Skip to main content

Minimally Invasive Cement-Augmented Pedicle Screw Fixation

  • Chapter
  • First Online:
Minimally Invasive Spinal Deformity Surgery

Abstract

Osteoporosis is a major health threat. In the United States alone, 10 million people have osteoporosis already, and 18 million have low bone mass placing them at increased risk for the development of osteoporosis [1]. Once thought to be a natural part of aging among women, it is not longer considered age or sex dependant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. JAMA: the journal of the American Medical Association. 2001;285(6):785–795.

    Google Scholar 

  2. Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Introduction. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 1998;8(Suppl 4):S7–80.

    Google Scholar 

  3. Crafts N. The human development index and changes in standards of living: some historical comparisons. Eur Rev Econ Hist. 1997;1:299–322.

    Article  Google Scholar 

  4. Healey JH, Vigorita VJ, Lane JM. The coexistence and characteristics of osteoarthritis and osteoporosis. J Bone Joint Surg Am. 1985;67(4):586–92.

    CAS  PubMed  Google Scholar 

  5. Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J. 2004;4(4):402–8. official journal of the North American Spine Society.

    Article  PubMed  Google Scholar 

  6. Yerby SA, Toh E, McLain RF. Revision of failed pedicle screws using hydroxyapatite cement. A biomechanical analysis. Spine. 1998;23(15):1657–61.

    Article  CAS  PubMed  Google Scholar 

  7. Halvorson TL, Kelley LA, Thomas KA, Whitecloud 3rd TS, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine. 1994;19(21):2415–20.

    Article  CAS  PubMed  Google Scholar 

  8. Wittenberg RH, Lee KS, Shea M, White 3rd AA, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res. 1993;296:278–87.

    PubMed  Google Scholar 

  9. Pfeifer BA, Krag MH, Johnson C. Repair of failed transpedicle screw fixation. A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction. Spine. 1994;19(3):350–3.

    Article  CAS  PubMed  Google Scholar 

  10. Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002;96(3):309–12.

    PubMed  Google Scholar 

  11. Cook SD, Salkeld SL, Whitecloud 3rd TS, Barbera J. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord. 2000;13(3):230–6.

    Article  CAS  PubMed  Google Scholar 

  12. Cook SD, Salkeld SL, Whitecloud 3rd TS, Barbera J. Biomechanical testing and clinical experience with the OMEGA-21 spinal fixation system. Am J Orthop (Belle Mead NJ). 2001;30(5):387–94.

    CAS  Google Scholar 

  13. Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine. 1997;22(15):1696–705.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan HA, Garfin SR, Dickman CA, Mardjetko SM. A historical cohort study of pedicle screw fixation in thoracic, lumbar, and sacral spinal fusions. Spine. 1994;19(20):2279S–96.

    Article  CAS  PubMed  Google Scholar 

  15. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine. 1993;18(15):2231–8. discussion 2238–2239.

    Article  CAS  PubMed  Google Scholar 

  16. Law M, Tencer AF, Anderson PA. Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine. 1993;18(16):2438–43.

    Article  CAS  PubMed  Google Scholar 

  17. Ashman RB, Galpin RD, Corin JD, Johnston 2nd CE. Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine. 1989;14(12):1398–405.

    Article  CAS  PubMed  Google Scholar 

  18. Soshi S, Shiba R, Kondo H, Murota K. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine. 1991;16(11):1335–41.

    Article  CAS  PubMed  Google Scholar 

  19. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7. official journal of the North American Spine Society.

    Article  CAS  PubMed  Google Scholar 

  20. Lotz JC, Hu SS, Chiu DF, Yu M, Colliou O, Poser RD. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine. 1997;22(23):2716–23.

    Article  CAS  PubMed  Google Scholar 

  21. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996;118(3):391–8.

    Article  CAS  PubMed  Google Scholar 

  22. Pfeiffer FM, Abernathie DL, Smith DE. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine. 2006;31(23):E867–70.

    Article  PubMed  Google Scholar 

  23. Zindrick MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. 1986;203:99–112.

    PubMed  Google Scholar 

  24. Urist MR. Acrylic cement stabilized joint replacements. Curr Probl Surg. 1975;12:1–54.

    Google Scholar 

  25. Cameron HU, Jacob R, Macnab I, Pilliar RM. Use of polymethylmethacrylate to enhance screw fixation in bone. J Bone Joint Surg Am. 1975;57(5):655–6.

    CAS  PubMed  Google Scholar 

  26. Taylor RS, Taylor RJ, Fritzell P. Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: a comparative systematic review of efficacy and safety. Spine. 2006;31(23):2747–55.

    Article  PubMed  Google Scholar 

  27. Becker S, Chavanne A, Spitaler R, et al. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J. 2008;17(11):1462–9. official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Frankel BM, D’Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine. 2007;7(1):47–53.

    Article  PubMed  Google Scholar 

  29. Frankel BM, Jones T, Wang C. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery. 2007;61(3):531–7. discussion 537–538.

    Article  PubMed  Google Scholar 

  30. Cortet B, Cotten A, Boutry N, et al. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. J Rheumatol. 1999;26(10):2222–8.

    CAS  PubMed  Google Scholar 

  31. Gaughen Jr JR, Jensen ME, Schweickert PA, Kaufmann TJ, Marx WF, Kallmes DF. Relevance of antecedent venography in percutaneous vertebroplasty for the treatment of osteoporotic compression fractures. AJNR Am J Neuroradiol. 2002;23(4):594–600.

    PubMed  Google Scholar 

  32. Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol. 1997;18(10):1897–904.

    CAS  PubMed  Google Scholar 

  33. Peh WC, Gilula LA, Peck DD. Percutaneous vertebroplasty for severe osteoporotic vertebral body compression fractures. Radiology. 2002;223(1):121–6.

    Article  PubMed  Google Scholar 

  34. Perez-Higueras A, Alvarez L, Rossi RE, Quinones D, Al-Assir I. Percutaneous vertebroplasty: long-term clinical and radiological outcome. Neuroradiology. 2002;44(11):950–4.

    Article  CAS  PubMed  Google Scholar 

  35. Ryu KS, Park CK, Kim MC, Kang JK. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. J Neurosurg. 2002;96(1):56–61.

    PubMed  Google Scholar 

  36. Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine. 2004;29(11):E212–6.

    Article  PubMed  Google Scholar 

  37. Wilkes RA, Mackinnon JG, Thomas WG. Neurological deterioration after cement injection into a vertebral body. J Bone Joint Surg Br. 1994;76(1):155.

    CAS  PubMed  Google Scholar 

  38. Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci. 2005;10(1):56–61. official journal of the Japanese Orthopaedic Association.

    Article  PubMed  Google Scholar 

  39. Noro T, Itoh K. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash. Bio-med Mater Eng. 1999;9(5–6):319–24.

    CAS  Google Scholar 

  40. Ignatius AA, Augat P, Ohnmacht M, Pokinskyj P, Kock HJ, Claes LE. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. J Biomed Mater Res. 2001;58(3):254–60.

    Article  CAS  PubMed  Google Scholar 

  41. McKoy BE, An YH. An injectable cementing screw for fixation in osteoporotic bone. J Biomed Mater Res. 2000;53(3):216–20.

    Article  CAS  PubMed  Google Scholar 

  42. Amar AP, Larsen DW, Esnaashari N, Albuquerque FC, Lavine SD, Teitelbaum GP. Percutaneous transpedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery. 2001;49(5):1105–14. discussion 1114–1105.

    CAS  PubMed  Google Scholar 

  43. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine. 2001;26(14):1511–5.

    Article  CAS  PubMed  Google Scholar 

  44. Pinto PW. Cardiovascular collapse associated with the use of methylmethacrylate. AANA J. 1993;61(6):613–6.

    CAS  PubMed  Google Scholar 

  45. Patterson BM, Healey JH, Cornell CN, Sharrock NE. Cardiac arrest during hip arthroplasty with a cemented long-stem component. A report of seven cases. J Bone Joint Surg Am. 1991;73(2):271–7.

    CAS  PubMed  Google Scholar 

  46. Nicholson MJ. Cardiac arrest following acrylic-cement implants. Anesth Analg. 1973;52(2):298–302.

    CAS  PubMed  Google Scholar 

  47. Lamade WR, Friedl W, Schmid B, Meeder PJ. Bone cement implantation syndrome. A prospective randomised trial for use of antihistamine blockade. Arch Orthop Trauma Surg. 1995;114(6):335–9.

    Article  CAS  PubMed  Google Scholar 

  48. Jenkins K, Wake PJ. Cement implantation syndrome. Anaesthesia. 2002;57(4):416. author reply 416.

    Article  CAS  PubMed  Google Scholar 

  49. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws. J Bone Joint Surg Am. 1999;81(11):1519–28.

    CAS  PubMed  Google Scholar 

  50. Tan JS, Bailey CS, Dvorak MF, Fisher CG, Cripton PA, Oxland TR. Cement augmentation of vertebral screws enhances the interface strength between interbody device and vertebral body. Spine. 2007;32(3):334–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Vanni DO, DC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Hood, B., Vanni, S. (2014). Minimally Invasive Cement-Augmented Pedicle Screw Fixation. In: Wang, M., Lu, Y., Anderson, D., Mummaneni, P. (eds) Minimally Invasive Spinal Deformity Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1407-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1407-0_16

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1406-3

  • Online ISBN: 978-3-7091-1407-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics