Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 541))

Abstract

In this chapter we discuss a Cosserat-type theory of rods. Cosserat-type rod theories are based on the consideration of a rod base curve as a deformable directed curve, that is a curve with attached deformable or non-deformable (rigid) vectors (directors), or based on the derivation of one-dimensional (1D) rod equations from the three-dimensional (3D) micropolar (Cosserat) continuum equations. In the literature are known theories of rods kinematics of which described by introduction of the translation vector and additionally p deformable directors or one deformable director or three unit orthogonal each other directors. The additional vector fields of directors describe the rotational (in some special cases additional) degrees of freedom of the rod. The aim of the chapter is to present a Cosserat-type theory of rods and to show various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Altenbach, H., 2000. An alternative determination of transverse shear stiff-nesses for sandwich and laminated plates. Int. J. Solids Struct. 37, 3503– 3520.

    Google Scholar 

  • Altenbach J., Altenbach H., 1994. Einführung in die Kontinuumsmechanik. Teubner, Stuttgart.

    Google Scholar 

  • Altenbach, H., Bîrsan, M., Eremeyev, V.A., 2012. On a thermodynamic theory of rods with two temperature fields, Acta Mech., in print.

    Google Scholar 

  • Altenbach, H., Eremeyev, V.A., 2008. Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78, 775–794.

    Article  MATH  Google Scholar 

  • Altenbach, H., Eremeyev, V.A., 2009. On the bending of viscoelastic plates made of polymer foams, Acta Mech. 204, 137–154.

    Article  MATH  Google Scholar 

  • Altenbach, H., Naumenko, K., Zhilin, P.A., 2006. A direct approach to the formulation of constitutive equations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (Eds.), Shell Structures: Theory and Applications. Taylor and Francis, London, pp. 87–90.

    Google Scholar 

  • Altenbach, H., ¨Ochsner, A., 2010. Cellular and Porous Materials in Structures and Processes. CISM Courses and Lectures, Vol. 521, Springer Wien NewYork.

    Book  MATH  Google Scholar 

  • Altenbach, H., Zhilin, P.A., 1988. A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11, 107–148.

    MathSciNet  Google Scholar 

  • Antman, S.S., 1995. Nonlinear Problems of Elasticity. Series Applied Mathematical Sciences, no. 107, Springer, New York.

    Google Scholar 

  • Berdichevsky, V.L., 2009. Variational Principles of Continuum Mechanics, Vol. II: Applications. Springer–Verlag, Berlin.

    MATH  Google Scholar 

  • Bîrsan, M., 2006a. On the theory of elastic shells made from a material with voids. Int. J. Solids Struct. 43, 3106–3123.

    Article  Google Scholar 

  • Bîrsan, M., 2006b. On a thermodynamic theory of porous Cosserat elastic shells. J. Thermal Stresses 29, 879–899.

    Article  Google Scholar 

  • Bîrsan, M., 2008. Inequalities of Korn’s type and existence results in the theory of Cosserat elastic shells. J. Elasticity 90, 227–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Bîrsan, M., Altenbach, H., 2011a. On the theory of porous elastic rods. Int. J. Solids Struct. 48, 910-924.

    Article  Google Scholar 

  • Bîrsan, M., Altenbach, H., 2011b. Theory of thin thermoelastic rods made of porous materials. Arch. Appl. Mech. 81, 1365-1391.

    Article  Google Scholar 

  • Bîrsan, M., Altenbach, H., 2012a. The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods. Meccanica 47, 789-794.

    Article  Google Scholar 

  • Bîrsan, M., Altenbach, H., 2012b. On the Cosserat model for thin rods made of thermoelastic materials with voids. Discrete and Continuous Dynamical Systems - Series S, in print.

    Google Scholar 

  • Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D., 2012. Deformation analysis of functionally graded beams by the direct approach. Composites: Part B 43(3), 1315-1328.

    Article  Google Scholar 

  • Bîrsan, M., Bîrsan, T., 2011. An inequality of Cauchy–Schwarz type with application in the theory of elastic rods. Libertas Mathematica 31, 123– 126.

    Google Scholar 

  • Brezis, H., Analyse fonctionelle: Théorie et applications. Masson, Paris, 1992.

    Google Scholar 

  • Capriz, G., 1989. Continua with Microstructure. Springer Tracts in Natural Philosophy, no. 35, Springer–Verlag, New York.

