Skip to main content

New Insight on the Mechanisms of Epileptogenesis in the Developing Brain

  • Chapter
  • First Online:
Pediatric Epilepsy Surgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 39))

Abstract

The incidence of epilepsy is at its highest in childhood and seizures can persist for a lifetime. As brain tissue from pediatric patients with epilepsy is rarely available, the analysis of molecular and cellular changes during epileptogenesis, which could serve as targets for treatment approaches, has to rely largely on the analysis of tissue from animal models. However, these data have to be analyzed in the context of the developmental stage when the insult occurs. Here we review the current status of the available animal models, the molecular analysis done in these models, as well as treatment attempts to prevent epileptogenesis in the immature brain. Considering that epilepsy is one of the major childhood neurological diseases, it is remarkable how little is known on epileptogenesis in the immature brain at a molecular level. It is a true challenge for the future to expand the armamentarium of clinically relevant animal models, and systematic analysis of molecular and cellular data to enhance the probability of developing syndrome specific antiepileptogenic treatments and biomarkers for acquired pediatric epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aden U, Bona E, Hagberg H, Fredholm BB (1994) Changes in c-fos mRNA in the neonatal rat brain following hypoxic ischemia. Neurosci Lett 180:91–95

    PubMed  CAS  Google Scholar 

  2. Aden U, Lindstrom K, Bona E, Hagberg H, Fredholm BB (1994) Changes in adenosine receptors in the neonatal rat brain following hypoxic ischemia. Brain Res Mol Brain Res 23:354–358

    PubMed  CAS  Google Scholar 

  3. Akahoshi N, Murashima YL, Himi T, Ishizaki Y, Ishii I (2007) Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures. Neurosci Lett 429:136–141

    PubMed  CAS  Google Scholar 

  4. Albala BJ, Moshé SL, Okada R (1984) Kainic-acid-induced seizures: a developmental study. Brain Res 315:139–148

    PubMed  CAS  Google Scholar 

  5. André V, Rigoulot MA, Koning E, Ferrandon A, Nehlig A (2003) Long-term pregabalin treatment protects basal cortices and delays the occurrence of spontaneous seizures in the lithium-pilocarpine model in the rat. Epilepsia 44(7):893–903

    PubMed  Google Scholar 

  6. Aronica EM, Gorter JA, Paupard MC, Grooms SY, Bennett MV, Zukin RS (1997) Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 17:8588–8595

    PubMed  CAS  Google Scholar 

  7. Auvin S, Mazarati A, Shin D, Sankar R (2010) Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis 40:303–310

    PubMed  CAS  Google Scholar 

  8. Björkman ST, Miller SM, Rose SE, Burke C, Colditz PB (2010) Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia. Neuroscience 166:157–167

    PubMed  Google Scholar 

  9. Bolanos AR, Sarkisian M, Yang Y, Hori A, Helmers SL, Mikati M, Tandon P, Stafstrom CE, Holmes GL (1998) Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 51(1):41–48

    PubMed  CAS  Google Scholar 

  10. Bona E, Andersson AL, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K, Hagberg H (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45:500–509

    PubMed  CAS  Google Scholar 

  11. Brewster A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ (2002) Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci 22:4591–4599

    PubMed  CAS  Google Scholar 

  12. Burtrum D, Silverstein FS (1994) Hypoxic-ischemic brain injury stimulates glial fibrillary acidic protein mRNA and protein expression in neonatal rats. Exp Neurol 126:112–118

    PubMed  CAS  Google Scholar 

  13. Cantagrel S, Gressens P, Bodard S, Suc AL, Laugier J, Guilloteau D, Chalon S (2001) mRNA D(2) dopaminergic receptor expression after hypoxia-ischemia in rat immature brain. Biol Neonate 80:68–73

    PubMed  CAS  Google Scholar 

  14. Cataltepe O, Barron TF, Heitjan DF, Vannucci RC, Towfighi J (1995) Effect of hypoxia/ischemia on bicuculline-induced seizures in immature rats: behavioral and electrocortical phenomena. Epilepsia 36:396–403

    PubMed  CAS  Google Scholar 

  15. Cavalheiro EA, Silva DF, Turski WA, Calderazzo-Filho LS, Bortolotto ZA, Turski L (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Brain Res 465:43–58

    PubMed  CAS  Google Scholar 

  16. Cha BH, Silveira DC, Liu X, Hu Y, Holmes GL (2002) Effect of topiramate following recurrent and prolonged seizures during early development. Epilepsy Res 51(3):217–232

    PubMed  CAS  Google Scholar 

  17. Chen K, Neu A, Howard AL, Földy C, Echegoyen J, Hilgenberg L, Smith M, Mackie K, Soltesz I (2007) Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 27(1):46–58

    PubMed  Google Scholar 

  18. Chiba S (1985) Long-term effect of postnatal hypoxia on the seizure susceptibility in rats. Life Sci 37:1597–1604

    PubMed  CAS  Google Scholar 

  19. Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M (2009) Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet 373(9669):1105–1110

    PubMed  Google Scholar 

  20. Chronopoulos A, Stafstrom C, Thurber S, Hyde P, Mikati M, Holmes GL (1993) Neuroprotective effect of felbamate after kainic acid-induced status epilepticus. Epilepsia 34(2):359–366

    PubMed  CAS  Google Scholar 

  21. Cilio MR, Bolanos AR, Liu Z, Schmid R, Yang Y, Stafstrom CE, Mikati MA, Holmes GL (2001) Anticonvulsant action and long-term effects of gabapentin in the immature brain. Neuropharmacology 40(1):139–147

    PubMed  CAS  Google Scholar 

  22. Comi AM, Weisz CJ, Highet BH, Johnston MV, Wilson MA (2004) A new model of stroke and ischemic seizures in the immature mouse. Pediatr Neurol 31:254–257

    PubMed  Google Scholar 

  23. Cowell RM, Xu H, Parent JM, Silverstein FS (2006) Microglial expression of chemokine receptor CCR5 during rat forebrain development and after perinatal hypoxia-ischemia. J Neuroimmunol 173:155–165

    PubMed  CAS  Google Scholar 

  24. D’Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW (2004) Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127(Pt 2):304–314

    PubMed  Google Scholar 

  25. D’Ambrosio R, Fender JS, Fairbanks JP, Simon EA, Born DE, Doyle DL, Miller JW (2005) Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. Brain 128(Pt 1):174–188

    PubMed  Google Scholar 

  26. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    PubMed  Google Scholar 

  27. Doverhag C, Hedtjarn M, Poirier F, Mallard C, Hagberg H, Karlsson A, Savman K (2010) Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 38:36–46

    PubMed  CAS  Google Scholar 

  28. Dube C, Chen K, Eghbal-Ahmadi M, Brunson K, Soltesz I, Baram TZ (2000) Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 47:336–344

    PubMed  CAS  Google Scholar 

  29. Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ (2006) Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129:911–922

    PubMed  Google Scholar 

  30. Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 30:7484–7494

    PubMed  Google Scholar 

  31. Dugich-Djordjevic MM, Tocco G, Willoughby DA, Najm I, Pasinetti G, Thompson RF, Baudry M, Lapchak PA, Hefti F (1992) BDNF mRNA expression in the developing rat brain following kainic acid-induced seizure activity. Neuron 8:1127–1138

    PubMed  CAS  Google Scholar 

  32. Echegoyen J, Armstrong C, Morgan RJ, Soltesz I (2009) Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 85(1):123–127

    PubMed  CAS  Google Scholar 

  33. Filloux FM, Adair J, Narang N (1996) The temporal evolution of striatal dopamine receptor binding and mRNA expression following hypoxia-ischemia in the neonatal rat. Brain Res Dev Brain Res 94:81–91

    PubMed  CAS  Google Scholar 

  34. Friedman LK, Sperber EF, Moshe SL, Bennett MV, Zukin RS (1997) Developmental regulation of glutamate and GABA(A) receptor gene expression in rat hippocampus following kainate-induced status epilepticus. Dev Neurosci 19:529–542

    PubMed  CAS  Google Scholar 

  35. Forsgren L, Beghi E, Oun A, Sillanpää M (2005) The epidemiology of epilepsy in Europe – a systematic review. Eur J Neurol 12(4):245–253

    PubMed  CAS  Google Scholar 

  36. Galanopoulou AS, Buckmaster PS, Staley KJ, Moshé SL, Perucca E, Engel J Jr, Löscher W, Noebels JL, Pitkänen A, Stables J, White HS, O’Brien TJ, Simonato M, American Epilepsy Society Basic Science Committee And The International League Against Epilepsy Working Group On Recommendations For Preclinical Epilepsy Drug Discovery (2012) Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 53(3):571–582

    PubMed  Google Scholar 

  37. Gubits RM, Burke RE, Casey-McIntosh G, Bandele A, Munell F (1993) Immediate early gene induction after neonatal hypoxia-ischemia. Brain Res Mol Brain Res 18:228–238

    PubMed  CAS  Google Scholar 

  38. Gulec G, Noyan B (2001) Do recurrent febrile convulsions decrease the threshold for pilocarpine-induced seizures? Effects of nitric oxide. Brain Res Dev Brain Res 126:223–228

    PubMed  CAS  Google Scholar 

  39. Gurkoff GG, Giza CC, Hovda DA (2006) Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death. Brain Res 1077(1):24–36

    PubMed  CAS  Google Scholar 

  40. Hagberg H, Gilland E, Bona E, Hanson LA, Hahin-Zoric M, Blennow M, Holst M, McRae A, Soder O (1996) Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 40:603–609

    PubMed  CAS  Google Scholar 

  41. Hanaya R, Boehm N, Nehlig A (2007) Dissociation of the immunoreactivity of synaptophysin and GAP-43 during the acute and latent phases of the lithium-pilocarpine model in the immature and adult rat. Exp Neurol 204:720–732

    PubMed  CAS  Google Scholar 

  42. Hedtjarn M, Mallard C, Eklind S, Gustafson-Brywe K, Hagberg H (2004) Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24:1317–1332

    PubMed  Google Scholar 

  43. Hedtjarn M, Mallard C, Hagberg H (2004) Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24:1333–1351

    PubMed  Google Scholar 

  44. Hirsch E, Baram TZ, Snead OC 3rd (1992) Ontogenic study of lithium-pilocarpine-induced status epilepticus in rats. Brain Res 583:120–126

    PubMed  CAS  Google Scholar 

  45. Holmes GL, Weber DA (1985) Effects of hypoxic-ischemic encephalopathies on kindling in the immature brain. Exp Neurol 90:194–203

    PubMed  CAS  Google Scholar 

  46. Holmes GL, Thompson JL (1988) Effects of kainic acid on seizure susceptibility in the developing brain. Brain Res 467:51–59

    PubMed  CAS  Google Scholar 

  47. da Huang W, Sherman B, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  48. Ivacko J, Szaflarski J, Malinak C, Flory C, Warren JS, Silverstein FS (1997) Hypoxic-ischemic injury induces monocyte chemoattractant protein-1 expression in neonatal rat brain. J Cereb Blood Flow Metab 17:759–770

    PubMed  CAS  Google Scholar 

  49. Jensen FE, Applegate C, Burchfiel J, Lombroso CT (1991) Differential effects of perinatal hypoxia and anoxia on long term seizure susceptibility in the rat. Life Sci 49:399–407

    PubMed  CAS  Google Scholar 

  50. Jensen FE, Applegate CD, Holtzman D, Belin TR, Burchfiel JL (1991) Epileptogenic effect of hypoxia in the immature rodent brain. Ann Neurol 29:629–637

    PubMed  CAS  Google Scholar 

  51. Jensen FE, Holmes GL, Lombroso CT, Blume HK, Firkusny IR (1992) Age-dependent changes in long-term seizure susceptibility and behavior after hypoxia in rats. Epilepsia 33(6):971–980

    PubMed  CAS  Google Scholar 

  52. Jensen FE, Wang C, Stafstrom CE, Liu Z, Geary C, Stevens MC (1998) Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia in vivo. J Neurophysiol 79(1):73–81

    PubMed  CAS  Google Scholar 

  53. Kadam SD, White AM, Staley KJ, Dudek FE (2010) Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy. J Neurosci 30:404–415

