Skip to main content

Abstract

In living organisms, homocysteine (Hcy) is a universal intermediate in the metabolic pathways of two other sulfur-containing amino acids: cysteine and methionine. Relative to cysteine, Hcy has in its side chain an extra methylene (–CH2–) group that makes it a higher homolog of cysteine. Compared with methionine, Hcy is missing a methyl (CH3–) group and thus is a lower homolog of methionine. Methionine and cysteine are two canonical coded amino acids that are incorporated by the ribosomal biosynthetic apparatus into polypeptide chains of protein at positions specified by AUG and UGU/UGC codons, respectively. In contrast, Hcy does not normally participate in protein biosynthesis (there is no codon triplet for Hcy) and is considered to be a nonprotein amino acid.

That homocystine itself might be present in proteins is a possibility that should be borne in mind and will be worth investigating

β€”Vincent Du Vigneaud, 1955 Nobel Prize in Chemistry laureate

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson TB. Sulfur linkages in proteins. J Biol Chem. 1911;9:439–48.

    Google ScholarΒ 

  2. Mueller JH. A new sulfur-containing amino acid isolated from the hydrolytic products of protein. J Biol Chem. 1923;58:157–69.

    Google ScholarΒ 

  3. Butz LW, du Vigneaud V. The formation of homologue of cysteine by the decomposition of methionine with sulfuric acid. J Biol Chem. 1932;99:135–42.

    CASΒ  Google ScholarΒ 

  4. Riegel B, Du Vigneaud V. The isolation of homocysteine and its conversion to a thiolactone. J Biol Chem. 1935;112:149–54.

    CASΒ  Google ScholarΒ 

  5. Finkelstein JD. Homocysteine: a history in progress. Nutr Rev. 2000;58(7):193–204.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  6. Jakubowski H. Quality control in tRNA charging. Wiley Interdiscip Rev RNA. 2012;3(3):295–310.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  7. Jakubowski H. Quality control in tRNA chargingβ€”editing of homocysteine. Acta Biochim Pol. 2011;58(2):149–63.

    PubMedΒ  CASΒ  Google ScholarΒ 

  8. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31–62.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  9. Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  10. Joseph J, Handy DE, Loscalzo J. Quo vadis: whither homocysteine research? Cardiovasc Toxicol. 2009;9(2):53–63.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  11. Benevenga NJ. Toxicities of methionine and other amino acids. J Agric Food Chem. 1974;22(1):2–9.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  12. Benevenga NJ, Steele RD. Adverse effects of excessive consumption of amino acids. Annu Rev Nutr. 1984;4:157–81.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  13. Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558.

    PubMedΒ  CASΒ  Google ScholarΒ 

  14. Dayal S, Lentz SR. Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler Thromb Vasc Biol. 2008;28(9):1596–605.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  15. Matsueda S, Niiyama Y. The effects of excess amino acids on maintenance of pregnancy and fetal growth in rats. J Nutr Sci Vitaminol. 1982;28(5):557–73.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  16. Osborne-Pellegrin MJ, Fau D. Effects of chronic absorption of dietary supplements of methionine and cystine on arterial morphology in the rat. Exp Mol Pathol. 1992;56(1):49–59.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  17. Fau D, Peret J, Hadjiisky P. Effects of ingestion of high protein or excess methionine diets by rats for two years. J Nutr. 1988;118(1):128–33.

    PubMedΒ  CASΒ  Google ScholarΒ 

  18. Zhou J, Moller J, Danielsen CC, Bentzon J, Ravn HB, Austin RC, et al. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21(9):1470–6.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  19. Hill CH, Mecham R, Starcher B. Fibrillin-2 defects impair elastic fiber assembly in a homocysteinemic chick model. J Nutr. 2002;132(8):2143–50.

    PubMedΒ  CASΒ  Google ScholarΒ 

  20. Mudd SH, Levy HL, Kraus JP. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease, vol. 2. 8th ed. New York, NY: Mc Graw-Hill; 2001. p. 2007–56.

    Google ScholarΒ 

  21. Richie Jr JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 1994;8(15):1302–7.

    PubMedΒ  CASΒ  Google ScholarΒ 

  22. Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  23. Komninou D, Leutzinger Y, Reddy BS, Richie Jr JP. Methionine restriction inhibits colon carcinogenesis. Nutr Cancer. 2006;54(2):202–8.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  24. Harker LA, Slichter SJ, Scott CR, Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974;291(11):537–43.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  25. Thampi P, Stewart BW, Joseph L, Melnyk SB, Hennings LJ, Nagarajan S. Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression. Atherosclerosis. 2008;197(2):620–9.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  26. Boers G. Moderate hyperhomocysteinaemia and vascular disease: evidence, relevance and the effect of treatment. Eur J Pediatr. 1998;157 Suppl 2:S127–30.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  27. Krupkova-Meixnerova L, Vesela K, Vitova A, Janosikova B, Andel M, Kozich V. Methionine-loading test: evaluation of adverse effects and safety in an epidemiological study. Clin Nutr. 2002;21(2):151–6.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  28. Cottington EM, LaMantia C, Stabler SP, Allen RH, Tangerman A, Wagner C, et al. Adverse event associated with methionine loading test: a case report. Arterioscler Thromb Vasc Biol. 2002;22(6):1046–50.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  29. Kluijtmans LA, Boers GH, Kraus JP, van den Heuvel LP, Cruysberg JR, Trijbels FJ, et al. The molecular basis of cystathionine beta-synthase deficiency in Dutch patients with homocystinuria: effect of CBS genotype on biochemical and clinical phenotype and on response to treatment. Am J Hum Genet. 1999;65(1):59–67.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  30. Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001;21(12):2080–5.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  31. Rosenblatt D, Fenton W. Disorders of transsulfuration. In: Scriver C, Beaudet A, Sly W, Valle D, Childs B, Kinzler K, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York, NY: Mc Graw-Hill; 2001. p. 2007–56.

    Google ScholarΒ 

  32. Visy JM, Le Coz P, Chadefaux B, Fressinaud C, Woimant F, Marquet J, et al. Homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency revealed by stroke in adult siblings. Neurology. 1991;41(8):1313–5.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  33. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56(1):111–28.

    PubMedΒ  CASΒ  Google ScholarΒ 

  34. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr. 2006;136(6 Suppl):1731S–40.

    PubMedΒ  CASΒ  Google ScholarΒ 

  35. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997;337(4):230–6.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  36. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  37. Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Bair TL, Madsen TE, et al. Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation. 2000;102(11):1227–32.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  38. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  39. Daly S, Cotter A, Molloy AE, Scott J. Homocysteine and folic acid: implications for pregnancy. Semin Vasc Med. 2005;5(2):190–200.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  40. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, et al. Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med. 2006;166(1):88–94.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  41. Perla-Kajan J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007;32(4):561–72.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  42. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  43. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  44. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3(8):1646–54.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  45. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest. 2001;107(6):675–83.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  46. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985;37(1):1–31.

    PubMedΒ  CASΒ  Google ScholarΒ 

  47. Strauss KA, Morton DH, Puffenberger EG, Hendrickson C, Robinson DL, Wagner C, et al. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2007;91(2):165–75.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  48. Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem. 2003;36(6):431–41.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  49. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  50. Spence JD, Bang H, Chambless LE, Stampfer MJ. Vitamin intervention for stroke prevention trial: an efficacy analysis. Stroke. 2005;36(11):2404–9.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  51. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567–77.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  52. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578–88.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  53. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet. 2007;369(9576):1876–82.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  54. Hankey GJ, Eikelboom JW, Yi Q, Lees KR, Chen C, Xavier D, et al. Antiplatelet therapy and the effects of B vitamins in patients with previous stroke or transient ischaemic attack: a post-hoc subanalysis of VITATOPS, a randomised, placebo-controlled trial. Lancet Neurol. 2012;11:512–20.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  55. Ebbing M, Bonaa KH, Arnesen E, Ueland PM, Nordrehaug JE, Rasmussen K, et al. Combined analyses and extended follow-up of two randomized controlled homocysteine-lowering B-vitamin trials. J Intern Med. 2010;268(4):367–82.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  56. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  57. de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  58. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem. 2001;276(38):35867–74.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  59. Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem. 2003;278(32):30317–27.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  60. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279(15):14844–52.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  61. Kerkeni M, Tnani M, Chuniaud L, Miled A, Maaroufi K, Trivin F. Comparative study on in vitro effects of homocysteine thiolactone and homocysteine on HUVEC cells: evidence for a stronger proapoptotic and proinflammative homocysteine thiolactone. Mol Cell Biochem. 2006;291(1–2):119–26.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  62. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003;26(3):137–46.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  63. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J. 1991;10(3):593–8.

    PubMedΒ  CASΒ  Google ScholarΒ 

  64. Jakubowski H. The determination of homocysteine-thiolactone in biological samples. Anal Biochem. 2002;308(1):112–9.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  65. Jakubowski H, Goldman E. Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev. 1992;56(3):412–29.

    PubMedΒ  CASΒ  Google ScholarΒ 

  66. Tuite NL, Fraser KR, O’Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol. 2005;187(13):4362–71.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  67. Sikora M, Jakubowski H. Homocysteine editing and growth inhibition in Escherichia coli. Microbiology. 2009;155(Pt 6):1858–65.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  68. Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci. 2004;61(4):470–87.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  69. Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006;136(6 Suppl):1741S–9.

    PubMedΒ  CASΒ  Google ScholarΒ 

  70. Jacobsen DW. Homocysteine targeting of plasma proteins in hemodialysis patients. Kidney Int. 2006;69(5):787–9.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  71. Jacobsen DW, Catanescu O, Dibello PM, Barbato JC. Molecular targeting by homocysteine: a mechanism for vascular pathogenesis. Clin Chem Lab Med. 2005;43(10):1076–83.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  72. Glowacki R, Bald E, Jakubowski H. Identification and origin of Nepsilon-homocysteinyl-lysine isopeptide in humans and mice. Amino Acids. 2010;39(5):1563–9.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  73. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272(3):1935–42.

    PubMedΒ  CASΒ  Google ScholarΒ 

  74. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87(1):45–51.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  75. Jakubowski H. Translational incorporation of S-nitrosohomocysteine into protein. J Biol Chem. 2000;275(29):21813–6.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  76. Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr. 2001;131(11):2983S–7.

    PubMedΒ  CASΒ  Google ScholarΒ 

  77. Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med. 2003;41(11):1462–6.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  78. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999;13(15):2277–83.

    PubMedΒ  CASΒ  Google ScholarΒ 

  79. Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002;277(34):30425–8.

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Β© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jakubowski, H. (2013). Introduction. In: Homocysteine in Protein Structure/Function and Human Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1410-0_1

Download citation

Publish with us

Policies and ethics