Skip to main content

The Basic Mechanisms of Inhibition and Nonessential Activation

  • Chapter

Abstract

The 17 enzyme–modifier interaction mechanisms identified by taxonomic criteria are by no means only theoretical concepts. They are all represented in thousands of reports, though their real identity may not be recognized at a glance. One factor is inconsistent nomenclature and another is collecting mechanisms in pools of undifferentiated special cases. Representative examples that span several branches of the biological sciences are discussed in this chapter for the 17 basic mechanisms highlighting the methods used by the authors in data interpretation. Substrates and reaction products in the role of modifiers are discussed within the mechanisms to which they belong.

The vast majority of textbooks (even the most recent ones) continue the ‘romance’ with the double-reciprocal plot, in spite of the severe way it is affected by experimental errors.

Adams KAH, Storer AC, Cornish-Bowden A (1984). J Chem Educ 61:527

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    [(2R,4R,5S)-2-Benzyl-5-(Boc-amino)-4-hydroxy-6-phenyl-hexanoyl]-Leu-Phe-NH2.

  2. 2.

    A microsomal cytochrome P-450-dependent activity.

  3. 3.

    This is EC 1.6.5.9, whereas the proton-translocating enzyme is EC 1.6.5.3.

  4. 4.

    Reported as \(\mathrm{Q} \approx 3\) and \(\mathrm{W} \approx 0.1\).

  5. 5.

    As an aid to locate the unnumbered rate equation, this is in the middle of p. 193, the case for which ϕ s = ϕ a.

  6. 6.

    The reluctance in accepting rules and recommendations released by International Organizations in the interest of the scientific community does not help the dissemination of scientific information using a common language.

References

  1. Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP, Miyano M, Yorita K, Sakai T, Fukui K (2010) The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 24:1055–1067. doi:10.1177/0269881109102644

    CAS  PubMed  Google Scholar 

  2. Almond A, Sheehan JK (2000) Glycosaminoglycan conformation: do aqueous molecular dynamics simulations agree with x-ray fiber diffraction? Glycobiology 10:329–338. doi:10.1093/glycob/10.3.329

    CAS  PubMed  Google Scholar 

  3. Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, Grütter MG, Forrer P, Plückthun A (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem 280:24715–24722

    CAS  PubMed  Google Scholar 

  4. Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA (2013) Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. Plant Mol Biol 81:431–446. doi:10.1007/s11103-013-0014-7

    CAS  PubMed  Google Scholar 

  5. Baici A (2002) Myeloblastin. In: Kazazian HH (ed) Wiley encyclopedia of molecular medicine, vol 3. Wiley, New York, pp 2181–2183

    Google Scholar 

  6. Baici A, Bradamante P (1984) Interaction between human leukocyte elastase and chondroitin sulfate. Chem-Biol Interact 51:1–11

    CAS  PubMed  Google Scholar 

  7. Baici A, Diczházi C, Neszmélyi A, Móczár E, Hornebeck W (1993) Inhibition of the human leukocyte endopeptidases elastase and cathepsin G and of porcine pancreatic elastase by N-oleoyl derivatives of heparin. Biochem Pharmacol 46:1545–1549. doi:10.1016/0006-2952(93)90321-M

    CAS  PubMed  Google Scholar 

  8. Baici A, Szedlacsek SE, Früh H, Michel BA (1996) pH-dependent hysteretic behaviour of human myeloblastin (leucocyte proteinase 3). Biochem J 317:901–905

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Baici A, Schenker P, Wächter M, Rüedi P (2009) 3-Fluoro-2,4-dioxa-3-phosphadecalins as inhibitors of acetylcholinesterase. A reappraisal of kinetic mechanisms and diagnostic methods. Chem Biodivers 6:261–282

    CAS  Google Scholar 

  10. Barr JT, Jones JP (2011) Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions. Drug Metab Disp 39:2381–2386. doi:10.1124/dmd.111.041806

    CAS  Google Scholar 

  11. Berman HA, Leonard K (1990) Ligand exclusion on acetylcholinesterase. Biochemistry 29:10640–10649. doi:10.1021/bi00499a010

    CAS  PubMed  Google Scholar 

  12. Bezerra RM, Dias AA, Fraga I, Pereira AN (2011) Cellulose hydrolysis by cellobiohydrolase Cel7A shows mixed hyperbolic product inhibition. Appl Biochem Biotechnol 165:178–189. doi:10.1007/s12010-011-9242-y

    CAS  PubMed  Google Scholar 

  13. Bincoletto C, Tersariol ILS, Oliveira CR, Dreher S, Fausto DM, Soufen MA, Nascimento FD, Caires ACF (2005) Chiral cyclopalladated complexes derived from N,N-dimethyl-1-phenethylamine with bridging bis(diphenylphosphine)ferrocene ligand as inhibitors of the cathepsin B activity and as antitumoral agents. Bioorg Med Chem 13:3047–3055. doi:10.1016/j.bmc.2005.01.057

    Google Scholar 

  14. Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332:489–503

    CAS  PubMed  Google Scholar 

  15. Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grütter MG, Plückthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582

    CAS  PubMed  Google Scholar 

  16. Brandt M, Greway AT, Holt DA, Metcalf BW, Levy MA (1990) Studies on the mechanism of steroid 5-a-reductase inhibition by 3-carboxy A-ring aryl steroids. J Steroid Biochem Mol Biol 37:575–579. doi:10.1016/0960-0760(90)90403-8

    Google Scholar 

  17. Cadène M, Duranton J, North A, Sitahar M, Chignard M, Bieth JG (1997) Inhibition of neutrophil serine proteinases by suramin. J Biol Chem 272:9950–9955

    PubMed  Google Scholar 

  18. Casu B, Petitou M, Provasoli M, Sinaÿ P (1988) Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. Trends Biochem Sci 13:221–225

    CAS  PubMed  Google Scholar 

  19. Cornish-Bowden A (1986) Why is uncompetitive inhibition so rare? A possible explanation, with implications for the design of drugs and pesticides. FEBS Lett 203:3–6. doi:10.1016/0014-5793(86)81424-7

    Google Scholar 

  20. Cornish-Bowden A (1998) Two centuries of catalysis. J Biosci 23:87–92

    CAS  Google Scholar 

  21. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley, Weinheim

    Google Scholar 

  22. DiMaio J, Gibbs B, Munn D, Lefebvre J, Ni F, Konishi Y (1990) Bifunctional thrombin inhibitors based on the sequence of hirudin45-65. J Biol Chem 265:21698–21703

    CAS  PubMed  Google Scholar 

  23. Dixon M, Webb EC (1979) Enzymes, 3rd edn. Longman, London

    Google Scholar 

  24. Dobson RCJ, Griffin MDW, Roberts SJ, Gerrard JA (2004) Dihydrodipicolinate synthase (DHDPS) from Escherichia coli displays partial mixed inhibition with respect to its first substrate, pyruvate. Biochimie 86:311–315. doi:10.1016/j.biochi.2004.03.008

    CAS  PubMed  Google Scholar 

  25. Doehlert DC, Huber SC (1983) Spinach leaf sucrose phosphate synthase: activation by glucose 6-phosphate and interaction with inorganic phosphate. FEBS Lett 153:293–297. doi:10.1016/0014-5793(83)80627-9

    Google Scholar 

  26. Doehlert DC, Huber SC (1984) Phosphate inhibition of spinach leaf sucrose phosphate synthase as affected by glucose-6-phosphate and phosphoglucoisomerase. Plant Physiol 76:250–253

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Domagk G (1935) Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Deut Med Wochenschr 61:250–253

    CAS  Google Scholar 

  28. Drainas D, Kalpaxis DL, Coutsogeorgopoulos C (1987) Inhibition of ribosomal peptidyltransferase by chloramphenicol. Kinetic studies. Eur J Biochem 164:53–58

    CAS  PubMed  Google Scholar 

  29. Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Feldman T, Kabaleeswaran V, Jang SB, Antczak C, Djaballah H, Wu H, Jiang X (2012) A class of allosteric caspase inhibitors identified by high-throughput screening. Mol Cell 47:585–595. doi:10.1016/j.molcel.2012.06.007

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Fischer RS, Rubin JL, Gaines CG, Jensen RA (1987) Glyphosate sensitivity of 5-enol-pyruvylshikimate-3-phosphate synthase from Bacillus subtilis depends upon state of activation induced by monovalent cations. Arch Biochem Biophys 256:325–334

    CAS  PubMed  Google Scholar 

  32. Forrer P, Stumpp MT, Binz HK, Plückthun A (2003) A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 539:2–6

    CAS  PubMed  Google Scholar 

  33. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147. doi:10.1136/jnnp.66.2.137

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Franzke CW, Baici A, Bartels J, Christophers E, Wiedow O (1996) Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. J Biol Chem 271:21,886–21,890

    Google Scholar 

  35. Frieden C (1963) Glutamate dehydrogenase. V. The relation of enzyme structure to the catalytic function. J Biol Chem 238:3286–3299

    CAS  Google Scholar 

  36. Früh H, Kostoulas G, Michel BA, Baici A (1996) Human myeloblastin (leukocyte proteinase 3): Reactions with substrates, inactivators and activators in comparison with leukocyte elastase. Biol Chem 377:579–586

    PubMed  Google Scholar 

  37. Gao WQ, Anderson PJ, Majerus EM, Tuley EA, Sadler JE (2006) Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci USA 103:19099–19104

    CAS  PubMed Central  PubMed  Google Scholar 

  38. González-Tanarro CM, Gütschow M (2011) Hyperbolic mixed-type inhibition of acetylcholinesterase by tetracyclic thienopyrimidines. J Enzyme Inhib Med Chem 26:350–358. doi:10.3109/14756366.2010.504674

    Google Scholar 

  39. Gupta S, Mahmood S, Mahmood A (2009) Kinetic characteristics of brush border sucrase activation by Na+ ions in mice intestine. Indian J Exp Biol 47:811–815

    CAS  PubMed  Google Scholar 

  40. Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    CAS  PubMed  Google Scholar 

  41. Hedstrom L (2009) IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109:2903–2928. doi:10.1021/cr900021w

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Heng S, Tieu W, Hautmann S, Kuan K, Pedersen DS, Pietsch M, Gütschow M, Abell AD (2011) New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds. Bioorg Med Chem 19:7453–7463. doi:10.1016/j.bmc.2011.10.042

    CAS  PubMed  Google Scholar 

  43. Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186:1300–1307. doi:10.1016/j.jhazmat.2010.12.002

    CAS  PubMed  Google Scholar 

  44. Inagami T (1964) The mechanism of the specificity of trypsin catalysis. I. Inhibition by alkyl ammonium ions. J Biol Chem 239:787–791

    CAS  Google Scholar 

  45. Inagami T, Murachi T (1964) The mechanism of the specificity of trypsin catalysis. III. Activation of the catalytic site of trypsin by alkylammonium ions in the hydrolysis of acetylglycine ethyl ester. J Biol Chem 239:1395–1401

    CAS  Google Scholar 

  46. Inagami T, York SS (1968) Effect of alkyl guanidines and alkyl amines on trypsin catalysis. Biochemistry 7:4045–4052. doi:10.1021/bi00851a036

    CAS  PubMed  Google Scholar 

  47. Joshi N, Hoobler EK, Perry S, Diaz G, Fox B, Holman TR (2013) Kinetic and structural investigations into the allosteric and pH effect on the substrate specificity of human epithelial 15-lipoxygenase-2. Biochemistry 52:8026–8035. doi:10.1021/bi4010649

    CAS  PubMed  Google Scholar 

  48. Kazan D, Erarslan A (1997) Stabilization of Escherichia coli penicillin G acylase by polyethylene glycols against thermal inactivation. Appl Biochem Biotechnol 62:1–13

    CAS  PubMed  Google Scholar 

  49. Kim Y, Arp DJ, Semprini L (2002) Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnol Bioeng 80:498–508

    CAS  PubMed  Google Scholar 

  50. King JB, West MB, Cook PF, Hanigan MH (2009) A novel, species-specific class of uncompetitive inhibitors of g-glutamyl transpeptidase. J Biol Chem 284:9059–9065

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG (2003) Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci USA 100:1700–1705

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kostoulas G, Hörler D, Naggi A, Casu B, Baici A (1997) Electrostatic interactions between human leukocyte elastase and sulfated glycosaminoglycans: physiological implications. Biol Chem 378:1481–1489

    CAS  PubMed  Google Scholar 

  53. Kovačič L, Novinec M, Petan T, Baici A, Križaj I (2009) Calmodulin is a nonessential activator of secretory phospholipase A(2). Biochemistry 48:11,319–11,328

    Google Scholar 

  54. Küçükkilinç TT, Ozer I (2008) Inhibition of electric eel acetylcholinesterase by triarylmethane dyes. Chem-Biol Interact 175:309–311. doi:10.1016/j.cbi.2008.05.008

    PubMed  Google Scholar 

  55. Ledoux D, Papy-Garcia D, Escartin Q, Sagot MA, Cao Y, Barritault D, Courtois J, Hornebeck W, Caruelle JP (2000) Human plasmin enzymatic activity is inhibited by chemically modified dextrans. J Biol Chem 275:29383–29390. doi:10.1074/jbc.M000837200

    CAS  PubMed  Google Scholar 

  56. Leech AP, Baker GR, Shute JK, Cohen MA, Gani D (1993) Chemical and kinetic mechanism of the inositol monophosphatase reaction and its inhibition by Li+. Eur J Biochem 212:693–704

    CAS  PubMed  Google Scholar 

  57. Li Z, Kienetz M, Cherney MM, James MN, Brömme D (2008) The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex. J Mol Biol 383:78–91. doi:S0022-2836(08)00880-2 [pii] 10.1016/j.jmb.2008.07.038

    Google Scholar 

  58. Lorey S, Stöckel-Maschek A, Faust J, Brandt W, Stiebitz B, Gorrell MD, Kähne T, Mrestani-Klaus C, Wrenger S, Reinhold D, Ansorge S, Neubert K (2003) Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites. Eur J Biochem 270:2147–2156

    CAS  PubMed  Google Scholar 

  59. Lüönd RM, McKie JH, Douglas KT, Dascombe MJ, Vale J (1998) Inhibitors of glutathione reductase as potential antimalarial drugs. Kinetic cooperativity and effect of dimethyl sulphoxide on inhibition kinetics. J Enzyme Inhib 13:327–345

    Google Scholar 

  60. Madsen JL, Andersen TL, Santamaria S, Nagase H, Enghild JJ, Skrydstrup T (2012) Synthesis and evaluation of silanediols as highly selective uncompetitive inhibitors of human neutrophil elastase. J Med Chem 55:7900–7908. doi:10.1021/jm301000k

    CAS  PubMed  Google Scholar 

  61. Martinek K, Varfolomeev SD, Levashov AV, Berezin IV (1971) Kinetic manifestations of the structure of the active center of a-chymotrypsin on interacting with fragments of specific substrates. Mol Biol Engl Transl 5:278–286

    CAS  Google Scholar 

  62. Masson P, Froment MT, Gillon E, Nachon F, Lockridge O, Schopfer LM (2008) Kinetic analysis of effector modulation of butyrylcholinesterase-catalysed hydrolysis of acetanilides and homologous esters. FEBS J 275:2617–2631. doi:10.1111/j.1742-4658.2008.06409.x

    CAS  PubMed  Google Scholar 

  63. Michaelis L, Pechstein H (1914) Über die verschiedenartige Natur der Hemmungen der Invertasewirkung. Biochem Z 60:79–90

    CAS  Google Scholar 

  64. Michaelis L, Rona P (1914) Die Wirkungsbedingungen der Maltase aus Bierhefe. III. Über die Natur der verschiedenenartigen Hemmungen der Fermentwirkungen. Biochem Z 60:62–78

    CAS  Google Scholar 

  65. Mogul R, Johansen E, Holman TR (2000) Oleyl sulfate reveals allosteric inhibition of soybean lipoxygenase-1 and human 15-lipoxygenase. Biochemistry 39:4801–4807

    CAS  PubMed  Google Scholar 

  66. Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    CAS  PubMed  Google Scholar 

  67. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    CAS  PubMed  Google Scholar 

  68. Murray M, Farrell GC (1986) Mechanistic aspects of the inhibition of microsomal drug oxidation by primaquine. Biochem Pharmacol 35:2149–2155

    CAS  PubMed  Google Scholar 

  69. Nakanishi M, Moriyama A, Narita Y, Sasaki M (1989) Aminopeptidase-M from human liver. II. Kinetic analysis of inhibition of the enzyme by bile acids. J Biochem 106:826–830

    CAS  Google Scholar 

  70. Nomenclature Committee of the International Union of Biochemistry (1982) Symbolism and terminology in enzyme kinetics. Recommendations 1981. Eur J Biochem 128:281–291

    Google Scholar 

  71. Novinec M, Kovačič L, Lenarčič B, Baici A (2010) Conformational flexibility and allosteric regulation of cathepsin K. Biochem J 429:379–389. doi:10.1042/BJ20100337

    CAS  PubMed  Google Scholar 

  72. Novinec M, Korenč M, Caflisch A, Ranganathan R, Lenarčič B, Baici A (2014) A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat Commun 5:3287. doi:10.1038/ncomms4287

    PubMed  Google Scholar 

  73. Novinec M, Lenarčič B, Baici A (2014) Probing the activity modification space of the cysteine peptidase cathepsin K with novel allosteric modifiers. PLoS One 9:e106642. doi:10.1371/journal.pone.0106642

    PubMed Central  PubMed  Google Scholar 

  74. Orsi BA, McFerran N, Hill A, Bingham A (1972) Kinetics and the mechanism of action of adenosine aminohydrolase. Biochemistry 11:3386–3392

    CAS  PubMed  Google Scholar 

  75. Park YD, Kim SY, Lyou YJ, Lee JY, Yang JM (2005) A new type of uncompetitive inhibition of tyrosinase induced by Cl- binding. Biochimie 87:931–937. doi:10.1016/j.biochi.2005.06.006

    CAS  PubMed  Google Scholar 

  76. Pawlyk AC, Pettigrew DW (2002) Transplanting allosteric control of enzyme activity by protein-protein interactions: Coupling a regulatory site to the conserved catalytic core. Proc Natl Acad Sci USA 99:11115–11120. doi:10.1073/pnas.132393599

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pettigrew DW (2009) Amino acid substitutions in the sugar kinase/hsp70/actin superfamily conserved ATPase core of E. coli glycerol kinase modulate allosteric ligand affinity but do not alter allosteric coupling. Arch Biochem Biophys 481:151–156. doi:10.1016/j.abb.2008.11.020

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Phillips MF, Mantle TJ (1991) The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem J 275:703–709

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Raina A, Hyvönen T, Eloranta T, Voutilainen M, Samejima K, Yamanoha B (1984) Polyamine synthesis in mammalian tissues. Isolation and characterization of spermidine synthase from bovine brain. Biochem J 219:991–1000

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Rothe M, Zichner A, Auerswald EA, Dodt J (1994) Structure/function implications for the aminopeptidase specificity of aleurain. Eur J Biochem 224:559–565. doi:10.1111/j.1432-1033.1994.00559.x

    CAS  PubMed  Google Scholar 

  81. Ruddat VC, Whitman S, Holman TR, Bernasconi CF (2003) Stopped-flow kinetic investigations of the activation of soybean lipoxygenase-1 and the influence of inhibitors on the allosteric site. Biochemistry 42:4172–4178. doi:10.1021/bi020698o

    CAS  PubMed  Google Scholar 

  82. Schechter I, Berger A (1967) On the size of the active sites in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    CAS  PubMed  Google Scholar 

  83. Schenker P, Alfarano P, Kolb P, Caflisch A, Baici A (2008) A double-headed cathepsin B inhibitor devoid of warhead. Protein Sci 17:2145–2155

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Schiroli D, Ronda L, Peracchi A (2015) Kinetic characterization of the human O-phosphoethanolamine phospho-lyase reveals unconventional features of this specialized pyridoxal phosphate-dependent lyase. FEBS J 282:183–199. doi:10.1111/febs.13122

    CAS  PubMed  Google Scholar 

  85. Schmitz T, Rothe M, Dodt J (1991) Mechanism of the inhibition of a-thrombin by hirudin-derived fragments hirudin(1–47) and hirudin(45–65). Eur J Biochem 195:251–256

    CAS  PubMed  Google Scholar 

  86. Schulte M, Mattay D, Kriegel S, Hellwig P, Friedrich T (2014) Inhibition of Escherichia coli respiratory complex I by Zn2+. Biochemistry 53:6332–6339. doi:10.1021/bi5009276

    CAS  PubMed  Google Scholar 

  87. Schweizer A, Roschitzki-Voser H, Amstutz P, Briand C, Gulotti-Georgieva M, Prenosil E, Binz HK, Capitani G, Baici A, Plückthun A, Grütter MG (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15:625–636. doi:10.1016/j.str.2007.03.014

    CAS  PubMed  Google Scholar 

  88. Segal HL, Kachmar JF, Boyer PD (1952) Kinetic analysis of enzyme reactions. I. Further considerations of enzyme inhibition and analysis of enzyme activation. Enzymologia 15:187–198

    CAS  Google Scholar 

  89. Segel IH (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  90. Semenza G (1969) A kinetic investigation on the allosteric effects in intestinal sucrase. Eur J Biochem 8:518–529. doi:10.1111/j.1432-1033.1969.tb00557.x

    CAS  PubMed  Google Scholar 

  91. Sheehan JP, Phan TM (2001) Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex by an allosteric mechanism. Biochemistry 40:4980–4989

    CAS  PubMed  Google Scholar 

  92. Shikita M, Fahey JW, Golden TR, Holtzclaw WD, Talalay P (1999) An unusual case of ‘uncompetitive activation’ by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem J 341:725–732

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Siemann S, Evanoff DP, Marrone L, Clarke AJ, Viswanatha T, Dmitrienko GI (2002) N-arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-beta-lactamase. Antimicrob Agents Chemother 46:2450–2457

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Snášel J, Nauš P, Dostál J, Hnízda A, Fanfrlík J, Brynda J, Bourderioux A, Dušek M, Dvoráková H, Stolaríková J, Zábranská H, Pohl R, Konečný P, Džubák P, Votruba I, Hajdúch M, Rezáčová P, Veverka V, Hocek M, Pichová I (2014) Structural basis for inhibition of mycobacterial and human adenosine kinase by 7-substituted 7-(Het)aryl-7-deazaadenine ribonucleosides. J Med Chem 57:8268–8279. doi:10.1021/jm500497v

    PubMed  Google Scholar 

  95. Sohier JS, Laurent C, Chevigné A, Pardon E, Srinivasan V, Wernery U, Lassaux P, Steyaert J, Galleni M (2013) Allosteric inhibition of VIM metallo-beta-lactamases by a camelid nanobody. Biochem J 450:477–486. doi:10.1042/bj20121305

    CAS  PubMed  Google Scholar 

  96. Srinivasan B, Forouhar F, Shukla A, Sampangi C, Kulkarni S, Abashidze M, Seetharaman J, Lew S, Mao L, Acton TB, Xiao R, Everett JK, Montelione GT, Tong L, Balaram H (2014) Allosteric regulation and substrate activation in cytosolic nucleotidase II from Legionella pneumophila. FEBS J 281:1613–1628. doi:10.1111/febs.12727

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Sternson LA, Gammans RE (1976) Effect of aromatic nitro compounds on oxidative metabolism by cytochrome P-450 dependent enzymes. J Med Chem 19:174–177

    CAS  PubMed  Google Scholar 

  98. Sun W, Wendt M, Klebe G, Röhm KH (2014) On the interpretation of tyrosinase inhibition kinetics. J Enzyme Inhib Med Chem 29:92–99. doi:10.3109/14756366.2012.755621

    CAS  PubMed  Google Scholar 

  99. Szewczuk Z, Gibbs BF, Yue SY, Purisima E, Zdanov A, Cygler M, Konishi Y (1993) Design of a linker for trivalent thrombin inhibitors: interaction of the main chain of the linker with thrombin. Biochemistry 32:3396–3404

    CAS  PubMed  Google Scholar 

  100. Takimoto K, Okada M, Matsuda Y, Nakagawa H (1985) Purification and properties of myo-inositol-1-phosphatase from rat brain. J Biochem (Tokyo) 98:363–370

    CAS  Google Scholar 

  101. Tian GC, Sobotka-Briner CD, Zysk J, Liu XD, Birr C, Sylvester MA, Edwards PD, Scott CD, Greenberg BD (2002) Linear non-competitive inhibition of solubilized human gamma-secretase by pepstatin a methylester, L685458, sulfonamides, and benzodiazepines. J Biol Chem 277:31499–31505

    CAS  PubMed  Google Scholar 

  102. Tipton KF (1996) Patterns of enzyme inhibition. In: Engel PC (ed) Enzymology LabFax. Academic Press Inc., San Diego, pp 115–174

    Google Scholar 

  103. Velazquez I, Pardo JP (2001) Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Arch Biochem Biophys 389:7–14. doi:10.1006/abbi.2001.2293

    CAS  PubMed  Google Scholar 

  104. Wang W, Hedstrom L (1997) Kinetic mechanism of human inosine 5’-monophosphate dehydrogenase type II: random addition of substrates and ordered release of products. Biochemistry 36:8479–8483. doi:10.1021/bi970226n

    CAS  PubMed  Google Scholar 

  105. Westley AM, Westley J (1996) Enzyme inhibition in open systems. Superiority of uncompetitive agents. J Biol Chem 271:5347–5352

    CAS  Google Scholar 

  106. White PW, Faucher AM, Massariol MJ, Welchner E, Rancourt J, Cartier M, Archambault J (2005) Biphenylsulfonacetic acid inhibitors of the human papillomavirus type 6 E1 helicase inhibit ATP hydrolysis by an allosteric mechanism involving tyrosine 486. Antimicrobial agents and chemotherapy 49:4834–4842. doi:10.1128/AAC.49.12.4834-4842.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wickham S, Regan N, West MB, Thai J, Cook PF, Terzyan SS, Li PK, Hanigan MH (2013) Inhibition of human gamma-glutamyl transpeptidase: development of more potent, physiologically relevant, uncompetitive inhibitors. Biochem J 450:547–557. doi:10.1042/bj20121435

    CAS  PubMed  Google Scholar 

  108. Woods DD (1940) The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Brit J Exp Pathol 21:74–90

    CAS  Google Scholar 

  109. Woods MJ, Findlater JD, Orsi BA (1979) Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa. Biochim Biophys Acta 567:225–237

    CAS  PubMed  Google Scholar 

  110. Worcel A, Goldman DS (1964) Activation by AMP of the NADH oxidase of Mycobacterium tuberculosis. Biochem Biophys Res Commun 17:559–564

    CAS  Google Scholar 

  111. Worcel A, Goldman DS, Cleland WW (1965) An allosteric reduced nicotinamide adenine dinucleotide oxidase from Mycobacterium tuberculosis. J Biol Chem 240:3399–3407

    CAS  PubMed  Google Scholar 

  112. Xiao ZP, Peng ZY, Dong JJ, Deng RC, Wang XD, Ouyang H, Yang P, He J, Wang YF, Zhu M, Peng XC, Peng WX, Zhu HL (2013) Synthesis, molecular docking and kinetic properties of beta-hydroxy-beta-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur J Med Chem 68:212–221. doi:10.1016/j.ejmech.2013.07.047

    CAS  PubMed  Google Scholar 

  113. Yoshino M (1987) A graphical method for determining inhibition parameters for partial and complete inhibitors. Biochem J 248:815–820

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhang Y, Ribeiro JMC, Guimarães JA, Walsh PN (1998) Nitrophorin-2, a novel mixed-type reversible specific inhibitor of the intrinsic factor-X activating complex. Biochemistry 37:10681–10690. doi:10.1021/bi973050y

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

5.1.1 Rate Equations for Linear Specific Inhibition and Linear Specific Activation

In linear specific inhibition, the association between enzyme and inhibitor (X) is in equilibrium because EX is a dead-end complex . Therefore, using the Cha simplification of the King–Altman method for paths in equilibrium, this step can be represented as node (A), while the second node (B) is constituted by the single species ES as shown in Scheme 5.9a.

Scheme 5.9
figure 37

Linear specific inhibition (a) and essential activation (b). A and B represent the nodes of the mechanisms

In deriving the rate equation for essential activation the association of E and X is also considered to be in rapid equilibrium. This assumption is partly justified by the fact that essential activators are often either rapidly reacting protons or small ions. The values of the nodes are as shown in Scheme 5.9b. The numbering of constants for linear specific activation is maintained coherent with the topology of the general modifier mechanism.

Values of the nodes:

$$\displaystyle\begin{array}{rcl} & & \mathrm{LSpI:}\qquad E_{A} = k_{-1} + k_{2}\;,\quad E_{B} = k_{1}^{{\prime}}\left [\mathrm{S}\right ] {}\\ & & \mathrm{LSpA:}\qquad E_{A} = k_{-5} + k_{6}\;,\quad E_{B} = k_{5}^{{\prime}}\left [\mathrm{S}\right ]\;. {}\\ \end{array}$$

Fractions of species in the nodes:

$$\displaystyle\begin{array}{rcl} & & \mathrm{LSpI:}\qquad f_{E} = \dfrac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\;,\quad f_{EX} = \dfrac{\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\;,\quad f_{ES} = 1 {}\\ & & \mathrm{LSpA:}\qquad f_{E} = \dfrac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\;,\quad f_{EX} = \dfrac{\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\;,\quad f_{ESX} = 1\;. {}\\ \end{array}$$

Values of the nodes corrected for fractions of the species within the nodes:

$$\displaystyle\begin{array}{rcl} & & \mathrm{LSpI:}\,\,\,E_{A} = \left (k_{-1} + k_{2}\right )f_{ES} = k_{-1} + k_{2}\;,\quad E_{B} = k_{1}f_{E}\left [\mathrm{S}\right ] = \dfrac{k_{1}\left [\mathrm{S}\right ]} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} {}\\ & & \mathrm{LSpA:}\,\,\,E_{A} = \left (k_{-5} + k_{6}\right )f_{ESX} = k_{-5} + k_{6}\;,\quad E_{B} = k_{5}f_{EX}\left [\mathrm{S}\right ]=\dfrac{k_{5}\left (\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}\right )\left [\mathrm{S}\right ]} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} \;.{}\\ \end{array}$$

Fractions of nodes B, needed for calculating the velocity; the fractions in nodes A are not needed for this purpose:

$$\displaystyle\begin{array}{rcl} & & \mathrm{LSpI:}\qquad f_{B} = \dfrac{E_{B}} {E_{A} + E_{B}} = \dfrac{ \dfrac{k_{1}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\left [\mathrm{S}\right ]} {k_{-1} + k_{2} + \dfrac{k_{1}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\left [\mathrm{S}\right ]} {}\\ & & \mathrm{LSpA:}\qquad f_{B} = \dfrac{E_{B}} {E_{A} + E_{B}} = \dfrac{\dfrac{k_{5}\left (\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}\right )\left [\mathrm{S}\right ]} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} } {k_{-5} + k_{6} + \dfrac{k_{1}\left (\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}\right )\left [\mathrm{S}\right ]} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} }\;. {}\\ \end{array}$$

Rate equations:

$$\displaystyle\begin{array}{rcl} \mathrm{LSpI:}\qquad v& =& k_{2}\,f_{ES}\,f_{B}\left [\mathrm{E}\right ]_{\mathrm{t}} = \dfrac{k_{2}\left [\mathrm{E}\right ]_{\mathrm{t}} \dfrac{k_{1}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\left [\mathrm{S}\right ]} {k_{-1} + k_{2} + \dfrac{k_{1}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}}\left [\mathrm{S}\right ]} \\ & =& \dfrac{k_{2}\left [\mathrm{E}\right ]_{\mathrm{t}}\left [\mathrm{S}\right ]} {\dfrac{k_{-1} + k_{2}} {k_{1}} \left (1 + \dfrac{\left [\mathrm{X}\right ]} {K_{\mathrm{Sp}}}\right ) + \left [\mathrm{S}\right ]} {}\end{array}$$
(5.38)
$$\displaystyle\begin{array}{rcl} \mathrm{LSpA:}\qquad v& =& k_{6}\,f_{ESX}\,f_{B}\left [\mathrm{E}\right ]_{\mathrm{t}} = \dfrac{k_{6}\left [\mathrm{E}\right ]_{\mathrm{t}}\dfrac{k_{5}\left (\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}\right )} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} \left [\mathrm{S}\right ]} {k_{-5} + k_{6} + \dfrac{k_{5}\left (\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}\right )} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}} \left [\mathrm{S}\right ]} \\ & =& \dfrac{k_{6}\left [\mathrm{E}\right ]_{\mathrm{t}}\left [\mathrm{S}\right ]} {\dfrac{k_{-5} + k_{6}} {k_{5}} \left (1 + \dfrac{K_{\mathrm{Sp}}} {\left [\mathrm{X}\right ]} \right ) + \left [\mathrm{S}\right ]}\;. {}\end{array}$$
(5.39)

The rate equations for LSpI and LSpA differ for the term in the denominator that multiplies the Michaelis constant, i.e., \(1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Sp}}\) and \(1 + K_{\mathrm{Sp}}\left /\right. \left [\mathrm{X}\right ]\), respectively. Thus the apparent Michaelis constant of LSpI depends linearly on \(\left [\mathrm{X}\right ]\), while it is linear with \(1\left /\right. \left [\mathrm{X}\right ]\) in LSpA.

5.1.2 Rate Equation for Linear Catalytic Inhibition

In linear catalytic inhibition, ESX is a dead-end complex that operates at equilibrium when the system is in steady-state (Scheme 5.10). Using the reasoning above for linear specific inhibition and activation, the steps to obtain the rate equation are shown below without comments.

Scheme 5.10
figure 38

Linear catalytic inhibition. A and B represent the nodes of the mechanism

$$\displaystyle\begin{array}{rcl} E_{A}& =& k_{-1}^{{\prime}} + k_{ 2}^{{\prime}}\;,\quad E_{ B} = k_{1}\left [\mathrm{S}\right ] \\ f_{E}& =& 1,\quad f_{ES} = \dfrac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}}\;,\quad f_{ESX} = \dfrac{\left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}} \\ E_{A}& =& \left (k_{-1}^{{\prime}} + k_{ 2}^{{\prime}}\right )f_{ ES} = \left (k_{-1} + k_{2}\right ) \frac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}}\;,\quad E_{B} = k_{1}\,f_{E}\left [\mathrm{S}\right ] = k_{1}\left [\mathrm{S}\right ] \\ f_{B}& =& \dfrac{E_{B}} {E_{A} + E_{B}} = \dfrac{k_{1}\left [\mathrm{S}\right ]} {\left (k_{-1} + k_{2}\right ) \dfrac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}} + k_{1}\left [\mathrm{S}\right ]} \\ v& =& k_{2}\,f_{ES}\,f_{B}\left [\mathrm{E}\right ]_{\mathrm{t}} = \dfrac{k_{2}\left [\mathrm{E}\right ]_{\mathrm{t}} \dfrac{k_{1}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}}\left [\mathrm{S}\right ]} {\left (k_{-1} + k_{2}\right ) \dfrac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}} + k_{1}\left [\mathrm{S}\right ]} \\ & =& \dfrac{ \dfrac{k_{2}\left [\mathrm{E}\right ]_{\mathrm{t}}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}}\left [\mathrm{S}\right ]} {\dfrac{k_{-1} + k_{2}} {k_{1}} \left ( \dfrac{1} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}}\right ) + \left [\mathrm{S}\right ]} = \dfrac{ \dfrac{k_{2}\left [\mathrm{E}\right ]_{\mathrm{t}}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}}\left [\mathrm{S}\right ]} { \dfrac{K_{\mathrm{m}}^{0}} {1 + \left [\mathrm{X}\right ]\left /\right. K_{\mathrm{Ca}}} + \left [\mathrm{S}\right ]}\;. {}\end{array}$$
(5.40)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Baici, A. (2015). The Basic Mechanisms of Inhibition and Nonessential Activation. In: Kinetics of Enzyme-Modifier Interactions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1402-5_5

Download citation

Publish with us

Policies and ethics