Skip to main content

Guidelines for the Design of Multi-finger Haptic Interfaces for the Hand

  • Conference paper
Romansy 19 – Robot Design, Dynamics and Control

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 544))

Abstract

Several novel interaction peripherals recently came to the market. Tactile interfaces and mocap systems deeply changed the way we interact with computers. On the other side, the continuous fall in prices of VR technologies and the development of force feedback haptic interfaces changed the way people develop new products, moving from real to digital mock-ups. Some limitations remain however as no commercially available interface allows natural dexterous interactions in 3D space. Tactile devices are limited to 2D. Data-gloves are difficult to calibrate and do not give any feedback to the user, the later being also true for mocap systems. Haptic devices are equiped with handles and limit the user’s dexterity. Multi-finger haptic interfaces are required to overcome these limitations. This paper makes a short review of such devices, gives more details on a two and a three fingers interfaces recently developed for VR applications and gives guidelines for their design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Bouzit, G. Burdea, G. Popescu, and R. Boian. The rutgers master ii - new design force feedback glove. IEEE/ASME Transactions on Mechatronics, 7(2):256–263, 2002.

    Article  Google Scholar 

  • S. P. Christodoulou, D. M. Garyfallidou, M. N. Gavala, G. S. Ioannidis, T. S. Papatheodorou, and E. A. Stathi. Haptic devices in virtual reality used for education: designing and educational testing of an innovative system. In Proceedings Interactive Computer Aided Learning, 2005.

    Google Scholar 

  • H. Fang, Z. Xie, and H. Liu. An exoskeleton master hand for controlling dlr/hit hand. In Proceedings of the International Conference on Intelligent Robots and Systems, pages 3703–3708, 2009.

    Google Scholar 

  • M. Fontana, A. Dettori, F. Salsedo, and M. Bergamasco. Mechanical design of a novel hand exoskeleton for accurate force displaying. In Proceedings of the International Conference on Robotics and Automation, pages 1704–1709, 2009.

    Google Scholar 

  • A. Frisoli, F. Simoncini, M. Bergamasco, and F. Salsedo. Kinematic design of a two contact points haptic interface for the thumb and index fingers of the hand. Journal of Mechanical Design, 129:520–529, 2007.

    Article  Google Scholar 

  • C. Giachritsis, J. Barrio, M. Ferre, A. Wing, and J. Ortego. Evaluation of weight perception during unimanual and bimanual manipulation of virtual objects. In Proceedings of the International Conference World Haptics, pages 629–634, 2009.

    Google Scholar 

  • F. Gosselin, T. Jouan, J. Brisset, and C. Andriot. Design of a wearable haptic interface for precise finger interactions in large virtual environments. In Proceedings of the International Conference World Haptics, pages 202–207, 2005.

    Google Scholar 

  • F. Gosselin, C. Andriot, and P. Fuchs. les dispositifs matriels des interfaces retour deffort. In Le Trait de la Ralit Virtuelle, 3rd edition, Vol.2 (6), pages 135–202. Les Presses de l’Ecole des Mines, 2006.

    Google Scholar 

  • V. Hayward and O. R. Astley. Performance measures for haptic interfaces. In Robotics Research: The 7th International Symposium, G. Giralt and G. Hirzinger Eds., Springer Verlag, pages 195–207, 1996.

    Google Scholar 

  • T.H. Massie and J.K. Salisbury. The phantom haptic interface : a device for probing virtual objects. In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 1994.

    Google Scholar 

  • S. Nakagawara, H. Kajimoto, N. Kawakami, S. Tachi, and I. Kawabuchi. An encounter-type multi-fingered master hand using circuitous joints. In Proceedings of the International Conference on Robotics and Automation, pages 2667–2672, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this paper

Cite this paper

Gosselin, F. (2013). Guidelines for the Design of Multi-finger Haptic Interfaces for the Hand. In: Padois, V., Bidaud, P., Khatib, O. (eds) Romansy 19 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences, vol 544. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1379-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1379-0_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1378-3

  • Online ISBN: 978-3-7091-1379-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics