Skip to main content

Discoveries of Protein S- and N-Homocysteinylation

  • Chapter
  • First Online:
  • 826 Accesses

Abstract

In early studies, Hcy was identified in plasma and urine from patients with CBS or MTHFR deficiency [290, 291], but was undetectable in normal individuals. What was surprising in those studies was the inability to detect Hcy in tissues from CBS- or MTHFR-deficient patients [292, 293]. This suggested that a significant quantity of Hcy must have escaped detection by the conventional methods of amino acid analysis [294], possibly because Hcy was bound to protein via disulfide bonds and removed during the deproteinization step.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Perla-Kajan J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007;32(4):561–72.

    Article  PubMed  CAS  Google Scholar 

  2. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272(3):1935–42.

    PubMed  CAS  Google Scholar 

  3. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  4. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999;13(15):2277–83.

    PubMed  CAS  Google Scholar 

  5. Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002;277(34):30425–8.

    Article  PubMed  CAS  Google Scholar 

  6. Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000;275(6):3957–62.

    Article  PubMed  CAS  Google Scholar 

  7. Kang SS, Wong PW, Becker N. Protein-bound homocyst(e)ine in normal subjects and in patients with homocystinuria. Pediatr Res. 1979;13(10):1141–3.

    Article  PubMed  CAS  Google Scholar 

  8. Glowacki R, Jakubowski H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem. 2004;279(12):10864–71.

    Article  PubMed  CAS  Google Scholar 

  9. Refsum H, Helland S, Ueland PM. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem. 1985;31(4):624–8.

    PubMed  CAS  Google Scholar 

  10. King TP. On the sulfhydryl group of human plasma albumin. J Biol Chem. 1961;236:PC5.

    PubMed  CAS  Google Scholar 

  11. Mansoor MA, Svardal AM, Ueland PM. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem. 1992;200(2):218–29.

    Article  PubMed  CAS  Google Scholar 

  12. Carson NA, Dent CE, Field CM, Gaull GE. Homocystinuria: clinical and pathological review of ten cases. J Pediatr. 1965;66:565–83.

    Article  PubMed  CAS  Google Scholar 

  13. Freeman JM, Finkelstein JD, Mudd SH. Folate-responsive homocystinuria and “schizophrenia”. A defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity. N Engl J Med. 1975;292(10):491–6.

    Article  PubMed  CAS  Google Scholar 

  14. Rassin DK, Longhi RC, Gaull GE. Free amino acids in liver of patients with homocystinuria due to cystathionine synthase deficiency: effects of vitamin B6. J Pediatr. 1977;91(4):574–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kanwar YS, Manaligod JR, Wong PW. Morphologic studies in a patient with homocystinuria due to 5, 10-methylenetetrahydrofolate reductase deficiency. Pediatr Res. 1976;10(6):598–609.

    Article  PubMed  CAS  Google Scholar 

  16. Stein WH, Moore S. The free amino acids of human blood plasma. J Biol Chem. 1954;211(2):915–26.

    PubMed  CAS  Google Scholar 

  17. Glushchenko AV, Jacobsen DW. Molecular targeting of proteins by L-homocysteine: mechanistic implications for vascular disease. Antioxid Redox Signal. 2007;9(11):1883–98.

    Article  PubMed  CAS  Google Scholar 

  18. Noel JK, Hunter MJ. Bovine mercaptalbumin and non-mercaptalbumin monomers. Interconversions and structural differences. J Biol Chem. 1972;247(22):7391–406.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jakubowski, H. (2013). Discoveries of Protein S- and N-Homocysteinylation. In: Homocysteine in Protein Structure/Function and Human Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1410-0_4

Download citation

Publish with us

Policies and ethics