Skip to main content

Abstract

This introductory chapter contains a collection of concepts that serve as support for the following parts of this book. Understanding microscopic reversibility and the fundamentals of linked functions are necessary instruments for interpreting allosteric interactions between substrates and modifiers. The basic theories of enzyme kinetics are approached from the consideration that all enzyme-catalyzed reactions are reversible and that mechanisms are determined by the ensemble of kinetic barriers that preside over the quasi-equilibrium and steady-state assumptions. Emphasis is given to initial rates and their precise determination as an essential starting point in kinetic data analysis. Lying in-between, practical tools, brief refreshing of useful methods and some constructive criticism.

The key to a knowledge of enzymes is the study of reaction

velocities, not of equilibria.

J.B.S. Haldane, Enzymes, Reprint 1965, M.I.T. Press, p. 3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also available at http://www.chem.qmul.ac.uk/iubmb/kinetics/.

  2. 2.

    http://enzyme.expasy.org.

  3. 3.

    http://www.brenda-enzymes.org.

  4. 4.

    http://merops.sanger.ac.uk.

  5. 5.

    Since 1991 International Union of Biochemistry and Molecular Biology (IUBMB).

  6. 6.

    http://virtualrat.org/software/kapattern.

  7. 7.

    http://www.biokin.com/king-altman.

  8. 8.

    http://www.mathworks.com/ .

  9. 9.

    http://www.kintek-corp.com/KGExplorer/.

  10. 10.

    http://www.biokin.com/.

  11. 11.

    As per December 2014.

  12. 12.

    The notion of operational definition has been introduced in 1927 by P.W. Bridgman referring to the definition of something, like a variable or an object, through the operations needed to measure it. In enzyme kinetics, operational definitions are for instance the Michaelis constant and competitive inhibition. Such definitions have acknowledged practical value because they are traceable to measurements without making assumptions on the underlying mechanisms.

  13. 13.

    In the context of enzyme kinetics the term apparent applies to a parameter, such as the limiting rate and the Michaelis constant, in the form it is measured at particular reactant concentrations.

  14. 14.

    I wish I could pronounce correctly the name of this valuable scientist.

References

  1. Alberty RA (2004) Principle of detailed balance in kinetics. J Chem Educ 81:1206–1209

    Article  CAS  Google Scholar 

  2. Alberty RA, Cornish-Bowden A, Goldberg RN, Hammes GG, Tipton K, Westerhoff HV (2011) Recommendations for terminology and databases for biochemical thermodynamics. Biophys Chem 155:89–103. doi:10.1016/j.bpc.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  3. Albery WJ, Knowles JR (1976) Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15:5631–5640. doi:10.1021/bi00670a032

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, New York

    Google Scholar 

  5. Baici A (1987) Graphical and statistical analysis of hyperbolic, tight-binding inhibition [This paper contains a mathematical mistake: see correction in Szedlacsek S et al (1988) Biochem J 254:311–312]. Biochem J 244:793–796

    Google Scholar 

  6. Baici A (1990) Interaction of human leukocyte elastase with soluble and insoluble protein substrates. A practical kinetic approach. Biochim Biophys Acta 1040:355–364

    Article  CAS  PubMed  Google Scholar 

  7. Baici A (2006) Enzyme kinetics: the velocity of reactions. Biochemist 28:36–39

    CAS  Google Scholar 

  8. Baici A, Pelloso R, Hörler D (1990) The kinetic mechanism of inhibition of human leukocyte elastase by MR889, a new cyclic thiolic compound. Biochem Pharmacol 39:919–924

    Article  CAS  PubMed  Google Scholar 

  9. Bearne SL (2012) Illustrating enzyme inhibition using Gibbs energy profiles. J Chem Educ 89:732–737. doi:10.1021/ed200395n

    Article  CAS  Google Scholar 

  10. Bearne SL (2013) Illustrating the effect of pH on enzyme activity using Gibbs energy profiles. J Chem Educ 91:84–90. doi:10.1021/ed400229g

    Article  Google Scholar 

  11. Bernasconi CF (1976) Relaxation kinetics. Academic Press, New York

    Google Scholar 

  12. Blackmond DG (2009) “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew Chem Int Ed 48:2648–2654

    Article  CAS  Google Scholar 

  13. Boeker EA (1982) Initial rates. A new plot. Biochem J 203:117–123

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 29:338–339

    Google Scholar 

  15. Brocklehurst K (1979) The equilibrium assumption is valid for the kinetic treatment of most time-dependent protein-modification reactions. Biochem J 181:775–778

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Burbaum JJ, Raines TR, Albery WJ, Knowles JR (1989) Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry 28:9293–9305. doi:10.1021/bi00450a009

    Article  CAS  PubMed  Google Scholar 

  17. Cárdenas ML, Cornish-Bowden A (1993) Rounding error, an unexpected fault in the output from a recording spectrophotometer: implications for model discrimination. Biochem J 292:37–40

    PubMed Central  PubMed  Google Scholar 

  18. Cha S (1968) A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady-state. J Biol Chem 243:820–825

    CAS  PubMed  Google Scholar 

  19. Cleland WW (1979) Statistical analysis of enzyme kinetic data. Meth Enzymol 63:103–138

    Article  CAS  PubMed  Google Scholar 

  20. Cornish-Bowden A (1975) The use of the direct linear plot for determining initial velocities. Biochem J 149:305–312

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Cornish-Bowden A (2006) The IUBMB recommendations of symbolism and terminology in enzyme kinetics. In: Hicks MG, Kettner C (eds) Proceedings of the 2nd international Beilstein symposium on experimental standard conditions on enzyme characterizations, Logos Verlag, Berlin, pp 35–50

    Google Scholar 

  22. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley, Weinheim

    Google Scholar 

  23. Cornish-Bowden A, Porter WR, Trager WF (1978) Evaluation of distribution-free confidence limits for enzyme kinetic parameters. J Theor Biol 74:163–175

    Article  CAS  PubMed  Google Scholar 

  24. Cruickshank FR, Hyde AJ, Pugh D (1977) Free energy surfaces and transition state theory. J Chem Educ 54:288. doi:10.1021/ed054p288

    Article  CAS  Google Scholar 

  25. Dagys R, Pauliukonis A, Kazlauskas D, Mankevicius M, Simutis R (1986) Determination of initial velocities of enzymic reactions from progress curves. Biochem J 237:821–825

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Dewolf W, Segel IH (2000) Simplified velocity equations for characterizing the partial inhibition or nonessential activation of bireactant enzymes. J Enzyme Inhib 15:311–333

    Article  CAS  PubMed  Google Scholar 

  27. Dixon M, Webb EC (1979) Enzymes, 3rd edn. Longman, London

    Google Scholar 

  28. Duggleby RG (1985) Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves. Biochem J 228:55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Einstein A (1916) Zur Quantentheorie der Strahlung. Mitt Physikal Ges Zürich 18:47–62

    Google Scholar 

  30. Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Elmore DT, Kingston AE, Shields DB (1963) The computation of velocities and kinetic constants of reactions, with particular reference to enzyme-catalysed processes. J Chem Soc No volume:2070–2078. doi:10.1039/JR9630002070

  32. Fersht A (1999) Structure and mechanism in protein science. A guide to enzyme catalysis and protein folding. Freeman, New York

    Google Scholar 

  33. Fowler RH, Milne EA (1925) A note on the principle of detailed balancing. Proc Natl Acad Sci USA 11:400–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Haldane JBS (1965) Enzymes (reprint of the 1930 edition), 2nd edn. M.I.T. Press, Cambridge, MA

    Google Scholar 

  35. Heinrich R, Hoffmann E, Holzhütter HG (1990) Calculation of kinetic parameters of a reversible enzymatic reaction in states of maximal activity. Biomed Biochim Acta 49:891–902

    CAS  PubMed  Google Scholar 

  36. Heinrich R, Schuster S, Holzhütter HG (1991) Mathematical analysis of enzymic reaction systems using optimization principles. Eur J Biochem 201:1–21

    Article  CAS  PubMed  Google Scholar 

  37. International Union of Pure and Applied Chemistry (1996) A glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl Chem 68:149–192

    Google Scholar 

  38. Johansen G, Lumry R (1961) Statistical analysis of enzymic steady-state rate data. C R Trav Lab Carlsberg 32:185–214

    CAS  PubMed  Google Scholar 

  39. Johnson KA (2009) Fitting enzyme kinetic data with Kintek Global Kinetic Explorer. Meth Enzymol 467:601–626

    Article  CAS  PubMed  Google Scholar 

  40. Johnson KA, Simpson ZB, Blom T (2009) FitSpace Explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal Biochem 387:30–41

    Article  CAS  PubMed  Google Scholar 

  41. Johnson KA, Simpson ZB, Blom T (2009) Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal Biochem 387:20–29

    Article  CAS  PubMed  Google Scholar 

  42. King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem 60:1375–1378

    Article  CAS  Google Scholar 

  43. Klipp E, Heinrich R (1994) Evolutionary optimization of enzyme kinetic parameters; effect of constraints. J Theor Biol 171:309–323. doi:10.1006/jtbi.1994.1234

    Article  CAS  PubMed  Google Scholar 

  44. Mahan BH (1975) Microscopic reversibility and detailed balance – an analysis. J Chem Educ 52:299–302

    Article  CAS  Google Scholar 

  45. Michaelis L, Davidsohn H (1911) Die Wirkung der Wasserstoffionen auf das Invertin. Biochem Z 35:386–412

    Google Scholar 

  46. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  47. Morrison JF, Stone SR (1985) Approaches to the study and analysis of the inhibition of enzymes by slow- and tight-binding inhibitors. Comments Mol Cell Biophys 2:347–368

    CAS  Google Scholar 

  48. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    CAS  PubMed  Google Scholar 

  49. Nomenclature Committee of the International Union of Biochemistry (1982) Symbolism and terminology in enzyme kinetics. Recommendations 1981. Eur J Biochem 128:281–291

    Google Scholar 

  50. Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426

    Article  CAS  Google Scholar 

  51. Perdicakis B, Montgomery HJ, Guillemette JG, Jervis E (2004) Validation and characterization of uninhibited enzyme kinetics performed in multiwell plates. Anal Biochem 332:122–136

    Article  CAS  PubMed  Google Scholar 

  52. Pettersson G (1991) Why do many Michaelian enzymes exhibit an equilibrium constant close to unity for the interconversion of enzyme-bound substrate and product? Eur J Biochem 195:663–670

    Article  CAS  PubMed  Google Scholar 

  53. Plowman KM (1972) Enzyme kinetics. McGraw-Hill, New York

    Google Scholar 

  54. Qi F, Dash R, Han Y, Beard D (2009) Generating rate equations for complex enzyme systems by a computer-assisted systematic method. BMC Bioinformatics 10:238. doi:10.1186/1471-2105-10-238

    Article  PubMed Central  PubMed  Google Scholar 

  55. Rakitzis ET (1997) Kinetic analysis of chemical or enzymic reactions: an algorithm for the determination of the initial velocity of product formation by the use of a Taylor series in reaction time. J Theor Biol 188:387–389

    Article  CAS  PubMed  Google Scholar 

  56. Reiner JM (1969) Behavior of enzyme systems, 2nd edn. Van Nostrand-Reinhold, New York

    Google Scholar 

  57. Segel IH (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  58. Selwyn MJ (1965) A simple test for inactivation of an enzyme during assay. Biochim Biophys Acta 105:193–195

    Article  CAS  PubMed  Google Scholar 

  59. St Maurice M, Bearne SL (2002) Kinetics and thermodynamics of mandelate racemase catalysis. Biochemistry 41:4048–4058. doi:10.1021/bi016044h

    Article  CAS  PubMed  Google Scholar 

  60. Tang Q, Leyh TS (2010) Precise, facile initial rate measurements. J Phys Chem B 114:16131–16136. doi:10.1021/jp1055528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tolman RC (1924) Duration of molecules in upper quantum states. Phys Rev 23:693–709. doi:10.1103/PhysRev.23.693

    Article  CAS  Google Scholar 

  62. Tolman RC (1925) The principle of microscopic reversibility. Proc Natl Acad Sci USA 11:436–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tolman RC (1938) The principles of statistical mechanics. Oxford University Press, Oxford

    Google Scholar 

  64. Volkenstein MV, Goldstein BN (1966) A new method for solving the problems of the stationary kinetics of enzymological reactions. Biochim Biophys Acta 115:471–477

    Article  Google Scholar 

  65. Vrzheshch PV (2008) Quasi-equilibrium assumption in enzyme kinetics. Necessary and sufficient conditions and accuracy of its application for single-substrate reactions. Biochemistry-Moscow 73:1114–1120

    CAS  Google Scholar 

  66. Webb JL (1963) Enzyme and metabolic inhibitors. General principles of inhibition, vol 1. Academic, New York

    Google Scholar 

  67. Whitehead EP (1970) The regulation of enzyme activity and allosteric transition. Progr Biophys Mol Biol 21:321–397. doi:http://dx.doi.org/10.1016/0079-6107(70)90028-3

  68. Wong JTF (1975) Kinetics of enzyme mechanisms. Academic, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1

1.1.1 Derivation of Kinetic Parameters Using Mathematical Software

Redirected from Sect. 1.4. The following example (Fig. 1.21) demonstrates the derivation of k cat,S and K m,S using Maple. Mathematical software is a helpful alternative to paper and pencil in rearranging and extracting information from rate equations. A more cumbersome example is discussed in Sect. 2.5, Eq. (2.57), where the apparent Michaelis constant of the general modifier mechanism depends on modifier concentration.

Fig. 1.21
figure 29

Derivation of equations in Sect. 1.4 using Maple

Appendix 2

1.2.1 List of Symbols

Table 4
Table 5

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Baici, A. (2015). Basic Knowledge. In: Kinetics of Enzyme-Modifier Interactions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1402-5_1

Download citation

Publish with us

Policies and ethics