Skip to main content

Nanopartikel – Gesundheitliche Gefahren

  • Chapter
  • First Online:
Nano Risiko Governance
  • 1676 Accesses

Zusammenfassung

Nanomaterialien zeichnen sich durch ihre extrem kleine Strukturgröße aus und haben das Potenzial für vielfältige industrielle, biomedizinische und elektronische Anwendungen. Viele nanomedizinische Produkte sind bereits in klinischen Studien, auch ist eine Reihe von Anwendungen der Nanotechnologie bereits im Handel erhältlich und viele mehr tauchen täglich auf. Das Wissen über die Exposition des Menschen durch Nanomaterialien ist spärlich. Allerdings löst der Einsatz von Nanopartikeln potenziellen Sicherheits-, Gesundheits-und Umweltschutz Bedenken aus. Trotz der jüngsten Fortschritte in der medizinischen und toxikologischen Forschung ist es noch unklar, wie Nanomaterialien mit biologischem Material interagiert, welche Eigenschaften der Nanomaterialien sind relevant die diese Reaktionen auslösen und eine etablierte dosimetrischen Algorithmus für Nanopartikel fehlt ebenfalls. Es gibt Hinweise darauf, dass einige dieser Materialien die Zellmembran und Gewebe-Barrieren (einschließlich der Blut-Hirn-Schranke) durchdringen. Die Mechanismen die mögliche schädliche Wirkungen auslösen ist wenig bekannt, obwohl die Bildung freier Radikale, die Lipidoxidation und auch Bildung von Granulomen und andere Reaktionen nach Exposition durch Nanopartikeln beschrieben wurden. Die Sicherheitsaspekte der Nanomaterialien sind noch nicht systematisch untersucht um schlüssige Risikobewertungen zu ermöglichen. Daher sind für die Risikobewertung entsprechende Daten erforderlich, wie auch ein Algorithmus zur Berechnung der Dosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620–1624

    Article  CAS  Google Scholar 

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  Google Scholar 

  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286(2):L344–353

    Article  CAS  Google Scholar 

  • Castranova V (2011) Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med/Am Coll Occup Environ Med 53(6 Suppl):S14–17

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104(7):2050–2055

    Article  CAS  Google Scholar 

  • Chen J, Tan M, Nemmar A, Song W, Dong M, Zhang G, Li Y (2006) Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. Toxicology 222(3):195–201

    Article  CAS  Google Scholar 

  • Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 369(2–3):131–135

    Article  CAS  Google Scholar 

  • Dreher D, Junod AF (1995) Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. J Cell Physiol 162(1):147–153

    Article  CAS  Google Scholar 

  • Dreher D, Jornot L, Junod AF (1995) Effects of hypoxanthine-xanthine oxidase on Ca2 + stores and protein synthesis in human endothelial cells. Circ Res 76(3):388–395

    Article  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  Google Scholar 

  • Elder A, Oberdorster G (2006) Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med 5(4):785–796

    Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdorster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114(8):1172–1178

    Article  CAS  Google Scholar 

  • Elder AC, Gelein R, Finkelstein JN, Cox C, Oberdorster G (2000) Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. Inhal Toxicol 12(4):227–246

    CAS  Google Scholar 

  • Frampton MW, Utell MJ, Zareba W, Oberdorster G, Cox C, Huang LS, Morrow PE, Lee FE, Chalupa D, Frasier LM, Speers DM, Stewart J (2004) Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 126:1–47; discussion 49–63

    Google Scholar 

  • Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2

    Article  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  Google Scholar 

  • Harris ED (1992a) Copper as a cofactor and regulator of copper, zinc superoxide dismutase. J Nutr 122(3 Suppl):636–640

    CAS  Google Scholar 

  • Harris ED (1992b) Regulation of antioxidant enzymes. Faseb J 6(9):2675–2683

    CAS  Google Scholar 

  • Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K (2005) Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur Respir J 25(1):200–204

    Article  CAS  Google Scholar 

  • Hunter DD, Dey RD (1998) Identification and neuropeptide content of trigeminal neurons innervating the rat nasal epithelium. Neuroscience 83(2):591–599

    Article  CAS  Google Scholar 

  • Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159(6):1943–1948

    Article  CAS  Google Scholar 

  • Kanapilly GM, Diel JH (1980) Ultrafine 239PuO2 aerosol generation, characterization and short-term inhalation study in the rat. Health physics 39(3):505–519

    Article  CAS  Google Scholar 

  • Kotter JM, Zieger G (1992) [Sarcoid granulomatosis after many years of exposure to zirconium, "zirconium lung"]. Pathologe 13(2):104–109

    CAS  Google Scholar 

  • Kreyling WG, Blanchard JD, Godleski JJ, Haeussermann S, Heyder J, Hutzler P, Schulz H, Sweeney TD, Takenaka S, Ziesenis A (1999) Anatomic localization of 24- and 96-h particle retention in canine airways. J Appl Physiol 87(1):269–284

    CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdorster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65(20):1513–1530

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Takenaka S, Moller W (2012) Differences in the Biokinetics of Inhaled Nano- versus Micrometer-Sized Particles. Accounts Chem Res 46(3):714–722. doi:10.1021/ar300043r

    Article  Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl 12(5):247–256

    Article  CAS  Google Scholar 

  • Lademann J, Schaefer H, Otberg N, Teichmann A, Blume-Peytavi U, Sterry W (2004) Penetration of microparticles into human skin. Hautarzt 55(12):1117–1119

    Article  CAS  Google Scholar 

  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W (2006) Hair follicles – a long-term reservoir for drug delivery. Skin Pharmacol Physiol 19(4):232–236

    Article  CAS  Google Scholar 

  • Lison D, Thomassen LC, Rabolli V, Gonzalez L, Napierska D, Seo JW, Kirsch-Volders M, Hoet P, Kirschhock CE, Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104(1):155–162

    Article  CAS  Google Scholar 

  • Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li Y, Li B, Chai Z, Wu G, Chen C (2009) Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 9(11):6335–6343

    Article  CAS  Google Scholar 

  • Lomer MC, Thompson RP, Powell JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 61(1):123–130

    Article  Google Scholar 

  • Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, Liu H, Wang H, Hong F (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31(1):99–105

    Article  CAS  Google Scholar 

  • Møller P, Folkmann JK, Danielsen PH, Jantzen K, Loft S. (2012) Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med. 1;12(6):732–45

    Google Scholar 

  • Murphy FA, Poland CA, Duffin R, Donaldson K (2012) Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 7(6):1157–1167. doi:10.3109/17435390.2012.713527

    Article  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164(9):1665–1668

    Article  CAS  Google Scholar 

  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414

    Article  CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65(20):1531–1543

    Article  CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  CAS  Google Scholar 

  • Risom L, Lundby C, Thomsen JJ, Mikkelsen L, Loft S, Friis G, Moller P (2007) Acute hypoxia and reoxygenation-induced DNA oxidation in human mononuclear blood cells. Mutat Res 625(1–2):125–133

    Article  CAS  Google Scholar 

  • Roller M, Pott F (2006) Lung tumor risk estimates from rat studies with not specifically toxic granular dusts. Ann NY Acad Sci 1076:266–280

    Article  CAS  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano lett 7(1):155–160

    Article  CAS  Google Scholar 

  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdorster G (2010) Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73(5):445–461

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91(1):159–165

    Article  CAS  Google Scholar 

  • Schmid O, Moller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J, Schulz H, Kreyling WG, Stoeger T (2009) Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 14(1):67–73

    Article  CAS  Google Scholar 

  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16(6–7):453–459

    Article  CAS  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91(23):10771–10778

    Article  CAS  Google Scholar 

  • Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:20

    Article  Google Scholar 

  • Shin JA, Lee EJ, Seo SM, Kim HS, Kang JL, Park EM (2010) Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience 165(2):445–454

    Article  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    CAS  Google Scholar 

  • Simkó M (2007) Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 14(10):1141–1152

    Article  Google Scholar 

  • Simkó M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42

    Article  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113(8):947–955

    Article  Google Scholar 

  • Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, Donaldson K (2000) Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur Respir J 15(2):297–303

    Article  CAS  Google Scholar 

  • Stone V, Johnston H, Clift MJ (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci 6(4):331–340

    Article  Google Scholar 

  • Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55:95–102

    Article  CAS  Google Scholar 

  • Volkheimer G (1974) Passage of particles through the wall of the gastrointestinal tract. Environ Health Perspect 9:215–225

    CAS  Google Scholar 

  • Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, Li Y, Ge C, Zhou G, Li B, Zhao Y, Chai Z, Chen C (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology 254(1–2):82–90

    Article  CAS  Google Scholar 

  • Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM (2007) Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95(1):270–280

    Article  CAS  Google Scholar 

  • Yu L, Lanry Yung L-Y, Ong C-N, Tan Y-L, <>Balasubramaniam SK, Hartono D, Shui G, Wenk MR, Ong W-Y (2007) Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology 1(3):235—342.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrtill Simkó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Simkó, M. (2014). Nanopartikel – Gesundheitliche Gefahren. In: Gazsó, A., Haslinger, J. (eds) Nano Risiko Governance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1405-6_1

Download citation

Publish with us

Policies and ethics