Global Identification of Drive Gains, Dynamic Parameters of Parallel Robots - Part 2: Case Study

  • Sébastien Briot
  • Maxime Gautier
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 544)


Usually, identification models of parallel robots are simplified and take only the dynamics of the moving platform into account. Moreover the input efforts are estimated through the use of the manfucaturer’s actuator drive gains that are not calibrated thus leading to identification errors. In this paper a systematic way to derive the full dynamic identification model of the Orthoglide parallel robot in combination with a method that allows the identification of both robot inertial parameters and drive gains.


Dynamic Parameter Parallel Robot Inertial Parameter Parallel Kinematic Machine Payload Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. Amiral, G.F. Francois, J. Pontnauand, and M. Dafaoui. Design and control of a new six-dof parallel robot: application to equestrian gait simulation. Mechatronics, 6:227239, 1996.Google Scholar
  2. S. Briot and M. Gautier. Global identification of drive gains and dynamic parameters of parallel robots - part 1: Theory. In Proceedings of the 19th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control (RoManSy), 2012.Google Scholar
  3. D. Chablat, P. Wenger, and J.P. Merlet. A comparative study between two three-dof parallel kinematic machines using kinetostatic criteria and interval analysis. In Proceedings 11th World Congress in Mechanism and Machine Science, 2004.Google Scholar
  4. M. Diaz-Rodriguez, V. Mata, A. Valera, and A. Page. A methodology for dynamic parameters identification of 3-dof parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45:13371356, 2010.Google Scholar
  5. M. Gautier. Numerical calculation of the base inertial parameters. Journal of Robotics Systems, 8(4):485–506, 1991.zbMATHCrossRefGoogle Scholar
  6. M. Gautier. Dynamic identification of robots with power model. In Proceedings IEEE ICRA, pages 1922–1927, Albuquerque, USA, April 1997.Google Scholar
  7. M. Gautier and W. Khalil. Exciting trajectories for the identification of the inertial parameters of robots. International Journal of Robotics Research, 11(4):362–375, 1992.CrossRefGoogle Scholar
  8. M. Grotjahn, B. Heiman, and H. Abdellatif. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody System Dynamics, 11:273294, 2004.CrossRefGoogle Scholar
  9. S. Guegan, W. Khalil, and Ph. Lemoine. Identification of the dynamic parameters of the orthoglide. In Proceedings IEEE ICRA, pages 3272– 3277, Taipei, Taiwan, September 2003.Google Scholar
  10. M. Honegger, A. Codourey, and E. Burdet. Adaptive control of the hexaglide, a 6dof parallel manipulator. In Proceedings of the IEEE ICRA, page 543548, Albuquerque, NM, USA, 1997.Google Scholar
  11. M. Honegger, R. Brega, and G. Schweitzer. Application of a nonlinear adaptive controller to a 6 dof parallel manipulator. In Proceedings of the IEEE ICRA, page 19301935, San Francisco, CA, USA, 2000.Google Scholar
  12. W. Khalil and D. Creusot. Symoro+: a system for the symbolic modelling of robots. Robotica, 15:153–161, 1997.CrossRefGoogle Scholar
  13. W. Khalil and E. Dombre. Modeling, Identification and Control of Robots. Hermes Penton London, 2002.Google Scholar
  14. W. Khalil, M. Gautier, and P. Lemoine. Identification of the payload inertial parameters of industrial manipulators. In Proceedings IEEE ICRA, pages 4943–4948, Roma, Italy, April 2007.Google Scholar
  15. J.P. Merlet. Parallel Robots. Springer, 2nd edition, 2006.Google Scholar
  16. F.C Moon. Applied dynamics. J. Wiley and Sons, 2007.Google Scholar
  17. A. Vivas and P. Poignet. Predictive functional control of a parallel robot. Control Engineering Practice, 13:863874, 2005.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2013

Authors and Affiliations

  • Sébastien Briot
    • 1
  • Maxime Gautier
    • 1
  1. 1.Institut de Recherche en Communications et Cybernétique de NantesNantesFrance

Personalised recommendations