    PubMed  CAS  Google Scholar 

  54. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140(2):685–697

    PubMed  CAS  Google Scholar 

  55. Klempt ND, Klempt M, Gunn AJ, Singh K, Gluckman PD (1992) Expression of insulin-like growth factor-binding protein 2 (IGF-BP 2) following transient hypoxia-ischemia in the infant rat brain. Brain Res Mol Brain Res 15:55–61

    PubMed  CAS  Google Scholar 

  56. Kobayashi S, Welsh FA (1995) Regional alterations of ATP and heat-shock protein-72 mRNA following hypoxia-ischemia in neonatal rat brain. J Cereb Blood Flow Metab 15:1047–1056

    PubMed  CAS  Google Scholar 

  57. Koh S, Magid R, Chung H, Stine CD, Wilson DN (2007) Depressive behavior and selective downregulation of serotonin receptor expression after early-life seizures: reversal by environmental enrichment. Epilepsy Behav 10:26–31

    PubMed  Google Scholar 

  58. Kornblum HI, Sankar R, Shin DH, Wasterlain CG, Gall CM (1997) Induction of brain derived neurotrophic factor mRNA by seizures in neonatal and juvenile rat brain. Brain Res Mol Brain Res 44:219–228

    PubMed  CAS  Google Scholar 

  59. Kotsopoulos IA, van Merode T, Kessels FG, de Krom MC, Knottnerus JA (2002) Systematic review and meta-analysis of incidence studies of epilepsy and unprovoked seizures. Epilepsia 43(11):1402–1409

    PubMed  Google Scholar 

  60. Kremlev SG, Roberts RL, Palmer C (2007) Minocycline modulates chemokine receptors but not interleukin-10 mRNA expression in hypoxic-ischemic neonatal rat brain. J Neurosci Res 85:2450–2459

    PubMed  CAS  Google Scholar 

  61. Kubová H, Mareš P, Suchomelová L, Brožek G, Druga R, Pitkänen A (2004) Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci 19:3255–3265

    PubMed  Google Scholar 

  62. Kubová H, Mareš P (2007) Hypoxia-induced changes of seizure susceptibility in immature rats are modified by vigabatrin. Epileptic Disord 9(Suppl 1):S36–S43

    PubMed  Google Scholar 

  63. Kubová H (2009) Pharmacology of seizure drugs. In: Schwartzkroin P (ed) Encyclopedia of basic epilepsy research, vol 2. Academic, Oxford, pp 780–786

    Google Scholar 

  64. Kumral A, Genc S, Ozer E, Yilmaz O, Gokmen N, Koroglu TF, Duman N, Genc K, Ozkan H (2006) Erythropoietin downregulates bax and DP5 proapoptotic gene expression in neonatal hypoxic-ischemic brain injury. Biol Neonate 89:205–210

    PubMed  CAS  Google Scholar 

  65. Lauren HB, Lopez-Picon FR, Korpi ER, Holopainen IE (2005) Kainic acid-induced status epilepticus alters GABA receptor subunit mRNA and protein expression in the developing rat hippocampus. J Neurochem 94:1384–1394

    PubMed  CAS  Google Scholar 

  66. Lauren HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE (2010) Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 5:e10733

    PubMed  Google Scholar 

  67. Lee CL, Frost JD Jr, Swann JW, Hrachovy RA (2008) A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia 49(2):298–307

    PubMed  Google Scholar 

  68. Leibovici A, Rossignol C, Montrowl JA, Erickson JD, Varoqui H, Watanabe M, Chaudhry FA, Bredahl MK, Anderson KJ, Weiss MD (2007) The effects of hypoxia-ischemia on neutral amino acid transporters in the developing rat brain. Dev Neurosci 29:268–274

    PubMed  CAS  Google Scholar 

  69. Leite JP, Babb TL, Pretorius JK, Kuhlman PA, Yeoman KM, Mathern GW (1996) Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res 26:219–231

    PubMed  CAS  Google Scholar 

  70. Lemos T, Cavalheiro EA (1995) Suppression of pilocarpine-induced status late development of epilepsy in rats. Exp Brain Res 102:423–428

    PubMed  CAS  Google Scholar 

  71. Little E, Tocco G, Baudry M, Lee AS, Schreiber SS (1996) Induction of glucose-regulated protein (glucose-regulated protein 78/BiP and glucose-regulated protein 94) and heat shock protein 70 transcripts in the immature rat brain following status epilepticus. Neuroscience 75:209–219

    PubMed  CAS  Google Scholar 

  72. Lowenstein DH, Bleck T, Macdonald RL (1999) It’s time to revise the definition of status epilepticus. Epilepsia 40:123–124

    Google Scholar 

  73. Lukasiuk K, Dabrowski M, Adach A, Pitkanen A (2006) Epileptogenesis-related genes revisited. Prog Brain Res 158:223–241

    PubMed  CAS  Google Scholar 

  74. Lynch M, Sayin U, Bownds J, Janumpalli S, Sutula T (2000) Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci 12:2252–2264

    PubMed  CAS  Google Scholar 

  75. Mátéffyová A, Otáhal J, Tsenov G, Mareš P, Kubová H (2006) Intrahippocampal injection of endothelin-1 in immature rats results in neuronal death, development of epilepsy, and behavioral abnormalities later in life. Eur J Neurosci 24:351–360

    PubMed  Google Scholar 

  76. Matsumoto M (1990) The effects of perinatal hypoxia on pentylenetetrazol-induced seizures in developing rats. Life Sci 46:1787–1792

    PubMed  CAS  Google Scholar 

  77. Menon DK, Schwab K, Wright DW, Maas AI, Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health (2010) Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 91(11):1637–1640

    PubMed  Google Scholar 

  78. Mikati MA, Holmes GL, Chronopoulos A, Hyde P, Thurber S, Gatt A, Liu Z, Werner S, Stafstrom CE (1994) Phenobarbital modifies seizure-related brain injury in the developing brain. Ann Neurol 36(3):425–433

    PubMed  CAS  Google Scholar 

  79. Morioka I, Tsuneishi S, Takada S, Matsuo M (2004) PDGF-alpha receptor expression following hypoxic-ischemic injury in the neonatal rat brain. Kobe J Med Sci 50:21–30

    PubMed  CAS  Google Scholar 

  80. Moshé SL, Albala BJ (1985) Perinatal hypoxia and subsequent development of seizures. Physiol Behav 35:819–823

    PubMed  Google Scholar 

  81. Munell F, Burke RE, Bandele A, Gubits RM (1994) Localization of c-fos, c-jun, and hsp70 mRNA expression in brain after neonatal hypoxia-ischemia. Brain Res Dev Brain Res 77:111–121

    PubMed  CAS  Google Scholar 

  82. Nehlig A, Motte J, Moshé SL, Plouin P (eds) (1999) Childhood epilepsies and brain development. John Libbey & Co, London, p 311

    Google Scholar 

  83. Nehlig A, Rudolf G, Leroy C, Rigoulot MA, Simpson IA, Vannucci SJ (2006) Pentylenetetrazol-induced status epilepticus up-regulates the expression of glucose transporter mRNAs but not proteins in the immature rat brain. Brain Res 1082:32–42

    PubMed  CAS  Google Scholar 

  84. Neligan A, Shorvon SD (2011) Prognostic factors, morbidity and mortality in tonic-clonic status epilepticus: a review. Epilepsy Res 93(1):1–10

    PubMed  CAS  Google Scholar 

  85. Ohno M, Sasahara M, Narumiya S, Tanaka N, Yamano T, Shimada M, Hazama F (1999) Expression of platelet-derived growth factor B-chain and beta-receptor in hypoxic/ischemic encephalopathy of neonatal rats. Neuroscience 90:643–651

    PubMed  CAS  Google Scholar 

  86. Pitkänen A (2010) Therapeutic approaches to epileptogenesis–hope on the horizon. Epilepsia 51(Suppl 3):2–17

    PubMed  Google Scholar 

  87. Pitkanen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14(Suppl 1):16–25

    PubMed  Google Scholar 

  88. Pitkanen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186

    PubMed  Google Scholar 

  89. Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1(3):173–181

    PubMed  Google Scholar 

  90. Priel MR, dos Santos NF, Cavalheiro EA (1996) Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res 26:115–121

    PubMed  CAS  Google Scholar 

  91. Porter BE, Cui XN, Brooks-Kayal AR (2006) Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons. Eur J Neurosci 23:2857–2863

    PubMed  Google Scholar 

  92. Rakhade SN, Klein PM, Huynh T, Hilario-Gomez C, Kosaras B, Rotenberg A, Jensen FE (2011) Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures. Epilepsia 52:753–765

    PubMed  Google Scholar 

  93. Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, Veliskova J, Moshe SL, De Simoni MG, Vezzani A (2003) Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis 14:494–503

    PubMed  CAS  Google Scholar 

  94. Romijn HJ, Voskuyl RA, Coenen AM (1994) Hypoxic-ischemic encephalopathy sustained in early postnatal life may result in permanent epileptic activity and an altered cortical convulsive threshold in rat. Epilepsy Res 17:31–42

    PubMed  CAS  Google Scholar 

  95. Sanchez RM, Jensen FE (2001) Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia 42:577–585

    PubMed  CAS  Google Scholar 

  96. Sanchez RM, Koh S, Rio C, Wang C, Lamperti ED, Sharma D, Corfas G, Jensen FE (2001) Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci 21:8154–8163

    PubMed  CAS  Google Scholar 

  97. Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG (1998) Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 18:8382–8393

    PubMed  CAS  Google Scholar 

  98. Sankar R, Shin D, Mazarati AM, Liu H, Katsumori H, Lezama R, Wasterlain CG (2000) Epileptogenesis after status epilepticus reflects age- and model-dependent plasticity. Ann Neurol 48:580–589

    PubMed  CAS  Google Scholar 

  99. Santos NF, Marques RH, Correia L, Sinigaglia-Coimbra R, Calderazzo L, Sanabria ER, Cavalheiro EA (2000) Multiple pilocarpine-induced status epilepticus in developing rats: a long-term behavioral and electrophysiological study. Epilepsia 41(Suppl 6):S57–S63

    PubMed  Google Scholar 

  100. Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L (2005) Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol 58:41–49

    PubMed  Google Scholar 

  101. Scantlebury MH, Heida JG, Hasson HJ, Velísková J, Velísek L, Galanopoulou AS, Moshé SL (2007) Age-dependent consequences of status epilepticus: animal models. Epilepsia 48(Suppl 2):75–82

    PubMed  Google Scholar 

  102. Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshé SL (2010) A model of symptomatic infantile spasms syndrome. Neurobiol Dis 37:604–612

    PubMed  Google Scholar 

  103. Scott RC, Kirkham FJ (2007) Clinical update: childhood convulsive status epilepticus. Lancet 370(9589):724–726

    PubMed  Google Scholar 

  104. Shimizu-Okabe C, Okabe A, Kilb W, Sato K, Luhmann HJ, Fukuda A (2007) Changes in the expression of cation-Cl- cotransporters, NKCC1 and KCC2, during cortical malformation induced by neonatal freeze-lesion. Neurosci Res 59:288–295

    PubMed  CAS  Google Scholar 

  105. Spandou E, Papoutsopoulou S, Soubasi V, Karkavelas G, Simeonidou C, Kremenopoulos G, Guiba-Tziampiri O (2004) Hypoxia-ischemia affects erythropoietin and erythropoietin receptor expression pattern in the neonatal rat brain. Brain Res 1021:167–172

    PubMed  CAS  Google Scholar 

  106. Stafstrom CE, Thompson JL, Holmes GL (1992) Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res Dev Brain Res 65:227–236

    PubMed  CAS  Google Scholar 

  107. Stafström CE, Moshé SL, Swann JW, Nehlig A, Jacobs MP, Schwartzkroin PA (2006) Models of pediatric epilepsies: strategies and opportunities. Epilepsia 47:1407–1414

    PubMed  Google Scholar 

  108. Statler KD, Swank S, Abildskov T, Bigler ED, White HS (2008) Traumatic brain injury during development reduces minimal clonic seizure thresholds at maturity. Epilepsy Res 80(2–3):163–170

    PubMed  Google Scholar 

  109. Statler KD, Scheerlinck P, Pouliot W, Hamilton M, White HS, Dudek FE (2009) A potential model of pediatric posttraumatic epilepsy. Epilepsy Res 86(2–3):221–223

    PubMed  CAS  Google Scholar 

  110. Suchomelová L, Baldwin R, Wasterlain CG (2006) The role of hyperthermia in status epilepticus-induced epileptogenesis. In: 60th AES annual meeting of the American Epilepsy Society, San Diego, 2006, Epilepsia 47, Suppl 4, Abst. (4.096)

    Google Scholar 

  111. Suchomelova L, Baldwin RA, Kubova H, Thompson KW, Sankar R, Wasterlain CG (2006) Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr Res 59(2):237–243

    PubMed  CAS  Google Scholar 

  112. Tan Z, Sankar R, Shin D, Sun N, Liu H, Wasterlain CG, Schreiber SS (2002) Differential induction of p53 in immature and adult rat brain following lithium-pilocarpine status epilepticus. Brain Res 928:187–193

    PubMed  CAS  Google Scholar 

  113. Theodore WH, Bhatia S, Hatta J, Fazilat S, DeCarli C, Bookheimer SY, Gaillard WD (1999) Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 52:132–136

    PubMed  CAS  Google Scholar 

  114. Tsenov G, Mátéffyová A, Mareš P, Otáhal J, Kubová H (2007) Intrahippocampal injection of endothelin-1, a new model of ischemia-induced seizures in immature rats. Epilepsia 48(Suppl 5):7–13

    PubMed  CAS  Google Scholar 

  115. Tsenov G, Kubová H, Mareš P (2008) Changes of cortical epileptic afterdischarges after status epilepticus in immature rats. Epilepsy Res 78:178–185

    PubMed  Google Scholar 

  116. Velíšková J, Pitkanen A, Swartzkroin PA, Moshe SL (2006) Behavioral characterization of seizures in rats. In: Models of seizures and epilepsy. Elsevier, Amsterodam, pp 601–611

    Google Scholar 

  117. Walton M, Young D, Sirimanne E, Dodd J, Christie D, Williams C, Gluckman P, Dragunow M (1996) Induction of clusterin in the immature brain following a hypoxic-ischemic injury. Brain Res Mol Brain Res 39:137–152

    PubMed  CAS  Google Scholar 

  118. Wang H, Yao Y, Jiang X, Chen D, Xiong Y, Mu D (2006) Expression of Nogo-A and NgR in the developing rat brain after hypoxia-ischemia. Brain Res 1114:212–220

    PubMed  CAS  Google Scholar 

  119. Wang LY, Cai WQ, Chen PH, Deng QY, Zhao CM (2009) Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia. Glia 57:307–319

    PubMed  Google Scholar 

  120. Williams PA, Dou P, Dudek FE (2004) Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia. Epilepsia 45:1210–1218

    PubMed  Google Scholar 

  121. Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S (2005) Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 25:285–298

    PubMed  CAS  Google Scholar 

  122. Yang JS, Yong DP, Hartlage PL (1995) Seizures associated with stroke in childhood. Pediatr Neurol 12:136–138

    PubMed  CAS  Google Scholar 

  123. Zhang G, Raol YH, Hsu FC, Coulter DA, Brooks-Kayal AR (2004) Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 125:299–303

    PubMed  CAS  Google Scholar 

  124. Zhao DY, Wu XR, Pei YQ, Zuo QH (1985) Long-term effects of febrile convulsion on seizure susceptibility in P77PMC rat–resistant to acoustic stimuli but susceptible to kainate-induced seizures. Exp Neurol 88:688–695

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Academy of Finland (AP), The Sigrid Juselius Foundation (AP), CURE (AP), PMSE grant 888/N-ESF-EuroEPINOMICS/10/2011/0 (KL), statutory funds of the Nencki Institute (KL), grant Nos. P302/10/0971 and P304/12/G069 from the Grant Agency of the Czech Republic (HK), grant No. ME08045 from the Ministry of Education of the Czech Republic (HK), and by the long-term strategic development financing of the Institute of Physiology ASCR RVO:67985823 (HK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asla Pitkänen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Kubova, H., Lukasiuk, K., Pitkänen, A. (2012). New Insight on the Mechanisms of Epileptogenesis in the Developing Brain. In: Akalan, N., Di Rocco, C. (eds) Pediatric Epilepsy Surgery. Advances and Technical Standards in Neurosurgery, vol 39. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1360-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1360-8_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1359-2

  • Online ISBN: 978-3-7091-1360-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics