Design of a New Hand Exoskeleton for Rehabilitation of Post- Stroke Patients

  • Mohammad Mozaffari Foumashi
  • Marco Troncossi
  • Vincenzo Parenti Castelli
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 544)


This paper presents a novel design of a single degree of freedom planar 12-link mechanism for a finger exoskeleton. The mechanism is sized to each finger of the human hand and attached to the phalanges to control the flexion/extension movements while generating the finger desired grasping trajectory.


Brain Computer Interface Cylindrical Object Dimensional Synthesis Cylindrical Grasp Hand Exoskeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Bergamasco, A. Frisoli, M. Fontana, C. Loconsole, D. Leonardis,Google Scholar
  2. M. Troncossi, M. Mozaffari-Foumashi, and V. Parenti-Castelli. Preliminary results of bravo project - brain computer interface for robotic enhanced rehabilitation. In Proc. of the ICORR2011, IEEE 12th Intl Conf on Rehabil. Robotics, Zurich, Switzerland, 2011.Google Scholar
  3. B. Buchholz and T.J. Armstrong. A kinematic model of the human hand to evaluate its prehensile capabilities. J. Biomech., 25(2):149–162, 1992.CrossRefGoogle Scholar
  4. R. Datta and K. Deb. Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In Proc. of the 13th conf. on Genetic and evolutionary computation, NY, USA, 2011.Google Scholar
  5. R. Drillis and R. Contini. Body segment parameters; a survey of measurement techniques. Artificial limbs, 25:44–66, 1964.Google Scholar
  6. A. G. Erdman. Three and four precision point kinematic synthesis of planar linkage. Mechanism and Machine Theory, 16(3):227–245, 1981.CrossRefGoogle Scholar
  7. J. Gulke, NJ. Wachter, T.Geyer, H.Schll, G.Apic, and M. Mentzel. Motion coordination patterns during cylinder grip analyzed with a sensor glove. J. Hand Surg.AM, 35(5):797–806, 2010.CrossRefGoogle Scholar
  8. A. Konaka, DW. Coitb, and AE. Smithc. Multi-objective optimization using genetic algorithms: A tuorial. Reliab. Eng. Syst. Safe., 91(9):992–1007, 2006.CrossRefGoogle Scholar
  9. G. Kwakkel, B. Kollen, and H. Krebs. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair, 22(2):111–121, 2008.Google Scholar
  10. J. M. McCarthy and G. S. Soh. Geometric Design of Linkages, 2nd ed. Springer-Verlag, 2010.Google Scholar
  11. J. Mehrholz, T. Platz, J. Kugler, and M. Pohl. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst. Rev., (4):CD006876, 2008.Google Scholar
  12. M. Troncossi, M. Mozaffari Foumashi, M. Carricato, and V. Parenti Castelli. Feasibility study of a hand exoskeleton for rehabilitation of post-stroke patients. In Proc. ASME 11th Biennial Conf. on Engineering Systems Design and Analysis, ESDA2012, Nantes, France, 2012.Google Scholar

Copyright information

© CISM, Udine 2013

Authors and Affiliations

  • Mohammad Mozaffari Foumashi
    • 1
  • Marco Troncossi
    • 1
  • Vincenzo Parenti Castelli
    • 1
  1. 1.Faculty of EngineeringUniversity of BolognaBolognaItaly

Personalised recommendations