    Google Scholar 

  • Capriz, G., Podio–Guidugli, P., 1981. Materials with spherical structure. Arch. Rational Mech. Anal. 75, 269–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlson, D.E., 1972. Linear Thermoelasticity. In: Flügge W (Ed.), Handbuch der Physik, vol. VI a/2, , pp. 297–346 Springer Verlag, Berlin.

    Google Scholar 

  • Ciarlet, P.G., 2000. Mathematical Elasticity, Vol. III: Theory of Shells. North-Holland, Elsevier, Amsterdam.

    Google Scholar 

  • Ciarlet, P.G., An Introduction to Differential Geometry with Applications to Elasticity. Springer, Dordrecht, 2005.

    MATH  Google Scholar 

  • Ciarletta, M., Ieşan, D., 1993. Non–classical Elastic Solids. Pitman Research Notes in Mathematics, no. 293, Longman Scientific & Technical, London.

    Google Scholar 

  • Coleman, B.D., Noll, W., 1963. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167-178.

    Article  MathSciNet  MATH  Google Scholar 

  • Cosserat, E., Cosserat, F., 1909. Théorie des corps déformables. A. Herman et Fils, Paris.

    Google Scholar 

  • Cowin, S.C., Goodman, M.A., 1976. A variational principle for granular materials. ZAMM 56, 281–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin, S.C., Leslie, F.M., 1980. On kinetic energy and momenta in Cosserat continua. ZAMP 31, 247–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin, S.C., Nunziato, J.W., 1983. Linear elastic materials with voids. J. Elasticity 13, 125–147.

    Article  MATH  Google Scholar 

  • Eremeyev, V. A., Pietraszkiewicz, W., 2011. Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59, 1395-1412.

    Article  MathSciNet  Google Scholar 

  • Freddi, L., Morassi, A., Paroni, R., 2007. Thin-walled beams: A derivation of Vlassov theory via Γ–convergence. J. Elasticity 86, 263–296.

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson, L.J., Ashby, M.F., 1997. Cellular Solids: Structure and Properties (2nd edition). Cambridge Solid State Science Series, Cambridge University Press, Cambridge.

    Google Scholar 

  • Goodman, M.A., Cowin, S.C., 1972. A continuum theory for granular materials. Arch. Rational Mech. Anal. 44, 249–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M., 1979. On thermal effects in the theory of rods. Int. J. Solids Struct. 15, 829–853.

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M., Wenner, M.L., 1974. On the theory of rods – Part II: Developments by direct approach. Proc. Royal Soc. London A337, 485–507.

    MathSciNet  Google Scholar 

  • Gurtin, M.E., 1972. The Linear Theory of Elasticity. In: Flügge, W. (Ed.), Handbuch der Physik, vol. VI a/2. Springer Verlag, Berlin, pp. 1–295.

    Google Scholar 

  • Hodges, D.H., 2006. Nonlinear Composite Beam Theory. Progress in Astronautics and Aeronautics, no. 213, American Institute of Aeronautics and Astronautics Inc., Reston.

    Google Scholar 

  • Ieşan, D., 1986. A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89.

    Article  Google Scholar 

  • Ieşan, D., 2009a. Classical and Generalized Models of Elastic Rods. Chapman & Hall / CRC Press, Boca Raton - London - New York.

    MATH  Google Scholar 

  • Ieşan, D., 2009b. Thermal effects in orthotropic porous elastic beams. ZAMP 60, 138–153.

    Article  MATH  Google Scholar 

  • Ieşan, D., Scalia, A., 2007. On the deformation of functionally graded porous elastic cylinders. J. Elasticity 87, 147-159.

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins, J.T., 1975. Static equilibrium of granular materials. J. Appl. Mech. 42, 603–606.

    Article  Google Scholar 

  • Lebedev, L. P., Cloud, M. J., Eremeyev, V. A., 2010. Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey.

    Book  MATH  Google Scholar 

  • Lembo, M., Podio–Guidugli, P., 2001. Internal constraints, reactive stresses, and the Timoshenko beam theory. J. Elasticity 65, 131–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Love, A.E.H., 1944. A Treatise in the Mathematical Theory of Elasticity. Fourth Edition, Dover Publ., New York.

    Google Scholar 

  • Lurie, A.I., 2005. Theory of Elasticity. Springer, Berlin.

    Book  Google Scholar 

  • Meunier, N., 2008. Recursive derivation of one-dimensional models from three-dimensional nonlinear elasticity. Math. Mech. Solids 13, 172–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Naumenko, K., Altenbach, H., 2007. Modeling of Creep for Structural Analysis. Springer–Verlag, Berlin.

    Book  Google Scholar 

  • Neff, P., 2004. A geometrically exact Cosserat shellmodel including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16, 577–628.

    Article  MathSciNet  MATH  Google Scholar 

  • Neff, P., 2007. A geometrically exact planar Cosserat shell-model with microstructure: Existence of minimizers for zero Cosserat couple modulus. Math. Models Meth. Appl. Sci. 17, 363–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Nunziato, J.W., Cowin, S.C., 1979. A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72, 175–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Pazy, A., 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York.

    Book  MATH  Google Scholar 

  • Podio–Guidugli, P., 2008. Validation of classical beam and plate models by variational convergence. In: Jaiani, G., Podio–Guidugli, P. (Eds.), IUTAM Symposium on Relations of Shell, Plate, Beam, and 3D Models, IUTAM Bookseries, vol. 9. Springer Science + Business Media B.V., pp. 177–188.

    Chapter  Google Scholar 

  • Rubin, M.B., 2000. Cosserat Theories: Shells, Rods, and Points. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  • Simmonds, J.G., 1984. The thermodynamical theory of shells: Descent from 3-dimensions without thickness expansions. In: Axelrad, E.K., Emmerling, F.A. (eds.) Flexible Shells, Theory and Applications, pp. 1-11. Springer, Berlin.

    Chapter  Google Scholar 

  • Simmonds, J.G., 2005. A simple nonlinear thermodynamic theory of arbitrary elastic beams. J. Elasticity 81, 51-62.

    Article  MathSciNet  MATH  Google Scholar 

  • Simmonds, J.G., 2011. A classical, nonlinear thermodynamic theory of elastic shells based on a single constitutive assumption. J. Elasticity 105, 305-312.

    Article  MathSciNet  Google Scholar 

  • Sprekels, J., Tiba, D., 2009. The control variational approach for differential systems. SIAM J. Control Optim. 47, 3220–3226.

    Article  MathSciNet  MATH  Google Scholar 

  • Svetlitsky, V.A., 2000. Statics of Rods. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Tiba, D., Vodak, R., 2005. A general asymptotic model for Lipschitzian curved rods. Adv. Math. Sci. Appl. 15, 137–198.

    MathSciNet  MATH  Google Scholar 

  • Timoshenko, S.P., 1921. On the correction for shear of the differential equation for transverse vibrations of prismatic beams. Philosophical Magazine 41, 744–746.

    Article  Google Scholar 

  • Toupin, R.A., 1964. Theories of elasticity with couple stress. Arch. Rational Mech. Anal. 17, 85–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Trabucho, L., Viaño, J.M., 1996. Mathematical modelling of rods. In: Ciarlet, P.G., Lions, J.L. (Eds.), Handbook of Numerical Analysis, vol. 4. North Holland, Amsterdam, pp. 487–974.

    Google Scholar 

  • Truesdell, C., 1984. Rational Thermodynamics (2nd edition). Springer, New York.

    Book  MATH  Google Scholar 

  • Vrabie, I.I., C 0–Semigroups and Applications. North–Holland, Elsevier, Amsterdam, 2003.

    Google Scholar 

  • Zhilin, P.A., 1976. Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648.

    Article  MathSciNet  Google Scholar 

  • Zhilin, P.A., 2006a. Nonlinear theory of thin rods. In: Indeitsev, D.A., Ivanova, E.A., Krivtsov, A.M. (Eds.), Advanced Problems in Mechanics, vol. 2. Instit. Problems Mech. Eng. R.A.S. Publ., St. Petersburg, pp. 227–249.

    Google Scholar 

  • Zhilin, P.A., 2006b. Applied Mechanics – Foundations of Shell Theory (in Russian). Politekhn. Univ. Publ., St. Petersburg.

    Google Scholar 

  • Zhilin, P.A., 2007. Applied Mechanics – Theory of Thin Elastic Rods (in Russian). Politekhn. Univ. Publ., St. Petersburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Altenbach, H., Bîrsan, M., Eremeyev, V.A. (2013). Cosserat-Type Rods. In: Altenbach, H., Eremeyev, V.A. (eds) Generalized Continua from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, vol 541. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1371-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1371-4_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1370-7

  • Online ISBN: 978-3-7091-1371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics