Skip to main content

Bone Graft Extenders

  • Chapter
  • First Online:
Book cover Minimally Invasive Spinal Deformity Surgery

Abstract

The goal of spinal arthrodesis is to eliminate pathologic motion between adjacent vertebral segments. Several spinal conditions which are managed and treated operatively after failure of conservative measures require surgical intervention such to achieve a solid fusion. Presently at the time of surgery intervention, spinal instrumentation is often used to further stabilize adjacent levels, but true arthrodesis is independent of the hardware and requires growth of bone across the immobilized spinal segments forming one unified structure. The use of autologous bone grafting has been shown to significantly improve the rate of spinal fusion [1–4]. However, presently, a wide variety of materials are used due to the morbidity of autologous bone graft harvesting either alone or in combination to facilitate fusion; these include autogenous graft, allogenic graft, dematerialized bone matrix, bone morphogenic proteins (BMP), synthetic graft extenders, and synthetic cages. In this chapter we will focus on bone graft extenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young WF, Rosenwasser RH. An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine. 1993;18:1123–4.

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro S. Banked fibula and the locking anterior cervical plate in anterior cervical fusions following cervical discectomy. J Neurosurg. 1996;84:161–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bishop RC, Moore KA, Hadley MN. Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg. 1996;85:206–10.

    Article  CAS  PubMed  Google Scholar 

  4. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine. 1995;20:2211–6.

    Article  CAS  PubMed  Google Scholar 

  5. Glassman SD, Howard JM, Sweet A, et al. Complications and concerns with osteobiologics for spine fusion in clinical practice. Spine. 2010;35:1621–8.

    Article  PubMed  Google Scholar 

  6. Abdullah KG, Steinmetz MP, Benzel EC, et al. The state of lumbar fusion extenders. Spine. 2011;36:E1328–34.

    Article  PubMed  Google Scholar 

  7. Heneghan HM, McCabe JP. Use of autologous bone graft in anterior cervical decompression: morbidity & quality of life analysis. BMC Musculoskelet Disord. 2009;10:158.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kim DH, Rhim R, Li L, et al. Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J. 2009;9:886–92.

    Article  PubMed  Google Scholar 

  9. Silber JS, Anderson DG, Daffner SD, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine. 2003;28:134–9.

    Article  PubMed  Google Scholar 

  10. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012;64(12):1063–77 [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  11. Ray RD, Holloway JA. Preliminary report of an experimental study. J Bone Joint Surg. 1957;39A:1119.

    Google Scholar 

  12. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    Article  CAS  PubMed  Google Scholar 

  13. Group MR. US markets for orthopaedic. Biomaterials. 2004(2005).

    Google Scholar 

  14. Groessner-Schreiber B, Krukowski M, Lyons C, Osdoby P. Osteoclast recruitment in response to human bone matrix is age related. Mech Ageing Dev. 1992;62:143–54.

    Article  CAS  PubMed  Google Scholar 

  15. Aaboe M, Pinholt EM, Schou S, Hjorting-Hansen E. Incomplete bone regeneration of rabbit calvarial defects using different membranes. Clin Oral Implants Res. 1998;9:313–20.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz Z, Somers A, Mellonig JT, Carnes D, Dean D, Cochran D, Boyan B. Ability of demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol. 1998;69:470–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Powers Jr RM, Wolfinbarger Jr L. A quantitative assessment of osteoinductivity of human demineralized bone matrix. J Periodontol. 1997;68:1076–84.

    Article  CAS  PubMed  Google Scholar 

  18. Green PJ, Walsh FS, Doherty P. Promiscuity of fibroblast growth factor receptors. Bioessays. 1996;18:639–46.

    Article  CAS  PubMed  Google Scholar 

  19. Böttcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005;26:63–77.

    Article  PubMed  Google Scholar 

  20. Reddi AH, Reddi A. Bone morphogenetic proteins (BMPs): from morphogens to metabologens. Cytokine Growth Factor Rev. 2009;20:341–2.

    Article  CAS  PubMed  Google Scholar 

  21. Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA, Ten Kate FJ, van Deventer SJ, Hommes DW, Peppelenbosch MP, Offerhaus GJ, Li L, van den Brink GR. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res. 2007;67:8149–55.

    Article  CAS  PubMed  Google Scholar 

  22. Rajaee SS, Bae HW, Kanim LE, et al. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37:67–76.

    Article  PubMed  Google Scholar 

  23. Cammisa Jr FP, Lowery G, Garfin SR, et al. Two-year fusion rate equivalency between grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine. 2004;29:660–6.

    Article  PubMed  Google Scholar 

  24. Schizas C, Triantafyllopoulos D, Kosmopoulos V, et al. Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled case pilot study. Arch Orthop Trauma Surg. 2008;128:621–5.

    Article  PubMed  Google Scholar 

  25. Delecrin J, Takahashi S, Gouin F, et al. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine. 2000;25:563–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lerner T, Bullmann V, Schulte TL, et al. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J. 2009;18:170–9.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Alsaleh KAM, Tougas CA, Roffey DM, Wai EK. Osteoconductive bone graft extenders in posterolateral thoracolumbar spinal fusion: a systematic review. Spine. 2012;37:E993–1000.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Harrop M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Teufack, S., Harrop, J., Prasad, S. (2014). Bone Graft Extenders. In: Wang, M., Lu, Y., Anderson, D., Mummaneni, P. (eds) Minimally Invasive Spinal Deformity Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1407-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1407-0_33

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1406-3

  • Online ISBN: 978-3-7091-1407-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics