517–559

    Google Scholar 

  • Fujita T, Kobayashi S, Yui R (1980) Paraneuron concept and its current implications. Adv Biochem Psychopharmacol 25:321–325

    CAS  PubMed  Google Scholar 

  • Gackiere F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoi-Mariot MT, Mauroy B, Prevarskaya N, Mariot P (2008) CaV3.2T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283:10162–10173

    CAS  PubMed  Google Scholar 

  • Gackiere F, Bidaux G, Lory P, Prevarskaya N, Mariot P (2006) A role for voltage gated T-type calcium channels in mediating “capacitative” calcium entry? Cell Calcium 39:357–366

    CAS  PubMed  Google Scholar 

  • Gackiere F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2:941–991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garber SS, Hoshi T, Aldrich RW (1989) Regulation of ionic currents in pheochromocytoma cells by nerve growth factor and dexamethasone. J Neurosci 9:3976–3987

    CAS  PubMed  Google Scholar 

  • Giancippoli A, Novara M, de Luca A, Baldelli P, Marcantoni A, Carbone E, Carabelli V (2006) Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J 90:1830–1841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845

    CAS  PubMed  Google Scholar 

  • Grumolato L, Elkahloun AG, Ghzili H, Alexandre D, Coulouarn C, Yon L, Salier JP, Eiden LE, Fournier A, Vaudry H, Anouar Y (2003) Microarray and suppression subtractive hybridization analyses of gene expression in pheochromocytoma cells reveal pleiotropic effects of pituitary adenylate cyclase-activating polypeptide on cell proliferation, survival, and adhesion. Endocrinology 144:2368–2379

    CAS  PubMed  Google Scholar 

  • Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D, Leprince J, Guerineau NC, Elkahloun AG, Fournier A, Vieau D, Vaudry H, Anouar Y (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768

    CAS  PubMed  Google Scholar 

  • Gong J, Lee J, Akio H, Schlegel PN, Shen R (2007) Attenuation of apoptosis by chromogranin A-induced Akt and survivin pathways in prostate cancer cells. Endocrinology 148:4489–4499

    CAS  PubMed  Google Scholar 

  • Gu X, Spitzer NC (1993) Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J Neurosci 13:4936–4948

    CAS  PubMed  Google Scholar 

  • Gustafsson BI, Kidd M, Modlin IM (2008) Neuroendocrine tumors of the diffuse neuroendocrine system. Curr Opin Oncol 20:1–12

    PubMed  Google Scholar 

  • Gutierrez-Canas I, Juarranz MG, Collado B, Rodriguez-Henche N, Chiloeches A, Prieto JC, Carmena MJ (2005) Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K. Prostate 63:44–55

    CAS  PubMed  Google Scholar 

  • Hansson J, Abrahamsson PA (2003) Neuroendocrine differentiation in prostatic carcinoma. Scand J Urol Nephrol Suppl 28–36

    Google Scholar 

  • Heo DK, Chung WY, Park HW, Yuan JP, Lee MG, Kim JY (2012) Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells. Cell Signal 24:899–906

    CAS  PubMed  Google Scholar 

  • Hill J, Chan SA, Kuri B, Smith C (2011) Pituitary adenylate cyclase-activating peptide (PACAP) recruits low voltage-activated T-type calcium influx under acute sympathetic stimulation in mouse adrenal chromaffin cells. J Biol Chem 286:42459–42469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirooka K, Bertolesi GE, Kelly ME, Denovan-Wright EM, Sun X, Hamid J, Zamponi GW, Juhasz AE, Haynes LW, Barnes S (2002) T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J Neurophysiol 88:196–205

    CAS  PubMed  Google Scholar 

  • Holliday J, Spitzer NC (1990) Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev Biol 141:13–23

    CAS  PubMed  Google Scholar 

  • Homma K, Kitamura Y, Ogawa H, Oka K (2006) Serotonin induces the increase in intracellular Ca2+ that enhances neurite outgrowth in PC12 cells via activation of 5-HT3 receptors and voltage-gated calcium channels. J Neurosci Res 84:316–325

    CAS  PubMed  Google Scholar 

  • Huang J, Yao JL, di Sant’Agnese PA, Yang Q, Bourne PA, Na Y (2006) Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 66:1399–1406

    CAS  PubMed  Google Scholar 

  • Jeon S, Park JK, Bae CD, Park J (2010) NGF-induced moesin phosphorylation is mediated by the PI3K, Rac1 and Akt and required for neurite formation in PC12 cells. Neurochem Int 56:810–818

    CAS  PubMed  Google Scholar 

  • Jones SE, Palmer TM (2012) Protein kinase A-mediated phosphorylation of RhoA on serine 188 triggers the rapid induction of a neuroendocrine-like phenotype in prostate cancer epithelial cells. Cell Signal 24:1504–1514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A (2005) Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 16:5639–5648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Adam RM, Freeman MR (2002) Activation of the Erk mitogen-activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation. Cancer Res 62:1549–1554

    CAS  PubMed  Google Scholar 

  • Kirschenbaum A, Liu XH, Yao S, Leiter A, Levine AC (2011) Prostatic acid phosphatase is expressed in human prostate cancer bone metastases and promotes osteoblast differentiation. Ann N Y Acad Sci 1237:64–70

    CAS  PubMed  Google Scholar 

  • Kiryushko D, Korshunova I, Berezin V, Bock E (2006) Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis. Mol Biol Cell 17:2278–2286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Chakraborty S, Barbosa C, Brustovetsky T, Brustovetsky N, Obukhov AG (2012) Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels. J Cell Physiol 227:1408–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushmerick C, Romano-Silva MA, Gomez MV, Prado MA (2001) Changes in Ca(2+) channel expression upon differentiation of SN56 cholinergic cells. Brain Res 916:199–210

    CAS  PubMed  Google Scholar 

  • Lazarovici P, Jiang H, Fink D Jr (1998) The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21(ras) G protein, and pp60(c-src) cytoplasmic tyrosine kinase. Mol Pharmacol 54:547–558

    CAS  PubMed  Google Scholar 

  • Le Douarin NM (1988) On the origin of pancreatic endocrine cells. Cell 53:169–171

    PubMed  Google Scholar 

  • Lewis DL, Goodman MB, St John PA, Barker JL (1988) Calcium currents and fura-2 signals in fluorescence-activated cell sorted lactotrophs and somatotrophs of rat anterior pituitary. Endocrinology 123:611–621

    CAS  PubMed  Google Scholar 

  • Lichvarova L, Jaskova K, Lacinova L (2012) NGF-induced neurite outgrowth in PC12 cells is independent of calcium entry through L-type calcium channels. Gen Physiol Biophys 31:473–478

    CAS  PubMed  Google Scholar 

  • Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40:135–146

    CAS  PubMed  Google Scholar 

  • Louhivuori LM, Louhivuori V, Wigren HK, Hakala E, Jansson LC, Nordstrom T, Castren ML, Akerman KE (2013) Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells. Stem Cells Dev 22:1206–1219

    CAS  PubMed  Google Scholar 

  • Lopez-Dominguez AM, Espinosa JL, Navarrete A, Avila G, Cota G (2006) Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells. J Physiol 574:349–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukyanetz EA (1998) Diversity and properties of calcium channel types in NG108-15 hybrid cells. Neuroscience 87:265–274

    CAS  PubMed  Google Scholar 

  • Manecka DL, Mahmood SF, Grumolato L, Lihrmann I, Anouar Y (2013) Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes both survival and neuritogenesis in PC12 cells through activation of nuclear factor kappa B (NF-kappaB) pathway: involvement of extracellular signal-regulated kinase (ERK), calcium and c-REL. J Biol Chem 288:14936–14948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mansvelder HD, Kits KS (2000) All classes of calcium channel couple with equal efficiency to exocytosis in rat melanotropes, inducing linear stimulus-secretion coupling. J Physiol 526:327–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N (2002) Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277:10824–10833

    CAS  PubMed  Google Scholar 

  • Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Delcourt P, Rassendren F, Bergerat JP, Ceraline J, Cabon F, Humez S, Prevarskaya N (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70:1225–1235

    CAS  PubMed  Google Scholar 

  • Mori S, Murakami-Mori K, Bonavida B (1999) Interleukin-6 induces G1 arrest through induction of p27(Kip1), a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem Biophys Res Commun 257:609–614

    CAS  PubMed  Google Scholar 

  • Mudado MA, Rodrigues AL, Prado VF, Beirao PS, Cruz JS (2004) CaV3.1 and CaV3.3 account for T-type Ca2+ current in GH3 cells. Braz J Med Biol Res 37:929–935

    CAS  PubMed  Google Scholar 

  • Nagasawa K, Tarui T, Yoshida S, Sekiguchi F, Matsunami M, Ohi A, Fukami K, Ichida S, Nishikawa H, Kawabata A (2009) Hydrogen sulfide evokes neurite outgrowth and expression of high-voltage-activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. J Neurochem 108:676–684

    CAS  PubMed  Google Scholar 

  • Nakashima S, Ikeno Y, Yokoyama T, Kuwana M, Bolchi A, Ottonello S, Kitamoto K, Arioka M (2003) Secretory phospholipases A2 induce neurite outgrowth in PC12 cells. Biochem J 376:655–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A, Carbone E (2004) Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558:433–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oesterling JE, Hauzeur CG, Farrow GM (1992) Small cell anaplastic carcinoma of the prostate: a clinical, pathological and immunohistological study of 27 patients. J Urol 147:804–807

    CAS  PubMed  Google Scholar 

  • Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259

    CAS  PubMed  Google Scholar 

  • Pearse AG (1968) Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R Soc Lond B Biol Sci 170:71–80

