Skip to main content

Functional Inhibitors of Acid Sphingomyelinase (FIASMAs)

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

Sphingolipids are not only structural components of biological membranes, but also play an important role in cellular signalling and, thus, are involved in cell proliferation and differentiation but also stress and cell death. It is therefore of great clinical relevance to define inhibitors of the enzymes involved in sphingolipid metabolism. Here, we describe the state of the art of functional inhibitors of the acid sphingomyelinase. The acid sphingomyelinase converts sphingomyelin to ceramide, a compound often involved in cell stress. We describe the structural and physicochemical properties, the distribution, the pharmacokinetics, the pharmocodynamics and the clinical use of direct and functional inhibitors of the acid sphingomyelinase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood–brain barrier. Mol Med Today 2(3):106–113

    Article  PubMed  CAS  Google Scholar 

  • Arenz C (2010) Small molecule inhibitors of acid sphingomyelinase. Cell Physiol Biochem 26(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  • Baker DE (2007) Loperamide: a pharmacological review. Rev Gastroenterol Disord 7(suppl 3):S11–S18

    PubMed  Google Scholar 

  • Becker KA, Riethmüller J, Lüth A, Döring G, Kleuser B, Gulbins E (2010) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 42(6):716–724

    Article  PubMed  CAS  Google Scholar 

  • Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121(11):4222–4230

    Article  PubMed  CAS  Google Scholar 

  • Black WC, Percival MD (2006) The consequences of lysosomotropism on the design of selective cathepsin K inhibitors. ChemBioChem 7(10):1525–1535

    Article  PubMed  CAS  Google Scholar 

  • Bollinger CR, Teichgräber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746(3):284–294

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MWB (1993) The blood–brain barrier. Exp Physiol 78(4):453–472

    PubMed  CAS  Google Scholar 

  • Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann–Pick diseae. Proc Natl Acad Sci 55(2): 366–369

    Article  PubMed  CAS  Google Scholar 

  • Charruyer A, Grazide S, Bezombes C, Müller S, Laurent G, Jaffrézou J-P (2005) UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 280(19):19196–19204

    Article  PubMed  CAS  Google Scholar 

  • Clark DE (2011) What has polar surface area ever done for drug discovery? Future Med Chem 3: 469–484

    Article  PubMed  CAS  Google Scholar 

  • Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Lösche W, Kinscherf R, Deigner H-P (2005) Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J 19(12):1719–1721

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Deigner H-P, Genovese T, Mazzon E, Esposito E, Crisafulli C, Di Paola R, Bramanti P, Matuschak G, Salvemini D (2009) Inhibition of ceramide biosynthesis ameliorates pathological consequences of spinal cord injury. Shock 31(6):635–645

    Article  Google Scholar 

  • de Boer AG, van der Sandt ICJ, Gaillard PJ (2003) The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol 43:629–656

    Article  PubMed  Google Scholar 

  • De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Lysosomotropic agents. Biochem Pharmacol 23(18):2495–2531

    Article  PubMed  Google Scholar 

  • de Lange ECM (2004) Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 56(12):1793–1809

    Article  PubMed  Google Scholar 

  • Féart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues J-F, Scarmeas N, Barberger-Gateau P (2009) Adherence to a mediterranean diet, cognitive decline, and risk of dementia. JAMA 302(6):638–648

    Article  PubMed  Google Scholar 

  • Fernández A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2008) Cholesterol and sphingolipids in alcohol-induced liver injury. J Gastroenterol Hepatol 23:S9–S15

    Article  PubMed  Google Scholar 

  • Fischer H, Kansy M, Avdeef A, Senner F (2007) Permeation of permanently positive charged molecules through artificial membranes—influence of physico-chemical properties. Eur J Pharm Sci 31(1):32–42

    Article  PubMed  CAS  Google Scholar 

  • Gallala HD, Sandhoff K (2011) Biological function of the cellular lipid BMP—BMP as a key activator for cholesterol sorting and membrane digestion. Neurochem Res 36(9):1594–1600

    Article  PubMed  CAS  Google Scholar 

  • Göggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schütze S, Gulbins E, Uhlig S (2004) PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10(2):155–160

    Article  PubMed  Google Scholar 

  • Gracia-Garcia P, Rao V, Haughey NJ, Ratnam Banduru VV, Smith G, Rosenberg PB, Lobo A, Lyketsos CG, Mielke MM (2011) Elevated plasma ceramides in depression. J Neuropsychiatry Clin Neurosci 23(2):215–218

    Article  PubMed  CAS  Google Scholar 

  • Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276(23):20589–20596

    Article  PubMed  Google Scholar 

  • Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9(3):322–330

    Article  PubMed  Google Scholar 

  • Guidelines for ATC classifications and DDD assignment (2011) World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology. http://www.whocc.no/filearchive/publications/2010guidelines.pdf. Accessed 19 Oct 2009

  • Han X, Holtzman DM, McKeel DW, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82(4):809–818

    Article  PubMed  CAS  Google Scholar 

  • He X, Huang Y, Li B, Gong C-X, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3):398–408

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375(7):447–450

    Article  PubMed  CAS  Google Scholar 

  • Inc. ACD ACD/PhysChem. version 10.0 edn., Toronto, ON, Canada. http://www.acdlabs.com

  • Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5(3):322–329

    PubMed  CAS  Google Scholar 

  • Kaufmann AM, Krise JP (2007) Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96(4):729–746

    Article  PubMed  CAS  Google Scholar 

  • Kim M-Y, Linardic C, Obeid L, Hannun Y (1991) Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266(1):484–489

    PubMed  CAS  Google Scholar 

  • Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21(1):81–103

    Article  PubMed  CAS  Google Scholar 

  • Kölzer M, Werth N, Sandhoff K (2004) Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett 559(1–3):96–98

    Article  PubMed  Google Scholar 

  • Kornhuber J, Medlin A, Bleich S, Jendrossek V, Henkel AW, Wiltfang J, Gulbins E (2005) High activity of acid sphingomyelinase in major depression. J Neural Transm 112(11):1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiftfang J, Gulbins E (2008) Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem 51(2):219–237

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Tripal P, Reichel M, Mühle C, Rhein C, Muehlbacher M, Groemer TW, Gulbins E (2010) Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26(1):9–20

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P (2011) Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 6(8):e23852

    Article  PubMed  CAS  Google Scholar 

  • Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rübben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Häussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13(2):164–170

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  PubMed  CAS  Google Scholar 

  • Macauley SL, Sidman RL, Schuchman EH, Taksir T, Stewart GR (2008) Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann–Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol 214(2):181–192

    Article  PubMed  CAS  Google Scholar 

  • Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J-L, Oster T, Pillot T (2006) Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 23(1):178–189

    Article  PubMed  CAS  Google Scholar 

  • Mikati MA, Zeinieh M, Habib RA, El Hokayem J, Rahmeh A, El Sabban M, Usta J, Dbaibo G (2008) Changes in sphingomyelinases, ceramide, bax, bcl2, and caspase-3 during and after experimental status epilepticus. Epilepsy Res 81(2):161–166

    Article  PubMed  CAS  Google Scholar 

  • Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 31(6):246–254

    Article  PubMed  CAS  Google Scholar 

  • Mintzer RJ, Appell KC, Cole A, Johns A, Pagila R, Polokoff MA, Tabas I, Snider RM, Meurer-Ogden JA (2005) A novel high-throughput screening format to identify inhibitors of secreted acid sphingomyelinase. J Biomol Screen 10(3):225–234

    Article  PubMed  CAS  Google Scholar 

  • Mostert JP, Admiraal-Behloul F, Hoogduin JM, Luyendijk J, Heersema DJ, van Buchem MA, De Keyser J (2008) Effects of fluoxetine on disease activity in relapsing multiple sclerosis: a double-blind, placebo-controlled, exploratory study. J Neurol Neurosurg Psychiatry 79(9):1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Muehlbacher M, Tripal P, Roas F, Kornhuber J (2012) Identification of drugs inducing phospholipidosis by novel in vitro data. ChemMedChem 7(11):1925–1934

    Google Scholar 

  • Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, Petrusca DN, Mollace V, Mazzon E, Li D, Petrache I, Matuschak GM, Salvemini D (2009) Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 329(1):64–75

    Article  PubMed  CAS  Google Scholar 

  • Novelli A, Lysko PG, Henneberry RC (1987) Uptake of imipramine in neurons cultured from rat cerebellum. Brain Res 411(2):291–297

    Article  PubMed  CAS  Google Scholar 

  • Nussio MR, Sykes MJ, Miners JO, Shapter JG (2007) Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance. ChemMedChem 2(3):366–373

    Article  PubMed  CAS  Google Scholar 

  • Pariente J, Loubinoux I, Carel C, Albucher J-F, Leger A, Manelfe C, Rascol O, Chollet F (2001) Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 50(6):718–729

    Article  PubMed  CAS  Google Scholar 

  • Purvis GD (2008) Size-intensive descriptors. J Comput Aided Mol Des 22(6):461–468

    Article  PubMed  CAS  Google Scholar 

  • Rebillard A, Rioux-Leclercq N, Muller C, Bellaud P, Jouan F, Meurette O, Jouan E, Vernhet L, Le Quement C, Carpinteiro A, Schenck M, Lagadic-Gossmann D, Gulbins E, Dimanche-Boitrel MT (2008) Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene 27(51):6590–6595

    Article  PubMed  CAS  Google Scholar 

  • Reichel M, Greiner E, Richter-Schmidinger T, Yedibela Ö, Tripal P, Jacobi A, Bleich S, Gulbins E, Kornhuber J (2010) Increased acid sphingomyelinase activity in peripheral blood cells of acutely intoxicated patients with alcohol dependence. Alcohol Clin Exp Res 34(1):46–50

    Article  PubMed  CAS  Google Scholar 

  • Reichel M, Beck J, Mühle C, Rotter A, Bleich S, Gulbins E, Kornhuber J (2011) Activity of secretory sphingomyelinase is increased in plasma of alcohol-dependent patients. Alcohol Clin Exp Res 35(10):1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller J, Anthonysamy J, Serra E, Schwab M, Döring G, Gulbins E (2009) Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell Physiol Biochem 24(1–2):65–72

    Article  PubMed  Google Scholar 

  • Sakata A, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S, Toda A, Eyanagi R, Soeda S (2007) Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology 122(1):56–64

    Article  Google Scholar 

  • Santana P, Peña LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86(2):189–199

    Article  PubMed  CAS  Google Scholar 

  • Schuchman EH (2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis 30(5):654–663

    Article  PubMed  CAS  Google Scholar 

  • Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, McKenna P, Bahn S (2008) High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7(10):4266–4277

    Article  PubMed  CAS  Google Scholar 

  • Seto M, Whitlow M, McCarrick MA, Srinivasan S, Zhu Y, Pagila R, Mintzer R, Light D, Johns A, Meurer-Ogden JA (2004) A model of the acid sphingomyelinase phosphoesterase domain based on its remote structural homolog purple acid phosphatase. Protein Sci 13(12):3172–3186

    Article  PubMed  CAS  Google Scholar 

  • Short B (2010) Acid sphingomyelinase deals the seal. J Cell Biol 189(6):920

    Google Scholar 

  • Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 22(10):3419–3431

    Article  PubMed  CAS  Google Scholar 

  • Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW, Weller M, Tümmler B, Lang F, Grassme H, Döring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–391

    Article  PubMed  Google Scholar 

  • Trapp S, Rosania GR, Horobin RW, Kornhuber J (2008) Quantitative modeling of selective lysosomal targeting for drug design. Eur Biophys J 37(8):1317–1328

    Article  PubMed  CAS  Google Scholar 

  • Wiegmann K, Schütze S, Machleidt T, Witte D, Krönke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78(6):1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Wilkening G, Linke T, Sandhoff K (1998) Lysosomal degradation on vesicular membrane surfaces. J Biol Chem 273(46):30271–30278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A portion of this work was supported by funding from the Deutsche Forschungsgemeinschaft (DFG grants GU 335/23-1, KO 947/11-1) and the German Ministry of Education and Research (BMBF Grant 01EX1015B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kornhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kornhuber, J., Tripal, P., Gulbins, E., Muehlbacher, M. (2013). Functional Inhibitors of Acid Sphingomyelinase (FIASMAs). In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_9

Download citation

Publish with us

Policies and ethics