Skip to main content

Damage localisation using elastic waves propagation method. Experimental techniques

  • Chapter
New Trends in Structural Health Monitoring

Abstract

In this chapter methods of Structural Health Monitoring using elastic wave propagation method are presented. Different techniques are presented that are used for elastic wave generation and sensing. In the case of elastic waves sensing presented methods are divided into contact and non contact (optical). Wide description of measuring methods that are based on laser vibrometry can be also find. This chapter also includes description of damage localisation algorithms. Also phenomenon of elastic wave propagation in the structural elements is widely described. In this chapter different types of elastic wave propagating in structural elements are presented however attention is focused on Lamb waves. Chapter includes lots of experimental results related to measurements and visualisation of elastic waves propagation as well as results of damage localisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J.-M. Berthelot, M.B. Souda, and Robert. J.L. Frequency response transducers used in acoustic emission testing of concrete. NDT&E International, 25(6):279–285, 1992.

    Article  Google Scholar 

  • A. J. Brunner, M. Barbezat, N. A. Chrysochoidis, A. K. Barouni, and D. A. Saravanos. Delamination detection in composites using active piezoceramic wafer and AFC sensor. In Proceedings of 4th European Workshop Structural Health Monitoring (Krakow, Poland, 2-4 July 2008), pages 657–664, 2008.

    Google Scholar 

  • F. Cau, A. Fanni, A. Montisci, P. Testoni, and M. Usai. A signal-processing tool for non-destructive testing of inaccessible pipes. Engineering Applications of Artificial Intelligence, 19:753–760, 2006.

    Article  Google Scholar 

  • Y. Ding, R.L. Reuben, and J.A. Steel. A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition. NDT&E International, 37:279–290, 2004.

    Article  Google Scholar 

  • S. Dixon and S.B. Palmer. Wideband low frequency generation and detection of Lamb and Rayleigh waves using electromagnetic acoustic transducers (EMATs). Ultrasonics, 42:1129–1136, 2004.

    Article  Google Scholar 

  • R. Gangadharan, G. Prasanna, M.R. Bhat, C.R.L. Murthy, and S. Gopalakrishnan. Acoustic emission source location and damage detection in a metallic structure using a graph-theory-based geodesic approach. Smart Materials and Structures, 18(11), 2009.

    Google Scholar 

  • V. Giurgiutiu. Structural Health Monitoring with piezoelectric wafer active sensors. Academic Press, Elsevier Inc, 2008.

    Google Scholar 

  • V. Giurgiutiu, L. Yu, J.R. Kendall, and C. Jenkins. In situ imaging of crack growth with piezoelectric-wafer active sensors. AIAA Journal, 45(11): 2758–2769, 2007.

    Article  Google Scholar 

  • K. Hongjoon, J. Kyungyoung, S. Minjea, and K. Jaeyeol. A noncontact NDE method using a laser-generated focused-Lamb wave with enhanced defect detection ability and spatial resolution. NDT&E International, 39:312–319, 2006a.

    Article  Google Scholar 

  • K. Hongjoon, J. Kyungyoung, S. Minjea, and K. Jaeyeol. Application of the laser-generated focused-Lamb wave for non-contact imaging of defects in plate. Ultrasonics, 44:1265–1268, 2006b.

    Article  Google Scholar 

  • J.-B. Ihn and F.-K. Chang. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. diagnostics. Smart Materials and Structures, 13:609–620, 2004.

    Article  Google Scholar 

  • J.-B. Ihn and F.-K. Chang. Pitch catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring, An International Journal, 7 (1):5–19, 2008.

    Article  Google Scholar 

  • H. Jeong. Analysis of plate wave propagation in anisotropic laminates using a wavelet transform. NDT&E International, 34:185–190, 2001.

    Article  Google Scholar 

  • G.R. Kirikera, J.W. Lee, M.J. Schulz, A. Ghoshal, M.J. Sundaresan, R.J. Allemang, V.N. Shanov, and H. Westheider. Initial evaluation of an active/passive structural neural system for health monitoring of composite materials. Smart Materials and Structures, 15:1275–1286, 2006.

    Article  Google Scholar 

  • T. Kundu, S. Das, S.A. Martin, and K.V. Jata. Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics, 48:193–201, 2008.

    Article  Google Scholar 

  • R. Lammering. Observation of piezoelectrically induced wave propagation in thin plates by use of speckle interferometry. Experimental Mechanics, 50:377–387, 2010.

    Article  Google Scholar 

  • C.M. Lee, J.L. Rose, and Y. Cho. A guided wave approach to defect detection under shelling in rail. NDT&E International, 42:174–180, 2009.

    Article  Google Scholar 

  • Y.S. Lee, D.J. Yoon, S.I. Lee, and J.H. Kwon. An active piezo array sensor for elastic wave detection. Key Engineering Materials, 297-300:2004– 2009, 2005.

    Google Scholar 

  • W. Lestari and P. Qiao. Application of wave propagation analysis for damage identification in composite laminated beams. Journal of Composite Materials, 39:1967–1984, 2005.

    Article  Google Scholar 

  • M. Lin and F.-K. Chang. The manufacture of composite structures with a built-in network of piezoceramics. Composites Science and Technology, 62:919–939, 2002.

    Article  Google Scholar 

  • P. Malinowski, T. Wandowski, and W. Ostachowicz. Multi-damage localization with piezoelectric transducers. In Proceedings of 4th European Workshop on Structural Health Monitoring, pages 716–723, 2008.

    Google Scholar 

  • P. Malinowski, T. Wandowski, and W. Ostachowicz. Damage detection potential of a triangular piezoelectric configuration. Mechanical Systems and Signal Processing, 25:2722–2732, 2011.

    Article  Google Scholar 

  • M. Melnykowycz, X. Kornmann, C. Huber, M. Barbezat, and A. J. Brunner. Performance of integrated active fiber composites in fiber reinforced epoxy laminates. Smart Materials and Structures, 15(1):204–212, 2006.

    Article  Google Scholar 

  • M. Melnykowycz, M. Barbezat, R. Koller, and A. J. Brunner. Packaging of active fiber composites for improved sensor performance. Smart materials and structures, 19(1):015001, 2010.

    Article  Google Scholar 

  • J. E. Michaels, A. J. Croxford, and P. D. Wilcox. Imaging algorithms for locating damage via in situ ultrasonic sensors. In Proceedings of the 2008 IEEE Sensors Applications Symposium, pages 63–67, 2008.

    Google Scholar 

  • R. Murayama and K. Mizutani. Conventional electromagnetic acoustic transducer development for optimum Lamb wave modes. Ultrasonics, 40:491–495, 2002.

    Article  Google Scholar 

  • F. Mustapha, G. Manson, K. Worden, and S.G. Pierce. Damage location in an isotropic plate using a vector of novelty indices. Mechanical Systems and Signal Processing, 21:1885–1906, 2007.

    Article  Google Scholar 

  • S. J. Orfanidis. Electromagnetic waves and antennas. http://www.ece.rutger.edu/ orfanidi/ewa, 2004.

    Google Scholar 

  • W. Ostachowicz and P. Kudela. Experimental verification of the Lamb-wave based damage detection algorithm. In Proceedings of 6th International Workshop on Structural Health Monitoring, pages 2066–2073, 2007.

    Google Scholar 

  • W. Ostachowicz, P. Kudela, P. Malinowski, and T. Wandowski. Damage localisation in plate-like structures based on PZT sensors. Mechanical Systems and Signal Processing, 23:1805–1829, 2009.

    Article  Google Scholar 

  • M. Palacz, M. Krawczuk, and W. Ostachowicz. The spectral finite element model for analysis of flexural-shear coupled wave propagation. part 1: Laminated multilayer composite beam. Composite Structures, 68:37–44, 2005.

    Google Scholar 

  • I.-K. Park, T.-H. Kim, H.-M. Kim, Y.-K Kim, Y.-S. Cho, and W.-J. Song. Evaluation of hidden corrosion in a thin plate using a non-contact guided wave technique. Key Engineering Materials, 321-323:492–496, 2006.

    Article  Google Scholar 

  • P.X Qing, S. Beard, S.B. Shen, S. Banerjee, I. Bradley, M.M. Salama, and F.-K. Chang. Development of a real-time active pipeline integrity detection system. Smart Material and Structures, 18:1–10, 2009.

    Article  Google Scholar 

  • X.P. Qing, S.J. Beard, A. Kumar, H.-L. Chan, and R. Ikegami. Advances in the development of built-in diagnostic system for filament wound composite structures. Composites Science and Technology, 66:1694–1702, 2006.

    Article  Google Scholar 

  • J.L. Rose. Ultrasonic waves in solid media. Cambridge University Press, 2004.

    Google Scholar 

  • D. Royer and E. Dieulesaint. Elastic waves in solids II. Generation, Acoustooptics interaction, applications. Springer, 1999.

    Google Scholar 

  • A. Rytter. Vibration based inspection of civil engineering structures. Ph.D. Dissertation, Department of Building Technology and Structural Engineering, Aalborg University, Denmark, 1993.

    Google Scholar 

  • K.I. Salas and C.E.S. Cesnik. Guided wave excitation by a clover transducer for structural health monitoring: theory and experiments. Smart Materials and Structures, 18:1–27, 2009.

    Article  Google Scholar 

  • M.H.S. Siqueira, C.E.N. Gatts, R.R. da Silva, and J.M.A. Rebello. The use of ultrasonic guided waves and wavelets analysis in pipe inspection. Ultrasonics, 41:785–797, 2004.

    Article  Google Scholar 

  • Z. Su, C. Yang, N. Pan, L. Ye, and L.M. Zhou. Assessment of delamination in composite beams using shear horizontal (SH) wave mode. Composites Science and Technology, 67:244–251, 2007.

    Article  Google Scholar 

  • N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and Ogisu. T. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Composites Science and Technology, 65:2575–2587, 2005.

    Article  Google Scholar 

  • A.B. Thien, editor. Pipeline structural health monitoring using macro-fiber composite active sensors, 2006. Ph.D. Dissertation, College of Engineering, University of Cincinnati.

    Google Scholar 

  • G. Thursby, B. Sorazu, D. Betz, W. Staszewski, and B. Culshaw. Comparison of point and integrated fiber optic sensing techniques for ultrasound detection and location of damage. In Proceedings of SPIE, volume 5384, pages 287–295, 2004.

    Google Scholar 

  • C. Valle and J.W. Jr. Littles. Flaw localization using the reassigned spectrogram on laser-generated and detected Lamb modes. Ultrasonics, 39: 535–542, 2002.

    Article  Google Scholar 

  • D. Wagg, I. Bond, P. Weaver, and M. Friswell. Adaptive Structures. Engineering Applications. John Wiley & Soons Ltd, 2007.

    Google Scholar 

  • P.D. Wilcox, editor. Lamb wave inspection of large structures using permanently attached transducers, 1998. Ph.D. Dissertation, Imperial College of Sciences, London.

    Google Scholar 

  • K. Worden and J.M. Dulieu-Barton. An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, An International Journal, 3(1):85–98, 2004.

    Article  Google Scholar 

  • L. Yu, G. Santoni-Bottai, B. Xu, W. Liu, and V. Giurgiutiu. Piezoelectric wafer active sensors for in situ ultrasonic-guided wave SHM. Fatigue & Fracture of Engineering Materials & Structures, 31:611–628, 2008.

    Article  Google Scholar 

  • A. Zak. Non-linear vibrations of a delaminated composite beam. Key Engineering Materials, 293-294:607–616, 2005.

    Article  Google Scholar 

  • G. Zumpano and M. Meo. A new damage detection technique based on wave propagation for rails. International Journal of Solids and Structures, 43: 1023–1046, 2006.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Ostachowicz, W., Malinowski, P., Wandowski, T. (2013). Damage localisation using elastic waves propagation method. Experimental techniques. In: Ostachowicz, W., Güemes, J. (eds) New Trends in Structural Health Monitoring. CISM International Centre for Mechanical Sciences, vol 542. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1390-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1390-5_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1389-9

  • Online ISBN: 978-3-7091-1390-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics