Off-road Mobile Robot Control: an Adaptive Approach for Accuracy, Integrity

  • R. Lenain
  • B. Thuilot
  • N. Bouton
  • P. Martinet
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 544)


This paper proposes an algorithm dedicated to the control of off-road mobile robots at high speed. Based on adaptive and predictive principles, it first proposes a control law to preserve a high level of accuracy in the path tracking problem. Next, the dynamic model used for grip condition estimation is considered to address also robot integrity preservation thanks to the velocity limitation.


Mobile Robot Model Predictive Control Vehicle Automatic Guidance Rear Axle Sideslip Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. d’ Andréa-Novel, G. Campion, and G. Bastin. Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach. International Journal of Robust and Nonlinear Control, 5(4): 243–267, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  2. F. Ben Amar and P. Bidaud. Dynamic analysis of off-road vehicles. In Intern. symp. on experimental robotics, Standford, U.S.A., 1995.Google Scholar
  3. N. Bouton, R. Lenain, B. Thuilot, and P. Martinet. A new device dedicated to autonomous mobile robot dynamic stability: application to an off-road mobile robot. pages 3813–3818, 2010.Google Scholar
  4. G. Campion, G. Bastin, and B. d’ Andréa-Novel. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. In IEEE international conference on robotics and automation, pages 462–469, Atlanta, Georgia (USA), 1993.Google Scholar
  5. R. Eaton, H. Pota, and J. Katupitiya. Path tracking control of agricultural tractors with compensation for steering dynamics. In International conference on decision and control (cdc), pages 7357–7362, Shanghai, China, 2009.Google Scholar
  6. T.D. Gillespie. Fundamentals of vehicle dynamics. SAE International, Warrendale, U.S.A., 1992.Google Scholar
  7. O. Hach, R. Lenain, B. Thuilot, and P. Martinet. Avoiding steering actuator saturation in off-road mobile robot path tracking via predictive velocity control. In IEEE International Conference on Intelligent Robot and Systems, volume accepted, to be published, 2011.Google Scholar
  8. R. Lenain, B. Thuilot, C. Cariou, and P. Martinet. High accuracy path tracking for vehicles in presence of sliding. application to farm vehicle automatic guidance for agricultural tasks. Autonomous robots, 21(1): 79–97, 2006.CrossRefGoogle Scholar
  9. R. Lenain, B. Thuilot, O. Hach, and P. Martinet. High-speed mobile robot control in off-road conditions: a multi-model based adaptive approach. In IEEE International Conference on Robotics and Automation, ICRA’11, page 6143:6149, 2011.Google Scholar
  10. A. Micaelli and C. Samson. Trajectory tracking for unicycle-type and twosteering-wheels mobile robots. INRIA technical report, (n◦ 2097), 1993.Google Scholar
  11. R. Siegwart and I.R. Nourbakhsh. Introduction to autonomous mobile robots. MIT Press, 2004.Google Scholar

Copyright information

© CISM, Udine 2013

Authors and Affiliations

  • R. Lenain
    • 1
  • B. Thuilot
    • 2
  • N. Bouton
    • 3
  • P. Martinet
    • 4
  1. 1.IrsteaClermont-FerrandFrance
  2. 2.Clermont UniversitéUniversité Blaise Pascal, LASMEAClermont-FerrandFrance
  3. 3.Institut Franais de M´ecanique Avancée, EA 3867 - Institut Pascal UMR 6602Clermont UniversitéClermont-FerrandFrance
  4. 4.Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN)Université de NantesNantesFrance

Personalised recommendations