    CAS  PubMed  Google Scholar 

  • Pretl K (1944) Zur Frage der Endokrinie der menschlichen Vorsteherdruse. Virchows Arch 312:392–404

    Google Scholar 

  • Ravni A, Bourgault S, Lebon A, Chan P, Galas L, Fournier A, Vaudry H, Gonzalez B, Eiden LE, Vaudry D (2006) The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 98:321–329

    CAS  PubMed  Google Scholar 

  • Roussel JP, Mateu G, Astier H (1992) Blockade of potassium or calcium channels provokes modifications in TRH-induced TSH release from rat perifused pituitaries. Endocr Regul 26:163–170

    CAS  PubMed  Google Scholar 

  • Sagnak L, Topaloglu H, Ozok U, Ersoy H (2011) Prognostic significance of neuroendocrine differentiation in prostate adenocarcinoma. Clin Genitourin Cancer 9:73–80

    PubMed  Google Scholar 

  • Sainz RM, Mayo JC, Tan DX, Leon J, Manchester L, Reiter RJ (2005) Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63:29–43

    CAS  PubMed  Google Scholar 

  • Seidah NG (2011) What lies ahead for the proprotein convertases? Ann N Y Acad Sci 1220:149–161

    CAS  PubMed  Google Scholar 

  • Shen R, Dorai T, Szaboles M, Katz AE, Olsson CA, Buttyan R (1997) Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urol Oncol 3:67–75

    CAS  PubMed  Google Scholar 

  • Sherwood NT, Lesser SS, Lo DC (1997) Neurotrophin regulation of ionic currents and cell size depends on cell context. Proc Natl Acad Sci USA 94:5917–5922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shitaka Y, Matsuki N, Saito H, Katsuki H (1996) Basic fibroblast growth factor increases functional L-type Ca2+ channels in fetal rat hippocampal neurons: implications for neurite morphogenesis in vitro. J Neurosci 16:6476–6489

    CAS  PubMed  Google Scholar 

  • Silver RA, Bolsover SR (1991) Expression of T-type calcium current precedes neurite extension in neuroblastoma cells. J Physiol Paris 85:79–83

    CAS  PubMed  Google Scholar 

  • Tarui T, Fukami K, Nagasawa K, Yoshida S, Sekiguchi F, Kawabata A (2010) Involvement of Src kinase in T-type calcium channel-dependent neuronal differentiation of NG108-15 cells by hydrogen sulfide. J Neurochem 114:512–519

    CAS  PubMed  Google Scholar 

  • Tojima T, Yamane Y, Takahashi M, Ito E (2000) Acquisition of neuronal proteins during differentiation of NG108-15 cells. Neurosci Res 37:153–161

    CAS  PubMed  Google Scholar 

  • Vanden Abeele F, Shuba Y, Roudbaraki M, Lemonnier L, Vanoverberghe K, Mariot P, Skryma R, Prevarskaya N (2003) Store-operated Ca2+ channels in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis. Cell Calcium 33:357–373

    CAS  PubMed  Google Scholar 

  • Vanoverberghe K, Lehen’kyi V, Thebault S, Raphael M, Vanden Abeele F, Slomianny C, Mariot P, Prevarskaya N (2012) Cytoskeleton reorganization as an alternative mechanism of store-operated calcium entry control in neuroendocrine-differentiated cells. PLoS One 7:e45615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanoverberghe K, Vanden Abeele F, Mariot P, Lepage G, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11:321–330

    CAS  PubMed  Google Scholar 

  • Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss N, Zamponi GW (2013) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828:1579–1586

    CAS  PubMed  Google Scholar 

  • Westerink RH, Ewing AG (2008) The PC12 cell as model for neurosecretion. Acta Physiol (Oxf) 192:273–285

    CAS  Google Scholar 

  • Wu C, Huang J (2007) Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem 282:3571–3583

    CAS  PubMed  Google Scholar 

  • Yao JL, Madeb R, Bourne P, Lei J, Yang X, Tickoo S, Liu Z, Tan D, Cheng L, Hatem F, Huang J, Anthony di Sant’Agnese P (2006) Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 30:705–712

    PubMed  Google Scholar 

  • Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T, Karan D, Batra SK, Lin MF (2006) Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 13:151–167

    CAS  PubMed  Google Scholar 

  • Yuan TC, Veeramani S, Lin MF (2007) Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 14:531–547

    CAS  PubMed  Google Scholar 

  • Zhang XQ, Kondrikov D, Yuan TC, Lin FF, Hansen J, Lin MF (2003) Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 22:6704–6716

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marine Warnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Warnier, M., Gackière, F., Roudbaraki, M., Mariot, P. (2015). Role of T-Type Calcium Channels in Neuroendocrine Differentiation. In: Schaffer, S., Li, M. (eds) T-type Calcium Channels in Basic and Clinical Science. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1413-1_4

Download citation

Publish with us

Policies and ethics