Skip to main content

Sphingolipids and Membrane Domains: Recent Advances

  • Chapter
  • First Online:
Sphingolipids: Basic Science and Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

There is growing evidence that cell membranes can contain domains with different lipid and protein compositions and with different physical properties. Furthermore, it is increasingly appreciated that sphingolipids play a crucial role in the formation and properties of ordered lipid domains (rafts) in cell membranes. This review describes recent advances in our understanding of ordered membrane domains in both cells and model membranes. In addition, how the structure of sphingolipids influences their ability to participate in the formation of ordered domains, as well as how sphingolipid structure alters ordered domain properties, is described. The diversity of sphingolipid structure is likely to play an important role in modulating the biologically relevant properties of “rafts” in cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  PubMed  CAS  Google Scholar 

  • Alanko SMK, Halling KK, Maunula S, Slotte JP, Ramstedt B (2005) Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules. Biochim Biophys Acta 1715:111–121

    Article  PubMed  CAS  Google Scholar 

  • Anderson TG, Tan A, Ganz P, Seelig J (2004) Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. Biochemistry 43:2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Arvanitis DN, Min WX, Gong YP, Heng YM, Boggs JM (2005) Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin. J Neurochem 94:1696–1710

    Article  PubMed  CAS  Google Scholar 

  • Ayuyan AG, Cohen FS (2008) Raft composition at physiological temperature and pH in the absence of detergents. Biophys J 94:2654–2666

    Article  PubMed  CAS  Google Scholar 

  • Barton PG, Gunstone FD (1975) Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. J Biol Chem 250: 4470–4476

    PubMed  CAS  Google Scholar 

  • Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, Webb WW (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci U S A 104:3165–3170

    Article  PubMed  CAS  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  PubMed  CAS  Google Scholar 

  • Bektas M, Dullin Y, Wieder T, Kolter T, Sandhoff K, Brossmer R, Ihrig P, Orfanos CE, Geilen CC (1998) Induction of apoptosis by synthetic ceramide analogues in the human keratinocyte cell line HaCaT. Exp Dermatol 7:342–349

    Article  PubMed  CAS  Google Scholar 

  • Bittman R, Kasireddy CR, Mattjus P, Slotte JP (1994) Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry 33:11776–11781

    Article  PubMed  CAS  Google Scholar 

  • Bjorkbom A, Ohvo-Rekila H, Kankaanpaa P, Nyholm TKM, Westerlund B, Slotte JP (2010a) Characterization of membrane properties of inositol phosphorylceramide. Biochim Biophys Acta 1798:453–460

    Article  PubMed  CAS  Google Scholar 

  • Bjorkbom A, Rog T, Kankaanpaa P, Lindroos D, Kaszuba K, Kurita M, Yamaguchi S, Yamamoto T, Jaikishan S, Paavolainen L, Paivarinne J, Nyholm TKM, Katsumura S, Vattulainen I, Slotte JP (2011) N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol. Biochim Biophys Acta 1808:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Bjorkbom A, Rog T, Kaszuba K, Kurita M, Yamaguchi S, Lonnfors M, Nyholm TK, Vattulainen I, Katsumura S, Slotte JP (2010b) Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol. Biophys J 99:3300–3308

    Article  PubMed  CAS  Google Scholar 

  • Blanchette CD, Lin WC, Ratto TV, Longo ML (2006) Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions. Biophys J 90:4466–4478

    Article  PubMed  CAS  Google Scholar 

  • Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294

    Article  PubMed  CAS  Google Scholar 

  • Boulgaropoulos B, Arsov Z, Laggner P, Pabst G (2011) Stable and unstable lipid domains in ceramide-containing membranes. Biophys J 100:2160–2168

    Article  PubMed  CAS  Google Scholar 

  • Braccia A, Villani M, Immerdal L, Niels-Christiansen LL, Nystrom BT, Hansen GH, Danielsen EM (2003) Microvillar membrane microdomains exist at physiological temperature - role of galectin-4 as lipid raft stabilizer revealed by “superrafts”. J Biol Chem 278:15679–15684

    Article  PubMed  CAS  Google Scholar 

  • Brewster R, Pincus PA, Safran SA (2009) Hybrid lipids as a biological surface-active component. Biophys J 97:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Brewster R, Safran SA (2010) Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys J 98:L21–L23

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  • Brugger B, Sandhoff R, Wegehingel S, Gorgas K, Malsam J, Helms JB, Lehmann WD, Nickel W, Wieland FT (2000) Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J Cell Biol 151:507–518

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Jen A, Warley A, Lawrence MJ, Quinn PJ, Morris RJ (2009) Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem J 417:525–533

    Article  PubMed  CAS  Google Scholar 

  • Cheng HT, London E (2011) Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys J 100:2671–2678

    Article  PubMed  CAS  Google Scholar 

  • Cheng HT, Megha, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284:6079–6092

    Article  PubMed  CAS  Google Scholar 

  • Chiantia S, Kahya N, Ries J, Schwille P (2006) Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 90:4500–4508

    Article  PubMed  CAS  Google Scholar 

  • Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23:7659–7665

    Article  PubMed  CAS  Google Scholar 

  • Chiantia S, Ries J, Chwastek G, Carrer D, Li Z, Bittman R, Schwille P (2008) Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochim Biophys Acta 1778:1356–1364

    Article  PubMed  CAS  Google Scholar 

  • Chiantia S, Schwille P, Klymchenko AS, London E (2011) Asymmetric GUVs prepared by MbetaCD-mediated lipid exchange: an FCS study. Biophys J 100:L1–L3

    Article  PubMed  CAS  Google Scholar 

  • Collins MD (2008) Interleaflet coupling mechanisms in bilayers of lipids and cholesterol. Biophys J 94:L32–L34

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Keller SL (2008) Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc Natl Acad Sci U S A 105:124–128

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (2010) Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim Biophys Acta 1797:1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Contreras FX, Basanez G, Alonso A, Herrmann A, Goni FM (2005) Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 88:348–359

    Article  PubMed  CAS  Google Scholar 

  • Contreras FX, Sot J, Alonso A, Goni FM (2006) Sphingosine increases the permeability of model and cell membranes. Biophys J 90:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Coskun U, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108:9044–9048

    Article  PubMed  CAS  Google Scholar 

  • Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Cuadras MA, Greenberg HB (2003) Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology 313:308–321

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta U, Bamba T, Chiantia S, Karim P, Abou Tayoun AN, Yonamine I, Rawat SS, Rao RP, Nagashima K, Fukusaki E, Puri V, Dolph PJ, Schwille P, Acharya JK, Acharya U (2009) Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci U S A 106:20063–20068

    PubMed  CAS  Google Scholar 

  • de Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    Article  PubMed  Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001a) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001b) Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci U S A 98:10642–10647

    Article  PubMed  CAS  Google Scholar 

  • Drevot P, Langlet C, Guo XJ, Bernard AM, Colard O, Chauvin JP, Lasserre R, He HT (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J 21:1899–1908

    Article  PubMed  CAS  Google Scholar 

  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Ehrig J, Petrov EP, Schwille P (2011) Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. Biophys J 100:80–89

    Article  PubMed  CAS  Google Scholar 

  • Ekholm O, Jaikishan S, Lonnfors M, Nyholm TKM, Slotte JP (2011) Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids. Biochim Biophys Acta 1808:727–732

    Article  PubMed  CAS  Google Scholar 

  • El Kirat K, Morandat S (2007) Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. Biochim Biophys Acta 1768:2300–2309

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF (2004) Non-raft forming sphingomyelin-cholesterol mixtures. Chem Phys Lipids 132:37–46

    Article  PubMed  CAS  Google Scholar 

  • Everett J, Zlotnick A, Tennyson J, Holloway PW (1986) Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine. J Biol Chem 261:6725–6729

    PubMed  CAS  Google Scholar 

  • Fastenberg ME, Shogomori H, Xu X, Brown DA, London E (2003) Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Biochemistry 42:12376–12390

    Article  PubMed  CAS  Google Scholar 

  • Feigenson GW (2006) Phase behavior of lipid mixtures. Nat Chem Biol 2:560–563

    Article  PubMed  CAS  Google Scholar 

  • Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta 1788:47–52

    Article  PubMed  CAS  Google Scholar 

  • Filippov A, Oradd G, Lindblom G (2006) Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys J 90:2086–2092

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pacios M, Collado MI, Busto JV, Sot J, Alonso A, Arrondo JLR, Goni FM (2009) Sphingosine-1-phosphate as an amphipathic metabolite: its properties in aqueous and membrane environments. Biophys J 97:1398–1407

    Article  PubMed  CAS  Google Scholar 

  • Garner AE, Smith DA, Hooper NM (2008) Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys J 94:1326–1340

    Article  PubMed  CAS  Google Scholar 

  • Gaus K, Chklovskaia E, de St F, Groth B, Jessup W, Harder T (2005) Condensation of the plasma membrane at the site of T lymphocyte activation. J Cell Biol 171:121–131

    Article  PubMed  CAS  Google Scholar 

  • Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100:15554–15559

    Article  PubMed  CAS  Google Scholar 

  • Gaus K, Le Lay S, Balasubramanian N, Schwartz MA (2006a) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174:725–734

    Article  PubMed  CAS  Google Scholar 

  • Gaus K, Zech T, Harder T (2006b) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23:41–48

    Article  PubMed  CAS  Google Scholar 

  • Gidwani A, Brown HA, Holowka D, Baird B (2003) Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcepsilonRI. J Cell Sci 116:3177–3187

    Article  PubMed  CAS  Google Scholar 

  • Goni FM, Alonso A (2009) Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 1788:169–177

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307

    PubMed  CAS  Google Scholar 

  • Grassmé H, Riethmüller J, Gulbins E (2007) Prog Lipid Res. Biological aspects of ceramide-enriched membrane domains 46:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51:50–62

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med 82:357–363

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Grassme H (2002) Ceramide and cell death receptor clustering. Biochim Biophys Acta 1585:139–145

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (2004) Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. An Acad Bras Cienc 76:553–572

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A (1998) New insights in glycosphingolipid function: “glycosignaling domain”, a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8:Xi–Xviii

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Miura Y, Komatsu Y, Kishimoto Y, Vestergaard M, Takagi M (2008) Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets. J Phys Chem B 112:14678–14681

    Article  PubMed  CAS  Google Scholar 

  • Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B, Feigenson GW (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci U S A 102:6320–6325

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507

    Article  PubMed  CAS  Google Scholar 

  • Harder T, Rentero C, Zech T, Gaus K (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19:470–475

    Article  PubMed  CAS  Google Scholar 

  • Heberle FA, Feigenson GW (2011) Phase separation in lipid membranes. Cold Spring Harb Perspect Biol 3:1–13

    Article  CAS  Google Scholar 

  • Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW (2010) Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 99:3309–3318

    Article  PubMed  CAS  Google Scholar 

  • Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83: 2693–2701

    Article  PubMed  CAS  Google Scholar 

  • Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329:793–799

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JM, Angelova MI, Kinnunen PKJ (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838

    Article  PubMed  CAS  Google Scholar 

  • Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M, Schick M, Keller SL (2008) Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys J 95:236–246

    Article  PubMed  CAS  Google Scholar 

  • Hope MJ, Cullis PR (1987) Lipid asymmetry induced by transmembrane pH gradients in large unilamellar vesicles. J Biol Chem 262:4360–4366

    PubMed  CAS  Google Scholar 

  • Hope MJ, Redelmeier TE, Wong KF, Rodrigueza W, Cullis PR (1989) Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Biochemistry 28:4181–4187

    Article  PubMed  CAS  Google Scholar 

  • Hu PC, Li S, Malmstadt N (2011) Microfluidic fabrication of asymmetric giant lipid vesicles. ACS Appl Mater Interfaces 3:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Huang JY, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K, Nagaoka I (2002) Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100:1454–1464

    PubMed  CAS  Google Scholar 

  • Iwabuchi K, Nakayama H, Iwahara C, Takamori K (2010) Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett 584: 1642–1652

    Article  PubMed  CAS  Google Scholar 

  • Jaikishan S, Bjorkbom A, Slotte JP (2010) Sphingomyelin analogs with branched N-acyl chains: the position of branching dramatically affects acyl chain order and sterol interactions in bilayer membranes. Biochim Biophys Acta 1798:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Jaikishan S, Slotte JP (2011) Effect of hydrophobic mismatch and interdigitation on sterol/sphingomyelin interaction in ternary bilayer membranes. Biochim Biophys Acta 1808:1940–1945

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, Stinson BM, Go MS, Carmona LM, Reminick JI, Fang X, Baumgart T (2010) Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. Biochim Biophys Acta 1798:1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Kaiser HJ, Orlowski A, Rog T, Nyholm TKM, Chai WG, Feizi T, Lingwood D, Vattulainen I, Simons K (2011) Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc Natl Acad Sci U S A 108:16628–16633

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama H, Yoshii H, Tanaka Y, Sato H, Yamamoto N, Kubo Y (2009) Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection. Virology 386:23–31

    Article  PubMed  CAS  Google Scholar 

  • Kan CC, Ruan ZS, Bittman R (1991) Interaction of cholesterol with sphingomyelin in bilayer-membranes - evidence that the hydroxy group of sphingomyelin does not modulate the rate of cholesterol exchange between vesicles. Biochemistry 30:7759–7766

    Article  PubMed  CAS  Google Scholar 

  • Keller H, Lorizate M, Schwille P (2009) PI(4,5)P(2) degradation promotes the formation of cytoskeleton-free model membrane systems. Chemphyschem 10:2805–2812

    Article  PubMed  CAS  Google Scholar 

  • Kiessling V, Crane JM, Tamm LK (2006) Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys J 91:3313–3326

    Article  PubMed  CAS  Google Scholar 

  • Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788:64–71

    Article  PubMed  CAS  Google Scholar 

  • Kim HM, Choo HJ, Jung SY, Ko YG, Park WH, Jeon SJ, Kim CH, Joo T, Cho BR (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8:553–559

    Article  PubMed  CAS  Google Scholar 

  • Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185:601–612

    Article  PubMed  CAS  Google Scholar 

  • Kniep B, Skubitz KM (1998) Subcellular localization of glycosphingolipids in human neutrophils. J Leukoc Biol 63:83–88

    PubMed  CAS  Google Scholar 

  • Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300

    Article  PubMed  CAS  Google Scholar 

  • Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 96:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • Kuikka M, Ramstedt B, Ohvo-Rekila H, Tuuf J, Slotte JP (2001) Membrane properties of D-erythro-N-acyl sphingomyelins and their corresponding dihydro species. Biophys J 80: 2327–2337

    Article  PubMed  CAS  Google Scholar 

  • Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti P, van der Goot FG (2002) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21:4449–4457

    Article  PubMed  CAS  Google Scholar 

  • LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL (2010) Cholesterol lipids of borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8:331–342

    Article  PubMed  CAS  Google Scholar 

  • Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Blanchette CD, Longo ML (2007) Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol. Biophys J 92:2831–2841

    Article  PubMed  CAS  Google Scholar 

  • Lingwood CA, Boyd B, Nutikka A (2000) Analysis of interactions between glycosphingolipids and microbial toxins. Methods Enzymol 312:459–473

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105:10005–10010

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  • London E (2005) How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta 1746:203–220

    Article  PubMed  CAS  Google Scholar 

  • Lopez D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24: 1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Lopezgarcia F, Villalain J, Gomezfernandez JC (1995) Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium - a study using Dsc, Ft-Ir and Ca-45(2+)-binding. Biochim Biophys Acta 1236:279–288

    Article  Google Scholar 

  • Lu Y, Liu DX, Tam JP (2008) Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem Biophys Res Commun 369:344–349

    Article  PubMed  CAS  Google Scholar 

  • Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 4:e1000065

    Article  PubMed  CAS  Google Scholar 

  • Macdonald JL, Pike LJ (2005) A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 46:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Malewicz B, Valiyaveettil JT, Jacob K, Byun HS, Mattjus P, Baumann WJ, Bittman R, Brown RE (2005) The 3-hydroxy group and 4,5-trans double bond of sphingomyelin are essential for modulation of galactosylceramide transmembrane asymmetry. Biophys J 88:2670–2680

    Article  PubMed  CAS  Google Scholar 

  • Manneville JB, Casella JF, Ambroggio E, Gounon P, Bertherat J, Bassereau P, Cartaud J, Antonny B, Goud B (2008) COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc Natl Acad Sci U S A 105: 16946–16951

    Article  PubMed  CAS  Google Scholar 

  • Maunula S, Bjorkqvist YJE, Slotte JP, Ramstedt B (2007) Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer. Biochim Biophys Acta 1768:336–345

    Article  PubMed  CAS  Google Scholar 

  • Megha, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts) - implications for lipid raft structure and function. J Biol Chem 279:9997–10004

    PubMed  CAS  Google Scholar 

  • Megha SP, Kolter T, Bittman R, London E (2007) Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochim Biophys Acta 1768:2205–2212

    Article  PubMed  CAS  Google Scholar 

  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 274:3910–3917

    Article  PubMed  CAS  Google Scholar 

  • Merrill AH Jr, Stevens VL (1989) Modulation of protein kinase C and diverse cell functions by sphingosine–a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta 1010:131–139

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DC, Litman BJ (1998) Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J 75:896–908

    Article  PubMed  CAS  Google Scholar 

  • Mombelli E, Morris R, Taylor W, Fraternali F (2003) Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophys J 84:1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Mondal M, Mesmin B, Mukherjee S, Maxfield FR (2009) Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol Biol Cell 20:581–588

    Article  PubMed  CAS  Google Scholar 

  • Morris RJ, Jen A, Warley A (2011) Isolation of nano-meso scale detergent resistant membrane that has properties expected of lipid ‘rafts’. J Neurochem 116:671–677

    Article  PubMed  CAS  Google Scholar 

  • Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101:1651–1660

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284

    Article  PubMed  CAS  Google Scholar 

  • Murphy SC, Hiller NL, Harrison T, Lomasney JW, Mohandas N, Haldar K (2006) Lipid rafts and malaria parasite infection of erythrocytes. Mol Membr Biol 23:81–88

    Article  PubMed  CAS  Google Scholar 

  • Mustonen P, Lehtonen J, Koiv A, Kinnunen PKJ (1993) Effects of sphingosine on peripheral membrane interactions - comparison of adriamycin, cytochrome-C, and phospholipase-A2. Biochemistry 32:5373–5380

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Yoshizaki F, Prinetti A, Sonnino S, Mauri L, Takamori K, Ogawa H, Iwabuchi K (2008) Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J Leukoc Biol 83:728–741

    Article  PubMed  CAS  Google Scholar 

  • Nelson LD, Chiantia S, London E (2010) Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys J 99:3255–3263

    Article  PubMed  CAS  Google Scholar 

  • Nelson LD, Johnson AE, London E (2008) How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. J Biol Chem 283:4632–4642

    Article  PubMed  CAS  Google Scholar 

  • Niemela PS, Hyvonen MT, Vattulainen I (2006) Influence of chain length and unsaturation on sphingomyelin bilayers. Biophys J 90:851–863

    Article  PubMed  CAS  Google Scholar 

  • Nikolaus J, Scolari S, Bayraktarov E, Jungnick N, Engel S, Pia Plazzo A, Stockl M, Volkmer R, Veit M, Herrmann A (2010) Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes. Biophys J 99:489–498

    Article  PubMed  CAS  Google Scholar 

  • Niu SL, Litman BJ (2002) Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys J 83:3408–3415

    Article  PubMed  CAS  Google Scholar 

  • Norambuena A, Schwartz MA (2011) Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling. Mol Biol Cell 22:3456–3464

    Article  PubMed  CAS  Google Scholar 

  • Nybond S, Bjorkqvist YJE, Ramstedt B, Slotte JP (2005) Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains. Biochim Biophys Acta 1718:61–66

    Article  PubMed  CAS  Google Scholar 

  • Nyholm TKM, Grandell PM, Westerlund B, Slotte JP (2010) Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length. Biochim Biophys Acta 1798:1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Owen DM, Lanigan PM, Dunsby C, Munro I, Grant D, Neil MA, French PM, Magee AI (2006) Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells. Biophys J 90:L80–L82

    Article  PubMed  CAS  Google Scholar 

  • Owen DM, Neil MA, French PM, Magee AI (2007) Optical techniques for imaging membrane lipid microdomains in living cells. Semin Cell Dev Biol 18:591–598

    Article  PubMed  CAS  Google Scholar 

  • Pabst G, Boulgaropoulos B, Gander E, Sarangi BR, Amenitsch H, Raghunathan VA, Laggner P (2009) Effect of ceramide on nonraft proteins. J Membr Biol 231:125–132

    Article  PubMed  CAS  Google Scholar 

  • Pagano RE, Martin OC, Schroit AJ, Struck DK (1981) Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogues between vesicle populations. Biochemistry 20:4920–4927

    Article  PubMed  CAS  Google Scholar 

  • Pathak P, London E (2011) Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 101:2417–2425

    Article  PubMed  CAS  Google Scholar 

  • Pautot S, Frisken BJ, Weitz DA (2003) Engineering asymmetric vesicles. Proc Natl Acad Sci U S A 100:10718–10721

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter JD, Sachs JN (2011) Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J Am Chem Soc 133:6563–6577

    Article  PubMed  CAS  Google Scholar 

  • Persaud-Sawin DA, Banach L, Harry GJ (2009) Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia 57:320–335

    Article  PubMed  Google Scholar 

  • Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:691–712

    Article  PubMed  CAS  Google Scholar 

  • Pinto SN, Silva LC, de Almeida RFM, Prieto M (2008) Membrane domain formation, interdigitation, and morphological alterations induced by the very long chain asymmetric C24: 1 ceramide. Biophys J 95:2867–2879

    Article  PubMed  CAS  Google Scholar 

  • Pinto SN, Silva LC, Futerman AH, Prieto M (2011) Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim Biophys Acta 1808:2753–2760

    Article  PubMed  CAS  Google Scholar 

  • Pokorny A, Yandek LE, Elegbede AI, Hinderliter A, Almeida PF (2006) Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. Biophys J 91:2184–2197

    Article  PubMed  CAS  Google Scholar 

  • Pontier SM, Schweisguth F (2012) Glycosphingolipids in signaling and development: from liposomes to model organisms. Dev Dyn 241:92–106

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ (2010) A lipid matrix model of membrane raft structure. Prog Lipid Res 49:390–406

    Article  PubMed  CAS  Google Scholar 

  • Ramstedt B, Slotte JP (1999) Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins. Biophys J 77:1498–1506

    Article  PubMed  CAS  Google Scholar 

  • Refaei M, Leventis R, Silvius JR (2011) Assessment of the roles of ordered lipid microdomains in post-endocytic trafficking of glycosyl-phosphatidylinositol-anchored proteins in mammalian fibroblasts. Traffic 12:1012–1024

    Article  PubMed  CAS  Google Scholar 

  • Rentero C, Zech T, Quinn CM, Engelhardt K, Williamson D, Grewal T, Jessup W, Harder T, Gaus K (2008) Functional implications of plasma membrane condensation for T cell activation. PLoS One 3:e2262

    Article  PubMed  CAS  Google Scholar 

  • Rhome R, Del Poeta M (2010) Sphingolipid signaling in fungal pathogens. Adv Exp Med Biol 688:232–237

    Article  PubMed  CAS  Google Scholar 

  • Riethmuller J, Riehle A, Grassme H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147

    Article  PubMed  CAS  Google Scholar 

  • Rossmann JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane secretion. Cell 142:902–913

    Article  CAS  Google Scholar 

  • Ruocco M, Atkinson D, Small DM, Skarjune R, Oldfield E, Shipley GG (1981) X-ray-diffraction and calorimetric study of anhydrous and hydrated N-palmitoylgalactosylceramide. Biophys J 20:5957–5966

    CAS  Google Scholar 

  • Sahl SJ, Leutenegger M, Hilbert M, Hell SW, Eggeling C (2010) Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc Natl Acad Sci U S A 107:6829–6834

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff R (2010) Very long chain sphingolipids: tissue expression, function and synthesis. FEBS Lett 584:1907–1913

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Iwabuchi K, Nagaoka I, Adachi Y, Ohno N, Tamura H, Seyama K, Fukuchi Y, Nakayama H, Yoshizaki F, Takamori K, Ogawa H (2006) Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. J Leukoc Biol 80:204–211

    Article  PubMed  CAS  Google Scholar 

  • Schafer LV, Marrink SJ (2010) Partitioning of lipids at domain boundaries in model membranes. Biophys J 99:L91–L93

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P, Rietveld A, Wilk T, Simons K (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274:2038–2044

    Article  PubMed  CAS  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A 91:12130–12134

    Article  PubMed  CAS  Google Scholar 

  • Scolari S, Engel S, Krebs N, Plazzo AP, De Almeida RF, Prieto M, Veit M, Herrmann A (2009) Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging. J Biol Chem 284:15708–15716

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Baird B, Holowka D (2007a) Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Dev Biol 18:583–590

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Hammond A, Holowka D, Baird B (2008) Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochim Biophys Acta 1778:20–32

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Holowka D, Baird B (2007b) Fluorescence resonance energy transfer between lipid probes detects nanoscopic heterogeneity in the plasma membrane of live cells. Biophys J 92: 3564–3574

    Article  PubMed  CAS  Google Scholar 

  • Shah J, Atienza JM, Duclos RI, Rawlings AV, Dong ZX, Shipley GG (1995) Structural and thermotropic properties of synthetic C16-0 (palmitoyl) ceramide - effect of hydration. J Lipid Res 36:1936–1944

    PubMed  CAS  Google Scholar 

  • Shakor ABA, Kwiatkowska K, Sobota A (2004) Cell surface ceramide generation precedes and controls Fc gamma RII clustering and phosphorylation in rafts. J Biol Chem 279:36778–36787

    Article  PubMed  CAS  Google Scholar 

  • Shogomori H, Hammond AT, Ostermeyer-Fay AG, Barr DJ, Feigenson GW, London E, Brown DA (2005) Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. J Biol Chem 280:18931–18942

    Article  PubMed  CAS  Google Scholar 

  • Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92: 502–516

    Article  PubMed  CAS  Google Scholar 

  • Simon CG Jr, Gear AR (1998) Membrane-destabilizing properties of C2-ceramide may be responsible for its ability to inhibit platelet aggregation. Biochemistry 37:2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  PubMed  CAS  Google Scholar 

  • Singh RD, Holicky EL, Cheng ZJ, Kim SY, Wheatley CL, Marks DL, Bittman R, Pagano RE (2007) Inhibition of caveolar uptake, SV40 infection, and beta 1-integrin signaling by a nonnatural glycosphingolipid stereoisomer. J Cell Biol 176:895–901

    Article  PubMed  CAS  Google Scholar 

  • Singh RD, Liu YD, Wheatley CL, Holicky EL, Makino A, Marks DL, Kobayashi T, Subramaniam G, Bittman R, Pagano RE (2006) Caveolar endocytosis and microdomain association of a glycosphingolipid analog is dependent on its sphingosine stereochemistry. J Biol Chem 281: 30660–30668

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Colombini M (2000) The lipids C-2- and C-16-ceramide form large stable channels - implications for apoptosis. J Biol Chem 275:38640–38644

    Article  PubMed  CAS  Google Scholar 

  • Smaby JM, Kulkarni VS, Momsen M, Brown RE (1996) The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys J 70:868–877

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Ying YS, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A 92:10104–10108

    Article  PubMed  CAS  Google Scholar 

  • Sohn HW, Pierce SK, Tzeng SJ (2008a) Live cell imaging reveals that the inhibitory FcgammaRIIB destabilizes B cell receptor membrane-lipid interactions and blocks immune synapse formation. J Immunol 180:793–799

    PubMed  CAS  Google Scholar 

  • Sohn HW, Tolar P, Pierce SK (2008b) Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol 182:367–379

    Article  PubMed  CAS  Google Scholar 

  • Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271: 9690–9697

    Article  PubMed  CAS  Google Scholar 

  • Sonnino S, Prinetti A, Nakayama H, Yangida M, Ogawa H, Iwabuchi K (2009) Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J 26:615–621

    Article  PubMed  CAS  Google Scholar 

  • Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF, Prost J, Goud B, Bassereau P (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci U S A 106:5622–5626

    Article  PubMed  CAS  Google Scholar 

  • Sot J, Ibarguren M, Busto JV, Montes LR, Goni FM, Alonso A (2008) Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett 582:3230–3236

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1–15

    Article  PubMed  CAS  Google Scholar 

  • Taylor DR, Hooper NM (2007) Role of lipid rafts in the processing of the pathogenic prion and Alzheimer’s amyloid-beta proteins. Semin Cell Dev Biol 18:638–648

    Article  PubMed  CAS  Google Scholar 

  • Teneberg S, Angstrom J, Ljungh A (2004) Carbohydrate recognition by enterohemorrhagic Escherichia coli: characterization of a novel glycosphingolipid from cat small intestine. Glycobiology 14:187–196

    Article  PubMed  CAS  Google Scholar 

  • tenGrotenhuis E, Demel RA, Ponec M, Boer DR, vanMiltenburg JC, Bouwstra JA (1996) Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys J 71: 1389–1399

    Article  CAS  Google Scholar 

  • Terova B, Heczko R, Slotte JP (2005) On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine. Biophys J 88:2661–2669

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Briggs MM, Mlaver D, Vidal A, McIntosh TJ (2009) Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization. Biophys J 97: 2493–2502

    Article  PubMed  CAS  Google Scholar 

  • Trajkovic K et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • van Meer G (2011) Dynamic transbilayer lipid asymmetry. Cold Spring Harb Perspect Biol 3:a004671

    Google Scholar 

  • van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36: 51–58

    Article  PubMed  Google Scholar 

  • van Zanten TS, Gomez J, Manzo C, Cambi A, Buceta J, Reigada R, Garcia-Parajo MF (2010) Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci U S A 107:15437–15442

    Article  PubMed  Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B (2008) Critical fluctuations in plasma membrane vesicles. ACS Chem Biol 3:287–293

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Soubias O, Keller SL, Gawrisch K (2007) Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci U S A 104:17650–17655

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  PubMed  CAS  Google Scholar 

  • Viard M, Parolini I, Rawat SS, Fecchi K, Sargiacomo M, Puri A, Blumenthal R (2003) The role of glycosphingolipids in HIV signaling, entry and pathogenesis. Glycoconj J 20:213–222

    Article  Google Scholar 

  • Vieira CR, Munoz-Olaya JM, Sot J, Jimenez-Baranda S, Izquierdo-Useros N, Abad JL, Apellaniz B, Delgado R, Martinez-Picado J, Alonso A, Casas J, Nieva JL, Fabrias G, Manes S, Goni FM (2010) Dihydrosphingomyelin impairs HIV-1 infection by rigidifying liquid-ordered membrane domains. Chem Biol 17:766–775

    Article  PubMed  CAS  Google Scholar 

  • Wan C, Kiessling V, Tamm LK (2008) Coupling of cholesterol-rich lipid phases in asymmetric bilayers. Biochemistry 47:2190–2198

    Article  PubMed  CAS  Google Scholar 

  • Wartewig S, Neubert RHH (2007) Properties of ceramides and their impact on the stratum corneum structure: a review. Skin Pharmacol Physiol 20:220–229

    Article  PubMed  CAS  Google Scholar 

  • Westerlund B, Grandell PM, Isaksson YJE, Slotte JP (2010) Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes. Eur Biophys J 39: 1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Westerlund B, Slotte JP (2009) How the molecular features of glycosphingolipids affect domain formation in fluid membranes. Biochim Biophys Acta 1788:194–201

    Article  PubMed  CAS  Google Scholar 

  • Williamson R, Usardi A, Hanger DP, Anderton BH (2008) Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 22:1552–1559

    Article  PubMed  CAS  Google Scholar 

  • Young RM, Holowka D, Baird B (2003) A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem 278:20746–20752

    Article  PubMed  CAS  Google Scholar 

  • Young RM, Zheng X, Holowka D, Baird B (2005) Reconstitution of regulated phosphorylation of FcepsilonRI by a lipid raft-excluded protein-tyrosine phosphatase. J Biol Chem 280: 1230–1235

    Article  PubMed  CAS  Google Scholar 

  • Zech T, Ejsing CS, Gaus K, de Wet B, Shevchenko A, Simons K, Harder T (2009) Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 28: 466–476

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V (2011) Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wu J, Shao H, Kong F, Jain N, Hunt G, Feigenson G (2007) Phase studies of model biomembranes: macroscopic coexistence of Lalpha + Lbeta, with light-induced coexistence of Lalpha + Lo Phases. Biochim Biophys Acta 1768:2777–2786

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH Grant GM 099892 to E.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin London .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiantia, S., London, E. (2013). Sphingolipids and Membrane Domains: Recent Advances. In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_2

Download citation

Publish with us

Policies and ethics