Skip to main content

Physiology and Pathology of Voltage-Gated T-Type Calcium Channels

  • Chapter
  • First Online:
Book cover T-type Calcium Channels in Basic and Clinical Science

Abstract

T-type channels are low voltage-activated members of the calcium channel family that also includes the high voltage-activated Cav1 and Cav2 channels. T-type channels open with only minimal depolarization or in response to hyperpolarization of the cell membrane and are associated with regulating excitability and pacemaking at subthreshold voltages. Interestingly, increasing evidence suggests that the subthreshold properties of T-type channels are exploited for other cellular processes including low-threshold synaptic vesicle release (excitation-secretion coupling), myocyte contraction and tone (excitation-contraction coupling), and cell cycle control. T-type channels are implicated in several pathologies including epilepsy, autism, sleep disturbances, pain, hypertension, and cancer. With the advent of novel blockers selective for T-type channels, their important contributions to normal cellular/organismal physiology, as well as to pathology, are becoming clearer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 102:1743–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13:333–337

    Article  CAS  PubMed  Google Scholar 

  • Angstadt JD, Calabrese RL (1989) A hyperpolarization-activated inward current in heart interneurons on the medicinal leech. J Neurosci 9:2846–2857

    CAS  PubMed  Google Scholar 

  • Arias-Olguín II, Vitko I, Fortuna M, Baumgart JP, Sokolova S, Shumilin IA, Van Deusen A, Soriano-García M, Gomora JC, Perez-Reyes E (2008) Characterization of the gating brake in the I-II loop of Cav3.2 T-type Ca2+ channels. J Biol Chem 283:8136–8144

    Article  PubMed Central  PubMed  Google Scholar 

  • Boehme R, Uebele VN, Renger JJ, Pedroarena C (2011) Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block. J Neurophysiol 106:2653–2661

    Article  CAS  PubMed  Google Scholar 

  • Bourinet E, Alloui A, Monteil A, Barrère C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broicher T, Kanyshkova T, Meuth P, Pape H-C, Budde T (2008) Correlation of T-channel coding gene expression, I-T, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399

    Article  CAS  PubMed  Google Scholar 

  • Carbone E, Giancippoli A, Marcantoni A, Guido D, Carabelli V (2006) A new role for T-type channels in fast “low-threshold” exocytosis. Cell Calcium 40:147–154

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J (2013) 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflügers Arch

    Google Scholar 

  • Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP (2003) Abnormal coronary function in mice deficient in α 1H T-type Ca2+ channels. Science 302:1416–1418

    Article  CAS  PubMed  Google Scholar 

  • Cheng RC, Tikhonov DB, Zhorov BS (2010) Structural modeling of calcium binding in the selectivity filter of the L-type calcium channel. Eur Biophys J 39:839–853

    Article  CAS  PubMed  Google Scholar 

  • Cheong E, Lee S, Choi BJ, Sun M, Lee CJ, Shin HS (2008) Tuning thalamic firing modes via simultaneous modulation of T- and L-Type Ca2+ channels controls pain sensory gating in the thalamus. J Neurosci 28:13331–13340

    Article  CAS  PubMed  Google Scholar 

  • Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC (2009) The CaV3.2 T-type Ca2+ channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522–530

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6:425–431

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Cribbs LL (2006) T-type Ca2+ channels in vascular smooth muscle: multiple functions. Cell Calcium 40:221–230

    Article  CAS  PubMed  Google Scholar 

  • Cribbs L (2010) T-type calcium channel expression and function in the diseased heart. Channels 4:447–452

    Article  CAS  PubMed  Google Scholar 

  • Crunelli V, Cope DW, Hughes SW (2006) Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40:175–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz-Lezama N, Hernández-Elvira M, Sandoval A, Monroy A, Felix R, Monjaraz E (2010) Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells. Biochem Biophys Res Commun 403:24–9

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 30:99–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL (2009) Genetic enhancement of thalamocortical network activity by elevating α1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29:1615–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753–763

    Article  CAS  PubMed  Google Scholar 

  • Ferron L, Capuano V, Deroubaix E, Coulombe A, Renaud JF (2002) Functional and molecular characterization of a T-type Ca2+ channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 34:533–546

    Article  CAS  PubMed  Google Scholar 

  • Gackière F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2:941–951

    Article  PubMed Central  PubMed  Google Scholar 

  • Harraz OF, Brett SE, Welsh DG (2013) Nitric oxide suppresses vascular voltage-gated T-type Ca2+ channels through cGMP/PKG signaling. Am J Physiol 306:H279–H285

    Google Scholar 

  • Hurtado R, Bub G, Herzlinger DA (2014) Molecular signature of tissues with pacemaker activity in the heart and upper urinary tract involves coexpressed hyperpolarization-activated cation and T-type Ca2+ channels. FASEB J 28:730–739

    Article  CAS  PubMed  Google Scholar 

  • Iftinca MC (2011) Neuronal T-type calcium channels: what’s new? Iftinca: T-type channel regulation. J Med Life 4:126–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99:3151–3156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen LJ, Holstein-Rathlou NH (2009) Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles? Can J Physiol Pharmacol 87:8–20

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2010) Thalamocortical dysrhythmia and chronic pain. Pain 150:4–5

    Article  PubMed  Google Scholar 

  • Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem 281:4823–4830

    Article  CAS  PubMed  Google Scholar 

  • Kang HW, Moon HJ, Joo SH, Lee JH (2007) Histidine residues in the IS3-IS4 loop are critical for nickel-sensitive inhibition of the Ca(v)3.2 calcium channel. FEBS Lett 581:5774–5780

    Article  CAS  PubMed  Google Scholar 

  • Kraus RL, Li Y, Gregan Y, Gotter AL, Uebele VN, Fox SV, Doran SM, Barrow JC, Yang ZQ, Reger TS, Koblan KS, Renger JJ (2010) In vitro characterization of T-type calcium channel antagonist TTA-A2 and in vivo effects on arousal in mice. J Pharmacol Exp Ther 335:409–417

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim D, Shin H-S (2004) Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking α1G -subunit of T-type calcium channels. Proc Natl Acad Sci USA 101:18195–18199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SE, Ahn DS, Lee YH (2009) Role of T-type Ca channels in the spontaneous phasic contraction of pregnant rat uterine smooth muscle. Korean J Physiol Pharmacol 13:241–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Zhang SL, Wang N, Zhang BB, Li M (2011) Blockade of T-type Ca2+ channels inhibits human ovarian cancer cell proliferation. Cancer Investig 29:339–346

    Article  CAS  Google Scholar 

  • Liang J, Zhang Y, Wang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X (2006) New variants in the CACNA1H gene identified in childhood absence epilepsy. Neurosci Lett 406:27–32

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Zhang Y, Chen Y, Wang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X (2007) Common polymorphisms in the CACNA1H gene associated with childhood absence epilepsy in Chinese Han population. Ann Hum Genet 71:325–335

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  • Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40:135–146

    Article  CAS  PubMed  Google Scholar 

  • Lu AT, Dai X, Martinez-Agosto JA, Cantor RM (2012) Support for calcium channel gene defects in autism spectrum disorders. Mol Autism 3:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manni R, Terzaghi M (2010) Comorbidity between epilepsy and sleep disorders. Epilepsy Res 90:171–177

    Article  PubMed  Google Scholar 

  • Marger F, Gelot A, Alloui A, Matricon J, Ferrer JF, Barrère C, Pizzoccaro A, Muller E, Nargeot J, Snutch TP, Eschalier A, Bourinet E, Ardid D (2011) T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci USA 108:11268–11273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunami M, Kirishi S, Okui T, Kawabata A (2011) Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience 181:257–264

    Article  CAS  PubMed  Google Scholar 

  • McRory JE, Santi CM, Hamming KS, Mezeyova J, Sutton KG, Baillie DL, Stea A, Snutch TP (2001) Molecular and functional characterization of a family of rat brain T-type calcium channels. J Biol Chem 276:3999–4011

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Bodi I, Correll RN, Chen X, Lorenz J, Houser SR, Robbins J, Schwartz A, Molkentin JD (2009) Alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J Clin Invest 119:3787–3796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson MT, Woo J, Kang HW, Vitko I, Barrett PQ, Perez-Reyes E, Lee JH, Shin HS, Todorovic SM (2007) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27:8250–8260

    Article  CAS  PubMed  Google Scholar 

  • Oguri A, Tanaka T, Iida H, Meguro K, Takano H, Oonuma H, Nishimura S, Morita T, Yamasoba T, Nagai R, Nakajima T (2010) Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am J Physiol 298:C1414–C1423

    Article  CAS  Google Scholar 

  • Ono K, Iijima T (2010) Cardiac T-type Ca2+ channels in the heart. J Mol Cell Cardiol 48:65–70

    Article  CAS  PubMed  Google Scholar 

  • Parrino L, De Paolis F, Milioli G, Gioi G, Grassi A, Riccardi S, Colizzi E, Terzano MG (2012) Distinctive polysomnographic traits in nocturnal frontal lobe epilepsy. Epilepsia 53:1178–1184

    Article  PubMed  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2010) Characterization of the gating brake in the I-II loop of CaV3 T-type calcium channels. Channels 4:453–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375

    Article  CAS  PubMed  Google Scholar 

  • Schmunk G, Gargus JJ (2013) Channelopathy pathogenesis in autism spectrum disorders. Front Genet 4:222

    Article  PubMed Central  PubMed  Google Scholar 

  • Senatore A, Spafford JD (2012) Gene transcription and splicing of T-type channels are evolutionarily-conserved strategies for regulating channel expression and gating. PLoS One 7:e37409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Senatore A, Zhorov BS, Spafford JD (2012) CaV3 T-type calcium channels. WIREs Membr Transp Signall 1:467–491. doi:10.1002/wmts.41

    Article  CAS  Google Scholar 

  • Senatore A, Guan W, Boone AN, Spafford JD (2014) CaV3 T-type calcium channels become sodium channels using alternate extracellular turret residues outside the selectivity filter. J Biol Chem 289(17):11952–11969

    Article  CAS  PubMed  Google Scholar 

  • Shcheglovitov A, Kostyuk P, Shuba Y (2007) Selectivity signatures of three isoforms of recombinant T-type Ca2+ channels. Biochim Biophys Acta 1768:1406–1419

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Ahuja N, Shen Y, Habib NA, Toyota M, Rashid A, Issa JP (2002) DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst 94:755–761

    Article  CAS  PubMed  Google Scholar 

  • Shtonda B, Avery L (2005) CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J Exp Biol 208:2177–2190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh B, Monteil A, Bidaud I, Sugimoto Y, Suzuki T, Hamano S, Oguni H, Osawa M, Alonso ME, Delgado-Escueta AV, Inoue Y, Yasui-Furukori N, Kaneko S, Lory P, Yamakawa K (2007) Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Hum Mutat 28:524–525

    Article  PubMed  Google Scholar 

  • Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281:22085–91

    Article  CAS  PubMed  Google Scholar 

  • Strom SP, Stone JL, Ten Bosch JR, Merriman B, Cantor RM, Geschwind DH, Nelson SF (2010) High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol Psychiatry 15:996–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sui G, Fry CH, Malone-Lee J, Wu C (2009) Aberrant Ca2+ oscillations in smooth muscle cells from overactive human bladders. Cell Calcium 45:456–464

    Article  CAS  PubMed  Google Scholar 

  • Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114

    Article  CAS  PubMed  Google Scholar 

  • Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    CAS  PubMed  Google Scholar 

  • Talley EM, Solorzano G, Depaulis A, Perez-Reyes E, Bayliss DA (2000) Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Mol Brain Res 75:159–165

    Article  CAS  PubMed  Google Scholar 

  • Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB, Li M (2008a) Selective blockage of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett 267:116–124

    Article  CAS  PubMed  Google Scholar 

  • Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JAS, Sikka SS, Li M (2008b) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP (1999) Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res 59:4535–4541

    CAS  PubMed  Google Scholar 

  • Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O’Brien TJ, Snutch TP (2012) T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med 4:121ra119

    Article  Google Scholar 

  • Uebele VN, Gotter AL, Nuss CE, Kraus RL, Doran SM, Garson SL, Reiss DR, Li Y, Barrow JC, Reger TS, Yang ZQ, Ballard JE, Tang C, Metzger JM, Wang SP, Koblan KS, Renger JJ (2009) Antagonism of T-type calcium channels inhibits high-fat diet-induced weight gain in mice. J Clin Invest 119:1659–1667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, Goggins M (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 60:1835–1839

    CAS  PubMed  Google Scholar 

  • Vassort G, Talavera K, Alvarez JL (2006) Role of T-type Ca2+ channels in the heart. Cell Calcium 40:205–220

    Article  CAS  PubMed  Google Scholar 

  • Viscidi EW, Triche EW, Pescosolido MF, McLean RL, Joseph RM, Spence SJ, Morrow EM (2013) Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS One 8:e67797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitko I, Chen Y, Arias JM, Shen Y, Wu XR, Perez-Reyes E (2005) Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 25:4844–4855

    Article  CAS  PubMed  Google Scholar 

  • Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E (2007) The I-II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27:322–330

    Article  CAS  PubMed  Google Scholar 

  • Weiss N, Zamponi GW (2013) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Cav3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465:1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Wen XJ, Xu SY, Chen ZX, Yang CX, Liang H, Li H (2010) The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology 85:295–300

    Article  CAS  PubMed  Google Scholar 

  • Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413

    CAS  PubMed  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  CAS  PubMed  Google Scholar 

  • Yeoman MS, Brezden BL, Benjamin PR (1999) LVA and HVA Ca 2+ currents in ventricular muscle cells of the lymnaea heart. J Neurophysiol 82:2428–2440

    CAS  PubMed  Google Scholar 

  • Young RC, Smith LH, McLaren MD (1993) T-type and L-type calcium currents in freshly dispersed human uterine smooth muscle cells. Am J Obstetr Gynecol 169:785–792

    Article  CAS  Google Scholar 

  • Zamponi GW, Lewis RJ, Todorovic SM, Arneric SP, Snutch TP (2009) Role of voltage-gated calcium channels in ascending pain pathways. Brain Res Rev 60:84–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Mori M, Burgess DL, Noebels JL (2002) Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 22:6362–6371

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Spafford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Senatore, A., Spafford, J.D. (2015). Physiology and Pathology of Voltage-Gated T-Type Calcium Channels. In: Schaffer, S., Li, M. (eds) T-type Calcium Channels in Basic and Clinical Science. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1413-1_1

Download citation

Publish with us

Policies and ethics