Skip to main content

Pathophysiology of the Metabolic Syndrome

  • Chapter
  • First Online:
The Metabolic Syndrome

Abstract

The metabolic syndrome is an increasingly prevalent clinical syndrome, closely related to the risk of progression to type 2 diabetes, to cardiovascular disease (CVD) and to several cancers [1–4]. Despite its prevalence (at about 20 % of many western populations and much higher in several high risk populations), it has been a controversial topic since it was first described, largely because of lack of agreement about criteria for definition and diagnosis [5–7]. This has been further compounded by lack of clarity about how the syndrome should be treated. In this chapter, we focus on the pathophysiology of the metabolic syndrome. At the core of this pathophysiology is a gradual and progressive distortion of normal metabolic homeostasis, affecting all of the major metabolically active organs and tissues. Here we will describe these abnormalities in physiology, with the aim of providing a basis on which the treatment of this syndrome can be addressed in a scientifically and medically rational manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeFronzo RA, Ferrannini E (1991) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14(3):173–194

    PubMed  CAS  Google Scholar 

  2. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468):1415–1428

    PubMed  CAS  Google Scholar 

  3. Lakka HM et al (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21):2709–2716

    PubMed  Google Scholar 

  4. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    PubMed  CAS  Google Scholar 

  5. Alberti K, Zimmet P (2008) Should we dump the metabolic syndrome? No. Br Med J 336(7645):641–641

    CAS  Google Scholar 

  6. Gale EAM (2008) Should we dump the metabolic syndrome? Yes. Br Med J 336(7645):640

    Google Scholar 

  7. Reaven GM (2005) The metabolic syndrome: requiescat in pace. Clin Chem 51(6):931–938

    PubMed  CAS  Google Scholar 

  8. Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887

    PubMed  Google Scholar 

  9. Astrup A, Finer N (2000) Redefining type 2 diabetes: ‘diabesity’or ‘obesity dependent diabetes mellitus’? Obes Rev 1(2):57–59

    PubMed  CAS  Google Scholar 

  10. Mokdad AH et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79

    PubMed  Google Scholar 

  11. Pincock S (2006) Paul Zimmet: fighting the “diabesity” pandemic. Lancet 368(9548):1643

    PubMed  Google Scholar 

  12. Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787

    PubMed  CAS  Google Scholar 

  13. Mittelman SD et al (2002) Extreme insulin resistance of the central adipose depot in vivo. Diabetes 51(3):755–761

    PubMed  CAS  Google Scholar 

  14. Chiang DJ, Pritchard MT, Nagy LE (2011) Obesity, diabetes mellitus, and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 300(5):G697–G702

    PubMed  CAS  Google Scholar 

  15. Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96(9):939–949

    PubMed  CAS  Google Scholar 

  16. Eckel RH (1989) Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 320(16):1060–1068

    PubMed  CAS  Google Scholar 

  17. Jensen M et al (1989) Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes 38(12):1595–1601

    PubMed  CAS  Google Scholar 

  18. Moro C, Bajpeyi S, Smith SR (2008) Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 294(2):E203–E213

    PubMed  CAS  Google Scholar 

  19. Hirabara SM, Curi R, Maechler P (2010) Saturated fatty acid induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol 222(1):187–194

    PubMed  CAS  Google Scholar 

  20. Koves TR et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56

    PubMed  CAS  Google Scholar 

  21. Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15(5):606–614

    PubMed  CAS  Google Scholar 

  22. Newgard CB et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326

    PubMed  CAS  Google Scholar 

  23. Krssak M et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42(1):113–116

    PubMed  CAS  Google Scholar 

  24. Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49(5):677–683

    PubMed  CAS  Google Scholar 

  25. Ferrannini E et al (1987) Insulin resistance in essential hypertension. N Engl J Med 317(6):350–357

    PubMed  CAS  Google Scholar 

  26. Steinberg H et al (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94(3):1172

    PubMed  CAS  Google Scholar 

  27. Tooke J, Hannemann M (2000) Adverse endothelial function and the insulin resistance syndrome. J Intern Med 247(4):425–431

    PubMed  CAS  Google Scholar 

  28. Hanley AJG et al (2002) Factor analysis of metabolic syndrome using directly measured insulin sensitivity. Diabetes 51(8):2642–2647

    PubMed  CAS  Google Scholar 

  29. Yanai H et al (2008) The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr J 7:10

    PubMed  Google Scholar 

  30. Murakami T et al (1995) Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler Thromb Vasc Biol 15(11):1819–1828

    PubMed  CAS  Google Scholar 

  31. De Graaf J et al (1993) Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects. Normalization after clofibrate treatment. Arterioscler Thromb Vasc Biol 13(5):712–719

    Google Scholar 

  32. Manzato E et al (1993) Levels and physicochemical properties of lipoprotein subclasses in moderate hypertriglyceridemia. Clin Chim Acta 219(1):57–65

    PubMed  CAS  Google Scholar 

  33. Krauss RM (1995) Dense low density lipoproteins and coronary artery disease. Am J Cardiol 75(6):53B–57B

    PubMed  CAS  Google Scholar 

  34. Packard C (1996) LDL subfractions and atherogenicity: an hypothesis from the University of Glasgow. Curr Med Res Opin 13(7):379–390

    PubMed  CAS  Google Scholar 

  35. Booth FW et al (2002) Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 93(1):3–30

    PubMed  Google Scholar 

  36. Booth FW et al (2000) Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol 88(2):774–787

    PubMed  CAS  Google Scholar 

  37. Matthews CE et al (2008) Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol 167(7):875–881

    PubMed  Google Scholar 

  38. Wilmot EG et al (2012) Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia 55(11):2895–2905

    PubMed  CAS  Google Scholar 

  39. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56(11):2655–2667

    PubMed  CAS  Google Scholar 

  40. Hu FB et al (2003) Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 289(14):1785–1791

    PubMed  Google Scholar 

  41. Katzmarzyk PT (2010) Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes 59(11):2717–2725

    PubMed  CAS  Google Scholar 

  42. Saris WH et al (2003) How much physical activity is enough to prevent unhealthy weight gain? outcome of the IASO 1st stock conference and consensus statement. Obes Rev 4(2):101–114

    PubMed  CAS  Google Scholar 

  43. Brooks GA et al (2004) Chronicle of the Institute of Medicine physical activity recommendation: how a physical activity recommendation came to be among dietary recommendations. Am J Clin Nutr 79(5):921S–930S

    PubMed  CAS  Google Scholar 

  44. Bergouignan A et al (2011) Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol 111(4):1201–1210

    PubMed  CAS  Google Scholar 

  45. Blanc S et al (2000) Fuel homeostasis during physical inactivity induced by bed rest. J Clin Endocrinol Metab 85(6):2223–2233

    PubMed  CAS  Google Scholar 

  46. Mikus CR et al (2012) Lowering physical activity impairs glycemic control in healthy volunteers. Med Sci Sports Exerc 44(2):225–231

    PubMed  CAS  Google Scholar 

  47. Mikines KJ et al (1989) Effect of 7 days of bed rest on dose–response relation between plasma glucose and insulin secretion. Am J Physiol 257(1 Pt 1):E43–E48

    PubMed  CAS  Google Scholar 

  48. Mikines KJ et al (1991) Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. J Appl Physiol 70(3):1245–1254

    PubMed  CAS  Google Scholar 

  49. Ferder L, Ferder MD, Inserra F (2010) The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep 12(2):105–112

    PubMed  CAS  Google Scholar 

  50. Lottenberg AM et al (2012) The role of dietary fatty acids in the pathology of metabolic syndrome. J Nutr Biochem 23(9):1027–1040

    PubMed  CAS  Google Scholar 

  51. Tappy L et al (2010) Fructose and metabolic diseases: new findings, new questions. Nutrition 26(11–12):1044–1049

    PubMed  CAS  Google Scholar 

  52. Yilmaz Y (2012) Review article: non-alcoholic fatty liver disease and osteoporosis—clinical and molecular crosstalk. Aliment Pharmacol Ther 36(4):345–352

    PubMed  CAS  Google Scholar 

  53. Mensink RP et al (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77(5):1146–1155

    PubMed  CAS  Google Scholar 

  54. Saravanan N et al (2005) Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. Eur J Endocrinol 153(1):159–165

    PubMed  CAS  Google Scholar 

  55. Akinkuolie AO et al (2011) Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin Nutr 30(6):702–707

    PubMed  CAS  Google Scholar 

  56. Maury E, Ramsey KM, Bass J (2010) Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 106(3):447–462

    PubMed  CAS  Google Scholar 

  57. Duez H, Staels B (2010) Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 30(8):1529–1534

    PubMed  CAS  Google Scholar 

  58. Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 23(1):1–8

    PubMed  CAS  Google Scholar 

  59. Huang W et al (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121(6):2133–2141

    PubMed  CAS  Google Scholar 

  60. Antunes LC et al (2010) Obesity and shift work: chronobiological aspects. Nutr Res Rev 23(1):155–168

    PubMed  CAS  Google Scholar 

  61. Semple RK et al (2011) Genetic syndromes of severe insulin resistance. Endocr Rev 32(4):498–514

    PubMed  CAS  Google Scholar 

  62. Zhou D et al (2012) Common variant (rs9939609) in the FTO gene is associated with metabolic syndrome. Mol Biol Rep 39(6):6555–6561

    PubMed  CAS  Google Scholar 

  63. Sookoian S, Pirola CJ (2011) Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 13(2):149–157

    PubMed  CAS  Google Scholar 

  64. Kraja AT et al (2011) A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 60(4):1329–1339

    PubMed  CAS  Google Scholar 

  65. Vattikuti S, Guo J, Chow CC (2012) Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet 8(3):e1002637

    PubMed  CAS  Google Scholar 

  66. Kristiansson K et al (2012) Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 5(2):242–249

    PubMed  Google Scholar 

  67. Zabaneh D, Balding DJ (2010) A genome-wide association study of the metabolic syndrome in Indian Asian men. PLoS One 5(8):e11961

    PubMed  Google Scholar 

  68. Fraga MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609

    PubMed  CAS  Google Scholar 

  69. Bruce KD, Hanson MA (2010) The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr 140(3):648–652

    PubMed  CAS  Google Scholar 

  70. Rinaudo P, Wang E (2012) Fetal programming and metabolic syndrome. Annu Rev Physiol 74:107–130

    PubMed  CAS  Google Scholar 

  71. Warner MJ, Ozanne SE (2010) Mechanisms involved in the developmental programming of adulthood disease. Biochem J 427(3):333–347

    PubMed  CAS  Google Scholar 

  72. Barres R et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411

    PubMed  CAS  Google Scholar 

  73. Pogribny IP et al (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593(1–2):80–87

    PubMed  CAS  Google Scholar 

  74. Burcelin R et al (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 48(4):257–273

    PubMed  Google Scholar 

  75. Reaven GM (1995) Pathophysiology of insulin resistance in human disease. Physiol Rev 75(3):473–486

    PubMed  CAS  Google Scholar 

  76. Befroy DE et al (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56(5):1376–1381

    PubMed  CAS  Google Scholar 

  77. Bonen A et al (2004) Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18(10):1144–1146

    PubMed  CAS  Google Scholar 

  78. Hancock CR et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci 105(22):7815

    PubMed  CAS  Google Scholar 

  79. Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15(5):585–594

    PubMed  CAS  Google Scholar 

  80. Adams JM 2nd et al (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53(1):25–31

    PubMed  CAS  Google Scholar 

  81. Straczkowski M et al (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53(5):1215–1221

    PubMed  CAS  Google Scholar 

  82. Amati F et al (2011) Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 60(10):2588–2597

    PubMed  CAS  Google Scholar 

  83. Schmitz-Peiffer C (2010) Targeting ceramide synthesis to reverse insulin resistance. Diabetes 59(10):2351–2353

    PubMed  CAS  Google Scholar 

  84. Boushel R et al (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50(4):790–796

    PubMed  CAS  Google Scholar 

  85. Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950

    PubMed  CAS  Google Scholar 

  86. Menshikova EV et al (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab 288(4):E818–E825

    PubMed  CAS  Google Scholar 

  87. Morino K et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115(12):3587

    PubMed  CAS  Google Scholar 

  88. Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671

    PubMed  CAS  Google Scholar 

  89. Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2(9):e233

    PubMed  Google Scholar 

  90. Ritov VB et al (2010) Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 298(1):E49–E58

    PubMed  CAS  Google Scholar 

  91. Patti ME et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci 100(14):8466

    PubMed  CAS  Google Scholar 

  92. Ortenblad N et al (2005) Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741(1–2):206–214

    PubMed  CAS  Google Scholar 

  93. Toledo FGS, Watkins S, Kelley DE (2006) Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 91(8):3224–3227

    PubMed  CAS  Google Scholar 

  94. Mogensen M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599

    PubMed  CAS  Google Scholar 

  95. Phielix E et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57(11):2943–2949

    PubMed  CAS  Google Scholar 

  96. Mensink M et al (2007) Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1α and PPARβ/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int J Obes 31(8):1302–1310

    CAS  Google Scholar 

  97. Hwang H et al (2010) Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes 59(1):33–42

    PubMed  CAS  Google Scholar 

  98. Bach D et al (2005) Expression of Mfn2, the Charcot-Marie-Tooth Neuropathy Type 2A gene, in human skeletal muscle. Diabetes 54(9):2685–2693

    PubMed  CAS  Google Scholar 

  99. Meex RCR et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59(3):572–579

    PubMed  CAS  Google Scholar 

  100. Toledo FGS et al (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57(4):987–994

    PubMed  CAS  Google Scholar 

  101. Rabol R et al (2010) Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity. J Clin Endocrinol Metab 95(2):857–863

    PubMed  CAS  Google Scholar 

  102. Emanuela F et al (2012) Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab 2012:476380

    PubMed  Google Scholar 

  103. Elks CM, Francis J (2010) Central adiposity, systemic inflammation, and the metabolic syndrome. Curr Hypertens Rep 12(2):99–104

    PubMed  CAS  Google Scholar 

  104. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15(5):635–645

    PubMed  CAS  Google Scholar 

  105. Newsholme P et al (2007) Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans 35(5):1180–1186

    PubMed  CAS  Google Scholar 

  106. Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453

    PubMed  Google Scholar 

  107. Gall WE et al (2010) α-Hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 5(5):e10883

    PubMed  Google Scholar 

  108. Huffman KM et al (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32(9):1678–1683

    PubMed  CAS  Google Scholar 

  109. Fiehn O et al (2010) Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African–American women. PLoS One 5(12):e15234

    PubMed  Google Scholar 

  110. Hills S et al (2004) The EGIR-RISC study (The European group for the study of insulin resistance: relationship between insulin sensitivity and cardiovascular disease risk): I. Methodology and objectives. Diabetologia 47(3):566–570

    PubMed  CAS  Google Scholar 

  111. Shah S et al (2011) Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2011:1–10

    Google Scholar 

  112. Laferrère B et al (2011) Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med 3(80):80re2

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Nolan, J.J., O’Gorman, D.J. (2013). Pathophysiology of the Metabolic Syndrome. In: Beck-Nielsen, H. (eds) The Metabolic Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1331-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1331-8_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1330-1

  • Online ISBN: 978-3-7091-1331-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics