Physical Activity and Cardiovascular Diseases Epidemiology and Primary Preventive and Therapeutic Targets

  • Martin BurtscherEmail author
  • Erich Gnaiger


Following the publication of the landmark study of Morris and colleagues, a plethora of evidences confirmed the inverse and independent relationship between physical activity and cardiovascular as well as overall mortality. It has been established that regular physical activity elicits its beneficial health effects by reducing especially those cardiovascular risk factors which are associated with metabolic disorders, e.g., hyperlipidemia, glucose intolerance, or systemic hypertension, but physical activity has also been shown directly to inhibit the development of atherosclerosis and associated cardiovascular diseases, e.g., by preventing or correcting endothelial dysfunction or due to cardiovascular remodeling. Nowadays, fascinating experimental studies more and more discover cellular and molecular mechanisms as primary risk factors and explain how physical activity fights the development of cardiovascular diseases. Oxidative stress, low NO bioavailability, and inflammation are considered as primary targets for modification of risk factors by regular exercise training. All these factors are closely interrelated and may play important roles in the development of atherosclerosis.


Exercise Training Risk factors Disease Cardiovascular Metabolism Atherosclerosis Oxidative stress Inflammation 



This chapter is a contribution to K-Regio project MitoCom Tyrol, funded by the Tyrolian Government and the European Regional Development Fund.


  1. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581PubMedCrossRefGoogle Scholar
  2. Arakawa K (1996) Effect of exercise on hypertension and associated complications. Hypertens Res 19(Suppl 1):S87–S91PubMedCrossRefGoogle Scholar
  3. Arima H, Barzi F, Chalmers J (2011) Mortality patterns in hypertension. J Hyperterns 29 Suppl 1:S3–7PubMedCrossRefGoogle Scholar
  4. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534PubMedCrossRefGoogle Scholar
  5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedCrossRefGoogle Scholar
  6. Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA 262:2395–2401PubMedCrossRefGoogle Scholar
  7. Blair SN, Kohl HW, Barlow CE, Paffenbarger RS, Gibbons LW, Macera CA (1995) Changes in physical fitness and all-cause mortality: a prospective study in healthy and unhealthy men. JAMA 273:1093–1098PubMedCrossRefGoogle Scholar
  8. Bloomer RJ (2008) Effect of exercise on oxidative stress biomarkers. Adv Clin Chem 46:1–50PubMedCrossRefGoogle Scholar
  9. Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A, Spiegelman BM (2010) C/EBPb controls exercise-induced cardiac growthand protects against pathological cardiac remodeling. Cell 143:1072–1083PubMedCrossRefGoogle Scholar
  10. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796PubMedCrossRefGoogle Scholar
  11. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604PubMedCrossRefGoogle Scholar
  12. Burtscher M (2012) Lifetime risks of cardiovascular disease. N Engl J Med 366:1642PubMedGoogle Scholar
  13. Burtscher M, Ponchia A (2010) The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis 52:507–511PubMedCrossRefGoogle Scholar
  14. Burtscher M, Gatterer H, Kunczicky H, Brandstätter E, Ulmer H (2009) Supervised exercise in patients with impaired fasting glucose: impact on exercise capacity. Clin J Sport Med 19:394–398PubMedCrossRefGoogle Scholar
  15. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844PubMedCrossRefGoogle Scholar
  16. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedCrossRefGoogle Scholar
  17. Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108:837–846PubMedCrossRefGoogle Scholar
  18. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(supplIII):27–32Google Scholar
  19. De Palma C, Falcone S, Pisoni S, Cipolat S, Panzeri C, Pambianco S, Pisconti A, Allevi R, Bassi MT, Cossu G, Pozzan T, Moncada S, Scorrano L, Brunelli S, Clementi E (2010) Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death Differ 17:1684–1696PubMedCrossRefGoogle Scholar
  20. Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S (2009) The effect of exercise on endothelial function. Sports Med 39:797–812PubMedCrossRefGoogle Scholar
  21. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086PubMedCrossRefGoogle Scholar
  22. Eaton SB, Konner M (1985) Paleolithic nutrition: a consideration of its nature and current implications. N Engl J Med 312:283–289PubMedCrossRefGoogle Scholar
  23. Ellison GM, Waring CD, Vicinanza C, Torella D (2012) Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 98:5–10PubMedCrossRefGoogle Scholar
  24. Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52PubMedCrossRefGoogle Scholar
  25. Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC Press, Boca Raton/Ann Arbor/London, pp 77–109Google Scholar
  26. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845PubMedCrossRefGoogle Scholar
  27. Goodwill AG, Stapleton PA, James ME, D’Audiffret AC, Frisbee JC (2008) Increased arachidonic acid-induced thromboxane generation impairs skeletal muscle arteriolar dilation with genetic dyslipidemia. Microcirculation 15:621–631PubMedCrossRefGoogle Scholar
  28. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I (2003) Effect of different intensities of exercise on endothelium-­dependent vasodilation in human: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108:530–535PubMedCrossRefGoogle Scholar
  29. Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, Larsen TS, Aasum E (2011) High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol 111:1235–1241PubMedCrossRefGoogle Scholar
  30. Haram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, Wisløff U (2009) Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 81:723–732PubMedCrossRefGoogle Scholar
  31. Hey-Mogensen M, Højlund K, Vind BF, Wang L, Dela F, Beck-Nielsen H, Fernström M, Sahlin K (2010) Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 53:1976–1985PubMedCrossRefGoogle Scholar
  32. Holmström MH, Iglesias-Gutierrez E, Zierath JR, Garcia-Roves PM (2012) Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab 302:E731–E739PubMedCrossRefGoogle Scholar
  33. Ignarro LJ, Balestrieri ML, Napoli C (2007) Nutrition, physical activity, and cardiovascular disease: an update. Cardiovasc Res 73:326–340PubMedCrossRefGoogle Scholar
  34. Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Bilancio A, Leccia A, Arcucci O, Falco M, Leosco D, Chiariello M (2002) Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res 91:1190–1197PubMedCrossRefGoogle Scholar
  35. Kavazis AN, McClung JM, Hood DA, Powers SK (2008) Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol 294:H928–H935PubMedCrossRefGoogle Scholar
  36. Kivelä R, Silvennoinen M, Lehti M, Rinnankoski-Tuikka R, Purhonen T, Ketola T, Pullinen K, Vuento M, Mutanen N, Sartor MA, Reunanen H, Koch LG, Britton SL, Kainulainen H (2010) Gene expression centroids that link with low intrinsic aerobic capacity and complex disease risk. FASEB J 24:4565–4574PubMedCrossRefGoogle Scholar
  37. Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, Karasik P, Greenberg M, Papademetriou V, Singh S (2008) Exercise capacity and mortality in black and white men. Circulation 117:614–622PubMedCrossRefGoogle Scholar
  38. Kokkinos P, Sheriff H, Kheirbek R (2011) Physical inactivity and mortality risk. Cardiol Res Pract 2011:924945PubMedGoogle Scholar
  39. Kramer HF, Goodyear LJ (2007) Exercise, MAPK, and NF-κB signaling in skeletal muscle. J Appl Physiol 103:388–395PubMedCrossRefGoogle Scholar
  40. Larsen S, Ara I, Rabøl R, Andersen JL, Boushel R, Dela F, Helge JW (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52:1400–1408PubMedCrossRefGoogle Scholar
  41. Laughlin MH, Newcomer SC, Bender SB (2008) Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol 104:588–600PubMedCrossRefGoogle Scholar
  42. Lee IM, Skerrett PJ (2001) Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc 33:S459–S471PubMedCrossRefGoogle Scholar
  43. Lemieux H, Semsroth S, Antretter H, Hoefer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738PubMedCrossRefGoogle Scholar
  44. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801PubMedCrossRefGoogle Scholar
  45. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, Andrews JW, Hayes JR (1992) Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin dependent) diabetes mellitus. Diabetologia 35:771–776PubMedGoogle Scholar
  46. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRefGoogle Scholar
  47. Morris JN, Heady JA, Raffle PAB, Roberts CG, Parks JW (1953) Coronary heart-disease and physical activity of work. Lancet 265:1111–1120PubMedCrossRefGoogle Scholar
  48. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793–801PubMedCrossRefGoogle Scholar
  49. Newsholme P, Homem De Bittencourt PI, O’ Hagan C, De Vito G, Murphy C, Krause MS (2010) Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide. Clin Sci 118:341–349CrossRefGoogle Scholar
  50. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317PubMedCrossRefGoogle Scholar
  51. Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis. A ­hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806PubMedCrossRefGoogle Scholar
  52. O’Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D, Glund S, Chibalin AV, Zierath JR, Nolan JJ (2006) Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49:2983–2992PubMedCrossRefGoogle Scholar
  53. Ohta M, Nanri H, Matsushima Y, Sato Y, Ikeda M (2005) Blood pressure-lowering effects of lifestyle modification: possible involvement of nitric oxide bioavailability. Hypertens Res 28:779–786PubMedCrossRefGoogle Scholar
  54. Paffenbarger RS, Hale WE (1975) Work activity and coronary heart mortality. N Engl J Med 292:545–550PubMedCrossRefGoogle Scholar
  55. Paffenbarger RS, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314:605–613PubMedCrossRefGoogle Scholar
  56. Paffenbarger RS, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB (1993) The association of changes in physical-activity level and other life-style characteristics with mortality among men. N Engl J Med 328:538–545PubMedCrossRefGoogle Scholar
  57. Pedersen BK (2009) The diseasome of physical inactivity: and the role of myokines in muscle-fat-cross talk. J Physiol 587:5559–5568PubMedCrossRefGoogle Scholar
  58. Pedersen BK, Steensberg A (2002) Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms? Med Sci Sports Exerc 34:2004–2013PubMedCrossRefGoogle Scholar
  59. Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098PubMedCrossRefGoogle Scholar
  60. Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–1087PubMedCrossRefGoogle Scholar
  61. Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162PubMedCrossRefGoogle Scholar
  62. Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2010) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721PubMedCrossRefGoogle Scholar
  63. Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945PubMedCrossRefGoogle Scholar
  64. Powers SK, Lennon SL, Quindry J, Mehta JL (2002) Exercise and cardioprotection. Curr Opin Cardiol 17:495–502PubMedCrossRefGoogle Scholar
  65. Rabøl R, Højberg PM, Almdal T, Boushel R, Haugaard SB, Madsbad S, Dela F (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metabol 94:1372–1378CrossRefGoogle Scholar
  66. Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418:261–275PubMedCrossRefGoogle Scholar
  67. Rizvi AA (2009) Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: emerging concepts. Am J Med Sci 338:310–318PubMedCrossRefGoogle Scholar
  68. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–116PubMedCrossRefGoogle Scholar
  69. Seals DR, Desouza CA, Donato AJ, Tanaka H (2008) Habitual exercise and arterial aging. J Appl Physiol 105:1323–1332PubMedCrossRefGoogle Scholar
  70. Shephard RJ, Balady GJ (1999) Exercise as cardiovascular therapy. Circulation 99:963e72CrossRefGoogle Scholar
  71. Stamler J, Stamler R, Neaton JD (1993) Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 153:598–615PubMedCrossRefGoogle Scholar
  72. Stapleton PA, Goodwill AG, James ME, Brock RW, Frisbee JC (2010) Hypercholesterolemia and microvascular dysfunction: interventional strategies. J Inflamm 7:54CrossRefGoogle Scholar
  73. Suzuki K, Ohno H, Oh-ishi S, Kizaki T, Ookawara T, Fujii J, Radak Z, Taniguchi N (2000) Superoxide dismutases in exercise and disease. In: Sen CK, Packer L, Häninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 243–295Google Scholar
  74. Swain DP, Franklin BA (2006) Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 97:141–147PubMedCrossRefGoogle Scholar
  75. Szostak J, Laurant P (2011) The forgotten face of regular physical exercise: a natural anti-­atherogenic activity. Clin Sci 121:91–106PubMedCrossRefGoogle Scholar
  76. Thompson PD (2005) Exercise prescription and proscription for patients with coronary artery disease. Circulation 112:2354–2363PubMedCrossRefGoogle Scholar
  77. Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, Berra K, Blair SN, Costa F, Franklin B, Fletcher GF, Gordon NF, Pate RR, Rodriguez BL, Yancey AK, Wenger NK, American Heart Association Council on Clinical Cardiology Subcommittee on Exercise, Rehabilitation, and Prevention, American Heart Association Council on Nutrition, Physical Activity, and Metabolism Subcommittee on Physical Activity (2003) Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Circulation 107:3109–3116PubMedCrossRefGoogle Scholar
  78. Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6:e17392PubMedCrossRefGoogle Scholar
  79. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M, Finnish Diabetes Prevention Study Group (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:134–150CrossRefGoogle Scholar
  80. Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 4:227–237CrossRefGoogle Scholar
  81. Tweedie C, Romestaing C, Burelle Y, Safdar A, Tarnopolsky MA, Seadon S, Britton SL, Koch LG, Hepple RT (2011) Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity. Am J Physiol Regul Integr Comp Physiol 300:R544–R553PubMedCrossRefGoogle Scholar
  82. Votion DM, Gnaiger E, Lemieux H, Mouithys-Mickalad A, Serteyn D (2012) Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS One 7:e34890PubMedCrossRefGoogle Scholar
  83. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedCrossRefGoogle Scholar
  84. Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409PubMedCrossRefGoogle Scholar
  85. Waring CD, Papalambrou A, Sharp L, Smith AJ, Purushothaman S, Vicinanza C, Goldspink D, Torella D, Nadal-Ginard B, Ellison GM (2010) Cardiac stem cell activation and ensuing myogenesis and angiogenesis contribute to cardiac adaptation following intensity-controlled exercise training. Circulation 122:A19155Google Scholar
  86. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN (1999) The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 130:89–96PubMedCrossRefGoogle Scholar
  87. Weiner RB, Baggish AL (2012) Exercise-induced cardiac remodeling. Prog Cardiovasc Dis 54:380–386PubMedCrossRefGoogle Scholar
  88. Wisløff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q, Fernström M, Rezaei K, Lee SJ, Koch LG, Britton SL (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307:418–420PubMedCrossRefGoogle Scholar
  89. Wyatt AW, Steinert JR, Mann GE (2004) Modulation of the L-arginine/nitric oxide signalling pathway in vascular endothelial cells. Biochem Soc Symp 71:143–156PubMedGoogle Scholar
  90. Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedCrossRefGoogle Scholar
  91. Zoll J, N’Guessan B, Ribera F, Lampert E, Fortin D, Veksler V, Bigard X, Geny B, Lonsdorfer J, Ventura-Clapier R, Mettauer B (2003) Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients. J Am Coll Cardiol 42:126–132PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Sport Science, Medical SectionUniversity of InnsbruckInnsbruckAustria
  2. 2.Daniel Swarovski Research LaboratoryMedical University of InnsbruckInnsbruckAustria

Personalised recommendations