Skip to main content

Measurement of Synthesis and Degradation of Proteins

  • Chapter
  • First Online:
Nutritional and Physiological Functions of Amino Acids in Pigs

Abstract

Continuous synthesis and breakdown or remodeling of proteins (also called protein turnover) is a principal characteristic of protein metabolism. During animal production, the net differences between synthesis and breakdown represent the actual marketable muscle foods. Because protein synthesis is highly endergonic and protein breakdown is metabolically energy dependent, the efficiency of production can be markedly enhanced by lower muscle protein breakdown rates. Various methodological approaches to study protein synthesis and breakdown, with particular emphasis toward food-producing animals, are presented. These include whole-animal tracer amino acid infusion in vivo, quantifying marker amino acid release from muscle proteins, and in vitro amino acid release-based methodologies. From such methods, protein synthesis rates and protein breakdown rates (mass units/time) may be obtained (Helene et al. 2002). The paper briefly reviews the methodology developed over the past 30 years to study protein turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegoke OAJ, McBurney MI, Baracos VE (1999) Jejunal mucosal protein synthesis: validation of luminal flooding dose method and effect of luminal osmolarity. Am J Physiol Gastrointest Liver Physiol 276:G14–G20

    CAS  Google Scholar 

  • Adegoke OA, McBurney MI, Samuels SE, Baracos VE (2003) Modulation of intestinal protein synthesis and protease mRNA by luminal and systemic nutrients. Am J Physiol Gastrointest Liver Physiol 284(6):G1017–G1026

    PubMed  CAS  Google Scholar 

  • Balagopal P (1998) In-vivo measurement of protein synthesis in humans. Curr Opin Clin Nutr Metab Care 1(5):467–473

    Article  PubMed  CAS  Google Scholar 

  • Balakrishna K, Murali HS, Batra HV (2010) Cloning, expression and characterization of attachment-invasion locus protein (Ail) of Yersinia enterocolitica and its utilization in rapid detection by immunoassays. Lett Appl Microbiol 50(2):131–137

    Article  PubMed  CAS  Google Scholar 

  • Barle H, Nyberg B, Ramel S, Essén P, McNurlan MA, Wernerman J, Garlick PJ (1999) Inhibition of liver protein synthesis during laparoscopic surgery. Am J Physiol 277(4 Pt 1):E591–E596

    PubMed  CAS  Google Scholar 

  • Bark TH, McNurlan MA, Lang CH, Garlick PJ (1998) Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Physiol 275(1 Pt 1):E118–E123

    PubMed  CAS  Google Scholar 

  • Bergen BK, Lindsay S, Matlock T, Narayanan S (2007) Spatial and linguistic aspects of visual imagery in sentence comprehension. Cogn Sci 31(5):733–764

    Article  PubMed  Google Scholar 

  • Biolo G, Chinkes D, Zhang XJ, Wolfe RR (1997) Harry M. Vars Research Award. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. J Parenter Enteral Nutr 16(4):305–315

    Google Scholar 

  • Blank LM, Kuepfer L (2010) Metabolic flux distributions: genetic information, computational predictions, and experimental validation. Appl Microbiol Biotechnol 86(5):1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Bregendahl K, Liu L, Cant JP, Bayley HS, McBride BW, Milligan LP, Yen JT, Fan MZ (2004) Fractional protein synthesis rates measured by an intraperitoneal injection of a flooding dose of L-[ring-2H5] phenylalanine in pigs. J Nutr 134(10):2722–2728

    PubMed  CAS  Google Scholar 

  • Bregendahl K, Yang X, Liu L, Yen JT, Rideout TC, Shen Y, Werchola G, Fan MZ (2008) Fractional protein synthesis rates are similar when measured by intraperitoneal or intravenous flooding doses of L-[ring-2H5] phenylalanine in combination with a rapid regimen of sampling in Piglets. J Nutr 138(10):1976–1981

    PubMed  CAS  Google Scholar 

  • Burrin DG, Wester TJ, Davis TA, Fiorotto ML, Chang X (1999) Dexamethasone inhibits small intestinal growth via increased protein catabolism in neonatal pigs. Am J Physiol 276(2 Pt 1):E269–E277

    PubMed  CAS  Google Scholar 

  • Carey MM (2000) Managing conflict to gets your needs met. Can Oper Room Nurs J 18(3):23–26

    PubMed  CAS  Google Scholar 

  • Caso G, Scalfi L, Marra M, Covino A, Muscaritoli M, McNurlan MA, Garlick PJ, Contaldo F (2000) Albumin synthesis is diminished in men consuming a predominantly vegetarian diet. J Nutr 130(3):528–533

    PubMed  CAS  Google Scholar 

  • Cervino C, Asam S, Knopp D, Rychlik M, Niessner R (2008) Use of isotope-labeled aflatoxins for LC-MS/MS stable isotope dilution analysis of foods. J Agric Food Chem 56(6):1873–1879

    Article  PubMed  CAS  Google Scholar 

  • Collier LS, Largaespada DA (2007) Transposable elements and the dynamic somatic genome. Genome Biol 8(Suppl 1):S5

    Google Scholar 

  • Dai ZL, Zhang J, Wu G, Zhu WY (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39(5):1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Zhu WY, Wu G (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  PubMed  CAS  Google Scholar 

  • Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B (2001) The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol 280(2):E340–E348

    CAS  Google Scholar 

  • Danicke S, Bottcher W, Simon O, Jeroch H (2001) The measurement of muscle protein synthesis in broilers with a flooding dose technique: use of 15N-labelled phenylalanine, GC-MS and GC-C-IRMS. Isotopes Environ Health Stud 37(3):213–225

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Fiorotto ML, Burrin DG, Reeds PJ, Nguyen HV, Beckett PR, Vann RC, O’Connor PMJ (2002) Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. Am J Physiol Endocrinol Metab 282(4):E880–E890

    PubMed  CAS  Google Scholar 

  • Davis TA, Reeds PJ (2001) Of flux and flooding: the advantages and problems of different isotopic methods for quantifying protein turnover in vivo. II. Methods based on the incorporation of a tracer. Curr Opin Clin Nutr Metab Care 4(1):51–56

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Fiorotto ML, Nguyen HV, Burrin DG (1999) Aminoacyl-tRNA and tissue free amino acid pools are equilibrated after a flooding dose of phenylalanine. Am J Physiol 277(1 Pt 1):E103–E109

    PubMed  CAS  Google Scholar 

  • Davis TA, Burrin DG, Fiorotto ML, Nguyen HV (1996) Protein synthesis in skeletal muscle and jejunum is more responsive to feeding in 7- than in 26-day-old pigs. Am J Physiol 270(5 Pt 1):E802–E809

    PubMed  CAS  Google Scholar 

  • de Meer K, Smolders HC, Meesterburrie J, de Sain-van der Velden M, Voorbij HA, Okken A, Reijngoud DJ, Kulik W (2000) A single food bolus stimulates albumin synthesis in growing piglets. J Pediatr Gastroenterol Nutr 31(3):251–257

    Article  PubMed  Google Scholar 

  • Deng D, Yin YL, Li T, Huang R, Yin Y, Liu Z, Zhang J, Wu G (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20(7):544–552

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Wu X, Bin S, Li TJ, Huang R, Liu Z, Liu Y, Ruan Z, Deng Z, Hou Y, Yin YL (2010) Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splanchnic tissues. J Anim Physiol Anim Nutr (Berl) 94(2):220–226

    Article  CAS  Google Scholar 

  • Deutz NE, Bruins MJ, Soeters PB (1998) Infusion of soy and casein protein meals affects interorgan amino acid metabolism and urea kinetics differently in pigs. J Nutr 128(12):2435–2445

    PubMed  CAS  Google Scholar 

  • Dudley MA, Burrin DG, Wykes LJ, Toffolo G, Cobelli C, Nichols BL, Rosenberger J, Jahoor F, Reeds PJ (1998) Protein kinetics determined in vivo with a multiple-tracer, single-sample protocol: application to lactase synthesis. Am J Physiol 274(3 Pt 1):G591–G598

    PubMed  CAS  Google Scholar 

  • Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U (2011) Proteome half-life dynamics in living human cells. Science 331(6018):764–768

    Article  PubMed  CAS  Google Scholar 

  • Escobar J, Frank JW, Suryawan A, Nguyen HV, Van Horn CG, Hutson SM, Davis TA (2010) Leucine and α-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 140(8):1418–1424

    Article  PubMed  CAS  Google Scholar 

  • Fan MZ, Chiba LI, Matzat PD, Yang X, Yin YL, Mine Y, Stein HH (2006) Measuring synthesis rates of nitrogen-containing polymers by using stable isotope tracers. J Anim Sci 84(Suppl):E79–E93

    PubMed  Google Scholar 

  • Fern EB, Garlick PJ, McNurlan MA, Waterlow JC (1981) The excretion of isotope in urea and ammonia for estimating protein turnover in man with [15N] glycine. Clin Sci 61(2):217–228

    PubMed  CAS  Google Scholar 

  • Frank JW, Escobar J, Nguyen HV, Jobgen SC, Jobgen WS, Davis TA, Wu G (2007) Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutri 137(2):315–319

    CAS  Google Scholar 

  • Frank JW, Escobar J, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA (2006) Dietary protein and lactose increase translation initiation factor activation and tissue protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 290(2):E225–E233

    Article  PubMed  CAS  Google Scholar 

  • Fouillet H, Bos C, Gaudichon C, Tomé D (2002) Approaches to quantifying protein metabolism in response to nutrient ingestion. J Nutr 132(10):3208S–3218S

    PubMed  CAS  Google Scholar 

  • Garlick PJ, McNurlan MA, Preedy VR (1980) A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H] phenylalanine. Biochem J 192(2):719–723

    PubMed  CAS  Google Scholar 

  • Goyarts T, Grove N, Dänicke S (2006) Effects of the Fusarium toxin deoxynivalenol from naturally contaminated heat given subchronically or as one single dose on the in vivo protein synthesis of peripheral blood lymphocytes and plasma proteins in the pig. Food Chem Toxicol 44(12):1953–1965

    Article  PubMed  CAS  Google Scholar 

  • Hasselgren M, Gustafsson D, Ställberg B, Lisspers K, Johansson G (2005) Management, asthma control and quality of life in Swedish adolescents with asthma. Acta Paediatr 94(6):682–688

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma T, Harada K, Miyazawa SI, Kondo A, Fukusaki E, Miyake C (2010) Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves. J Exp Bot 61(4):1041–1051

    Article  PubMed  CAS  Google Scholar 

  • He Q, Yin Y, Zhao F, Kong X, Wu G, Ren P (2011) Metabonomics and its role in amino acid nutrition research. Front Biosci 16:2451–2460

    Article  PubMed  CAS  Google Scholar 

  • Henshaw EC, Hirsch CA, Morton BE, Hiatt HH (1971) Control of protein synthesis in mammalian tissues through changes in ribosome activity. J Biol Chem 246(2):436–446

    PubMed  CAS  Google Scholar 

  • Hou Y, Wang L, Ding B, Liu Y, Zhu H, Liu J, Li Y, Kang P, Yin Y, Wu G (2011) Alpha-Ketoglutarate and intestinal function. Front Biosci 16:1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Hunter RJ, Patel VB, Baker AJ, Preedy VR (2004) Liver dysfunction induced by bile duct ligation and galactosamine injection alters cardiac protein synthesis. Metabolism 53(8):964–968

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Shi P, Li S, Dong R, Tian J, Wei J, Luo S (2010) Gene expression profiling of skeletal muscle of nursing piglets. Int J Biol Sci 6(7):627–638

    Article  PubMed  CAS  Google Scholar 

  • Kaganman I (2010) A glow on protein synthesis. Nat Methods 7(6):422–423

    Article  PubMed  CAS  Google Scholar 

  • Kassauskas A, Viezeliene D (2004) Effect of Polyscias filicifolia Bailey biomass on protein synthesis process in isolated pig heart. Medicina (Kaunas) 40(10):991–996

    Google Scholar 

  • Kong X, Tan B, Yin Y, Gao H, Li X, Jaeger LA, Bazer FW, Wu G (2012) Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23(9):1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Li F, Yin Y, Tan B, Kong X, Wu G (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41(5):1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Li H, Jiang Y, He FC (2008) Recent development of metabonomics and its applications in clinical research. Yi Chuan 30(4):389–399

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Liu C, Wang T, Wu G, Qiao S, Li D, Wang J (2011) Biomarkers for optimal requirements of amino acids by animals and humans. Front Biosci (Schol Ed) 3:1298–1307

    Article  Google Scholar 

  • Marchini JS, Castillo L, Chapman TE, Vogt JA, Ajami A, Young VR (1993) Phenylalanine conversion to tyrosine: comparative determination with L-[ring-2H5]phenylalanine and L-[1-13C]phenylalanine as tracers in man. Metabolism 42(10):1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Martinez JA (1987) Validation of a fast, simple and reliable method to assess protein synthesis in individual tissues by intraperitoneal injection of a flooding dose of [3H] phenylalanine. J Biochem Biophys Methods 14(6):349–354

    Article  PubMed  CAS  Google Scholar 

  • Matthews DE, Bier DM, Rennie MJ, Edwards RHT, Halliday D, Millward DJ, Clugston GA (1981) Regulation of leucine metabolism in man: a stable isotope study. Science 214(4525):1129–1131

    Article  PubMed  CAS  Google Scholar 

  • Matthews DE, Motil KJ, Rohrbaugh DK, Burke JF, Young VR, Bier DM (1980) Measurement of leucine metabolism in man from a primed, continuous infusion of L-[13C]leucine. Am J Physiol 238(5):E473–E479

    PubMed  CAS  Google Scholar 

  • McNurlan MA, Tomkins AM, Garlick PJ (1979) The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem J 178(2):373–379

    PubMed  CAS  Google Scholar 

  • Torrazza RM, Suryawan A, Gazzaneo MC, Orellana RA, Frank JW, Nguyen HV, Fiorotto ML, El-Kadi S, Davis TA (2010) Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. J Nutr 140(12):2145–2152

    Article  CAS  Google Scholar 

  • Nichols NL, Bertolo RF (2008) Luminal threonine concentration acutely affects intestinal mucosal protein and mucin synthesis in piglets. J Nutr 138(7):1298–1303

    PubMed  CAS  Google Scholar 

  • Noack S, Nöh K, Moch M, Oldiges M, Wiechert W (2010) Stationary versus non-stationary 13C-MFA: a comparison using a consistent dataset. J Biotechnol 154(2–3):179–190

    PubMed  Google Scholar 

  • Nöh K, Wiechert W (2011) The benefits of being transient: isotope-based metabolic flux analysis at the short time scale. Appl Microbiol Biotechnol 91(5):1247–1265

    Article  PubMed  Google Scholar 

  • Nyachoti CM, de Lange CFM, McBride BW, Leeson S, Gabert VM (2000) Endogenous gut nitrogen losses in growing pigs are not caused by increased protein synthesis rates in the small intestine. J Nutr 130(3):566–572

    PubMed  CAS  Google Scholar 

  • Owen SF, McCarthy ID, Watt PW, Ladero V, Sanchez JA, Houlihan DF, Rennie MJ (1999) In vivo rates of protein synthesis in Atlantic salmon (Salmo salar L.) smolts determined using a stable isotope flooding dose technique. Fish Physiol Biochem 20(1):87–94

    Article  CAS  Google Scholar 

  • Reece P, Bremer M, Stones R, Danks C, Baumgartner S, Tomkies V, Hemetsberger C, Smits N, Lubbe W (2009) A bioinformatics approach to the development of immunoassays for specified risk material in canned meat products. Anal Bioanal Chem 394(7):1845–1851

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ, Davis TA (1999) Of flux and flooding: the advantages and problems of different isotopic methods for quantifying protein turnover in vivo. I. Methods based on the dilution of a tracer. Curr Opin Clin Nutr Metab Care 2(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Rennie MJ, Bowtell JL, Millward DJ (1994) Physical activity and protein metabolism. In: Bouchard C, Shepherd RJ, Stephens T (eds) Physical activity, fitness and health. Human Kinetics, Champaign, IL, pp 432–450

    Google Scholar 

  • Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6(2):513–525

    Article  PubMed  CAS  Google Scholar 

  • Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21(1):140–155

    Article  PubMed  CAS  Google Scholar 

  • Schilling G (2007) Dark riddles. Sci Am 297(5):32–33

    Article  PubMed  Google Scholar 

  • Stoll B, Burrin DG, Henry J, Jahoor F, Reeds PJ (1997) Phenylalanine utilization by the gut and liver measured with intravenous and intragastric tracers in pigs. Am J Physiol 273(6 Pt 1):G1208–G1217

    PubMed  CAS  Google Scholar 

  • Stoll B, Burrin DG, Henry J, Yu H, Jahoor F, Reeds PJ (1998) Dietary amino acids are the preferential source of hepatic protein synthesis in piglets. J Nutr 128(9):1517–1524

    PubMed  CAS  Google Scholar 

  • Stoll B, Burrin DG, Henry JF, Jahoor F, Reeds PJ (1999) Dietary and systemic phenylalanine utilization for mucosal and hepatic constitutive protein synthesis in pigs. Am J Physiol 276(1 Pt 1):G49–G57

    PubMed  CAS  Google Scholar 

  • Stoll B, Price PT, Reeds PJ, Chang X, Henry JF, van Goudoever JB, Holst JJ, Burrin DG (2006) Feeding an elemental diet vs a milk-based formula does not decrease intestinal mucosal growth in infant pigs. JPEN J Parenter Enteral Nutr 30(1):323–329

    Article  Google Scholar 

  • Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu GY (2010) L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38(4):1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Tessari P, Garibotto G (2000) Interorgan amino acid exchange. Curr Opin Clin Nutr Metab Care 3(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Tessari P, Inchiostro S, Zanetti M, Barazzoni R (1995) A model of skeletal muscle leucine kinetics measured across the human forearm. Am J Physiol 269(1 Pt 1):E127–E136

    PubMed  CAS  Google Scholar 

  • Thompson GN, Pacy PJ, Merritt H, Ford GC, Read MA, Cheng KN, Halliday D (1989) Rapid measurement of whole body and forearm protein turnover using a [2H5] phenylalanine model. Am J Physiol 256(5 Pt 1):E631–E639

    PubMed  CAS  Google Scholar 

  • Tomé D, Bos C (2000) Dietary protein and nitrogen utilization. J Nutr 130(7):1868S–1873S

    PubMed  Google Scholar 

  • Volpi E, Mittendorfer B, Wolf SE, Wolfe RR (1999) Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am J Physiol 277(3 Pt 1):E513–E520

    PubMed  CAS  Google Scholar 

  • Waterlow JC, Golden MHN, Garlick PJ (1978) Protein turnover in man measured with 15N: comparison of end products and dose regimes. Am J Physiol 235(2):E165–E174

    PubMed  CAS  Google Scholar 

  • Wang X, Qiao SY, Yin YL, Yue L, Wang Z, Wu G (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137(6):1442–1446

    PubMed  CAS  Google Scholar 

  • Wilson FA, Suryawan A, Orellana RA, Gazzaneo MC, Nguyen HV, Davis TA (2011) Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino Acids 40(1):157–165

    Article  PubMed  CAS  Google Scholar 

  • Wolfe RR (1992) Radioactive and stable isotope tracers in biomedicine: principles and practice of kinetic analysis. Wiley, New York

    Google Scholar 

  • Xu H, Wang J, Yu Z, Lv F, Hou J (2011) Screening of polypeptides binding to porcine reproductive and respiratory syndrome virus by phage display library. Wei Sheng Wu Xue Bao 51(1):127–133

    PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138(5):867–872

    PubMed  CAS  Google Scholar 

  • Yin Y, Yao K, Liu Z, Gong M, Ruan Z, Deng D, Tan B, Liu Z, Wu G (2010) Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39(5):1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Zamboni N (2011) 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol 22(1):103–108

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Barazzoni R, Kiwanuka E, Tessari P (1999) Effects of branched-chain-enriched amino acids and insulin on forearm leucine kinetics. Clin Sci (Lond) 97(4):437–448

    Article  CAS  Google Scholar 

  • Zhang Y, Reckow S, Webhofer C, Boehme M, Gormanns P, Egge-Jacobsen WM, Turck CW (2011) Proteome scale turnover analysis in live animals using stable isotope metabolic labeling. Anal Chem 83(5):1665–1672

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Xiao, D. et al. (2013). Measurement of Synthesis and Degradation of Proteins. In: Blachier, F., Wu, G., Yin, Y. (eds) Nutritional and Physiological Functions of Amino Acids in Pigs. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1328-8_18

Download citation

Publish with us

Policies and ethics