Skip to main content

Micromorphic Media

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 541))

Abstract

The elastoviscoplasticity theory of micromorphic media at finite deformation is presented in this chapter. Micromechanical considerations are then put forward to motivate the existence of the microdeformation degrees of freedom in the case of composite materials. Mixtures of micromorphic media are finally considered with a view to homogenising the size–dependent properties of metal polycrystals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • E.C. Aifantis. On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology, 106:326–330, 1984.

    Article  Google Scholar 

  • J. Altenbach, H. Altenbach, and V.A. Eremeyev. On generalized cosserattype theories of plates and shells: a short review and bibliography. Arch. Appl. Mech., 80:73–92, 2010.

    Article  MATH  Google Scholar 

  • A. Anthoine. Second-order homogenisation of functionally graded materials. Int. J. Solids Structures, 47:1477–1489, 2010.

    Article  MATH  Google Scholar 

  • O. Aslan, N. M. Cordero, A. Gaubert, and S. Forest. Micromorphic approach to single crystal plasticity and damage. International Journal of Engineering Science, 49:1311–1325, 2011.

    Article  MathSciNet  Google Scholar 

  • N. Auffray, R. Bouchet, and Y. Bréchet. Derivation of anisotropic matrix for bi–dimensional strain–gradient elasticity behavior. International Journal of Solids and Structures, 46:440–454, 2009.

    Article  MATH  Google Scholar 

  • N. Auffray, R. Bouchet, and Y. Bréchet. Strain gradient elastic homogenization of bidimensional cellular media. International Journal of Solids and Structures, 47:1698–1710, 2010.

    Article  MATH  Google Scholar 

  • V.P. Bennett and D.L. McDowell. Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals. Engineering Fracture Mechanics, 70(2):185–207, 2003.

    Article  Google Scholar 

  • D. Besdo. Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks. Arch. Appl. Mech., 80:25–45, 2010.

    Article  MATH  Google Scholar 

  • J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, and M. Blétry. Non–Linear Mechanics of Materials. Series: Solid Mechanics and Its Applications, Vol. 167, Springer, ISBN: 978-90-481-3355-0, 433 p., 2009.

    Google Scholar 

  • C. Boutin. Microstructural effects in elastic composites. Int. J. Solids Structures, 33:1023–1051, 1996.

    Article  MATH  Google Scholar 

  • F. Bouyge, I. Jasiuk, and M. Ostoja-Starzewski. A micromechanically based couple-stress model of an elastic two-phase composite. Int. J. Solids Structures, 38:1721–1735, 2001.

    Article  MATH  Google Scholar 

  • F. Bouyge, I. Jasiuk, S. Boccara, and M. Ostoja-Starzewski. A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. European Journal of Mechanics A/solids, 21:465–481, 2002.

    Article  MATH  Google Scholar 

  • H. Chen, X. Liu, G. Hu, and H. Yuan. Identification of material parameters of micropolar theory for composites by homogenization method. Computational Materials Science, 46:733–737, 2009.

    Article  Google Scholar 

  • N. M. Cordero, S. Forest, E. P. Busso, S. Berbenni, and M. Cherkaoui. Grain size effect in generalized continuum crystal plasticity. In I. R. Ionescu, S. Bouvier, O. Cazacu, and P. Franciosi, editors, Plasticity of crystalline materials, pages 101–122. ISTE-Wiley, 2011.

    Google Scholar 

  • N. M. Cordero, S. Forest, E. P. Busso, S. Berbenni, and M. Cherkaoui. Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Computational Materials Science, 52:7–13, 2012.

    Article  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, and S. Kruch. Size effects in generalised continuum crystal plasticity for two–phase laminates. Journal of the Mechanics and Physics of Solids, 58:1963–1994, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Dillard, S. Forest, and P. Ienny. Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. European Journal of Mechanics A/Solids, 25:526–549, 2006.

    Article  MATH  Google Scholar 

  • K. Enakoutsa and J.B. Leblond. Numerical implementation and assessment of the glpd micromorphic model of ductile rupture. European Journal of Mechanics A/solids, 28:445–460, 2009.

    Article  MATH  Google Scholar 

  • A.C. Eringen. Theory of thermo-microstretch elastic solids. Int. J. Engng Sci., 28:1291–1301, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  • A.C. Eringen. Microcontinuum field theories. Springer, New York, 1999.

    Book  MATH  Google Scholar 

  • A.C. Eringen and E.S. Suhubi. Nonlinear theory of simple microelastic solids. Int. J. Engng Sci., 2:189–203, 389–404, 1964.

    Article  MathSciNet  Google Scholar 

  • F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comp. Meth. Appl. Mech. Engng, 192:3233–3244, 2003.

    Article  MATH  Google Scholar 

  • S. Forest. The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE Journal of Engineering Mechanics, 135:117–131, 2009.

    Article  Google Scholar 

  • S. Forest. Mechanics of generalized continua : Construction by homogenization. Journal de Physique IV, 8:Pr4–39–48, 1998.

    Article  Google Scholar 

  • S. Forest. Homogenization methods and the mechanics of generalized continua–Part 2. Theoretical and Applied Mechanics, 28–29:113–143, 2002.

    Article  MathSciNet  Google Scholar 

  • S. Forest. Aufbau und Identifikation von Stoffgleichungen für höhere Kontinua mittels Homogenisierungsmethoden. Technische Mechanik, Band 19, Heft 4:297–306, 1999.

    Google Scholar 

  • S. Forest. Cosserat media. In K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, and S. Mahajan, editors, Encyclopedia of Materials : Science and Technology, pages 1715–1718. Elsevier, 2001.

    Chapter  Google Scholar 

  • S. Forest and A. Bertram. Formulations of strain gradient plasticity. In H. Altenbach, G. A. Maugin, and V. Erofeev, editors, Mechanics of Generalized Continua, pages 137–150. Advanced Structured Materials vol. 7, Springer, 2011.

    Chapter  Google Scholar 

  • S. Forest and K. Sab. Cosserat overall modeling of heterogeneous materials. Mechanics Research Communications, 25(4):449–454, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest and R. Sievert. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 160:71–111, 2003.

    Article  MATH  Google Scholar 

  • S. Forest and R. Sievert. Nonlinear microstrain theories. International Journal of Solids and Structures, 43:7224–7245, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest and D. K. Trinh. Generalized continua and non–homogeneous boundary conditions in homogenization methods. ZAMM, 91:90–109, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, F. Pradel, and K. Sab. Asymptotic analysis of heterogeneous Cosserat media. International Journal of Solids and Structures, 38:4585–4608, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • M.G.D. Geers, V.G. Kouznetsova, and W.A.M Brekelmans. Gradient–enhanced computational homogenization for the micro–macro scale transition. Journal de Physique IV, 11:Pr5–145–152, 2001.

    Article  Google Scholar 

  • P. Germain. The method of virtual power in continuum mechanics. part 2 : Microstructure. SIAM J. Appl. Math., 25:556–575, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  • J.D. Goddard. Mathematical models of granular matter, ed. by P. Mariano, G. Capriz, and P. Giovine, chapter From Granular Matter to Generalized Continuum, pages 1–20. vol. 1937 of Lecture Notes in Mathematics, Springer, Berlin, 2008.

    Chapter  Google Scholar 

  • M. Gologanu, J. B. Leblond, and J. Devaux. Continuum micromechanics, volume 377, chapter Recent extensions of Gurson’s model for porous ductile metals, pages 61–130. Springer Verlag, CISM Courses and Lectures No. 377, 1997.

    Google Scholar 

  • M.A. Goodman and S.C. Cowin. A continuum theory for granular materials. Arch. Rational Mech. and Anal., 44:249–266, 1972.

    MathSciNet  MATH  Google Scholar 

  • P. Grammenoudis and Ch. Tsakmakis. Micromorphic continuum Part I: Strain and stress tensors and their associated rates. International Journal of Non–Linear Mechanics, 44:943–956, 2009.

    Article  Google Scholar 

  • P. Grammenoudis, Ch. Tsakmakis, and D. Hofer. Micromorphic continuum Part II: Finite deformation plasticity coupled with damage. International Journal of Non–Linear Mechanics, 44:957–974, 2009.

    Article  Google Scholar 

  • C.B. Hirschberger, E. Kuhl, and P. Steinmann. On deformational and configurational mechanics of micromorphic hyperelasticity - theory and computation. Computer Methods in Applied Mechanics and Engineering, 196:4027–4044, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Jänicke and Diebels. A numerical homogenisation strategy for micromorphic continua. Nuovo Cimento della Societa Italiana di Fisica C-Geophysics and Space Physics, 32:121–132, 2009.

    Google Scholar 

  • R. Jänicke, S. Diebels, H.-G. Sehlhorst, and A. Düster. Two–scale modelling of micromorphic continua. Continuum Mechanics and Thermodynamics, 21:297–315, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • C.B. Kafadar and A.C. Eringen. Micropolar media: I the classical theory. Int. J. Engng Sci., 9:271–305, 1971.

    Article  MATH  Google Scholar 

  • T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of the size of the representative volume element for random composites : statistical and numerical approach. International Journal of Solids and Structures, 40:3647–3679, 2003.

    Article  MATH  Google Scholar 

  • N. Kirchner and P. Steinmann. A unifying treatise on variational principles for gradient and micromorphic continua. Philosophical Magazine, 85: 3875–3895, 2005.

    Article  Google Scholar 

  • V. G. Kouznetsova, M. G. D. Geers, and W. A. M. Brekelmans. Multiscale constitutive modelling of heterogeneous materials with a gradientenhanced computational homogenization scheme. Int. J. Numer. Meth. Engng, 54:1235–1260, 2002.

    Article  MATH  Google Scholar 

  • V. G. Kouznetsova, M. G. D. Geers, and W. A. M. Brekelmans. Multi-scale second-order computational homogenization of multi-phase materials : A nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering, 193:5525–5550, 2004.

    Article  MATH  Google Scholar 

  • S. Kruch and S. Forest. Computation of coarse grain structures using a homogeneous equivalent medium. Journal de Physique IV, 8:Pr8–197–205, 1998.

    Article  Google Scholar 

  • M. Lazar and G.A. Maugin. On microcontinuum field theories: the eshelby stress tensor and incompatibility conditions. Philosophical Magazine, 87: 3853–3870, 2007.

    Article  Google Scholar 

  • X. Liu and G. Hu. Inclusion problem of microstretch continuum. International Journal of Engineering Science, 42:849–860, 2003.

    Article  Google Scholar 

  • J. Mandel. Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Structures, 9:725–740, 1973.

    Article  MATH  Google Scholar 

  • G.A. Maugin. Internal variables and dissipative structures. J. Non–Equilib. Thermodyn., 15:173–192, 1990.

    Google Scholar 

  • R.D. Mindlin. Micro–structure in linear elasticity. Arch. Rat. Mech. Anal., 16:51–78, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  • R.D. Mindlin. Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Structures, 1:417–438, 1965.

    Article  Google Scholar 

  • M. Ostoja-Starzewski, S. D. Boccara, and I. Jasiuk. Couple-stress moduli and characteristic length of two-phase composite. Mechanics Research Communication, 26:387–396, 1999.

    Article  MATH  Google Scholar 

  • R.A. Regueiro. On finite strain micromorphic elastoplasticity. International Journal of Solids and Structures, 47:786–800, 2010.

    Article  MATH  Google Scholar 

  • G. Salerno and F. de Felice. Continuum modeling of periodic brickwork. International Journal of Solids and Structures, 46:1251–1267, 2009.

    Article  MATH  Google Scholar 

  • E. Sanchez-Palencia. Comportement local et macroscopique d’un type de milieux physiques hétérogènes. International Journal of Engineering Science, 12:331–351, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  • V. Sansalone, P. Trovalusci, and F. Cleri. Multiscale modeling of materials by a multifield approach : microscopic stress and strain distribution in fiber-matrix composites. Acta Materialia, 54:3485–3492, 2006.

    Article  Google Scholar 

  • C. Sansour. A unified concept of elastic–viscoplastic Cosserat and micromorphic continua. Journal de Physique IV, 8:Pr8–341–348, 1998a.

    Article  Google Scholar 

  • C. Sansour. A theory of the elastic–viscoplastic cosserat continuum. Archives of Mechanics, 50:577–597, 1998b.

    MATH  Google Scholar 

  • C. Sansour, S. Skatulla, and H. Zbib. A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Structures, 47:1546–1554, 2010.

    Article  MATH  Google Scholar 

  • H. Steeb and S. Diebels. A thermodynamic–consistent model describing growth and remodeling phenomena. Computational Materials Science, 28:597–607, 2003.

    Article  Google Scholar 

  • P. Trovalusci and R. Masiani. Non-linear micropolar and classical continua for anisotropic discontinuous materials. International Journal of Solids and Structures, 40:1281–1297, 2003.

    Article  MATH  Google Scholar 

  • C. Truesdell and W. Noll. The non-linear field theories of mechanics. Handbuch der Physik, edited by S. Flügge, reedition Springer Verlag 2004, 1965.

    Google Scholar 

  • C.A. Truesdell and R.A. Toupin. Handbuch der Physik, S. Flügge, editor, vol. 3, chapter The classical field theories, pages 226–793. Springer verlag, Berlin, 1960.

    Google Scholar 

  • F. Xun, G. Hu, and Z. Huang. Size–dependence of overall in–plane plasticity for fiber composites. International Journal of Solids and Structures, 41: 4713–4730, 2004.

    Article  MATH  Google Scholar 

  • X. Yuan, Y. Tomita, and T. Andou. A micromechanical approach of nonlocal modeling for media with periodic microstructures. Mechanics Research Communications, 35:126–133, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Forest, S. (2013). Micromorphic Media. In: Altenbach, H., Eremeyev, V.A. (eds) Generalized Continua from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, vol 541. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1371-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1371-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1370-7

  • Online ISBN: 978-3-7091-1371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics