Skip to main content

The Pig Model for Studying Amino Acid-Related Human Diseases: Amino Acids and Intestinal Diseases in Preterm Infants

  • Chapter
  • First Online:
Nutritional and Physiological Functions of Amino Acids in Pigs
  • 1821 Accesses

Abstract

Preterm delivery in humans, defined as birth before 90 % gestation, is a leading cause of infant morbidity and mortality worldwide, occurring in approximately 10 % of all pregnancies (McIntire et al. 1999). Infants born prematurely account for the majority of all neonatal deaths. Not surprisingly, preterm infants show various signs of organ immaturity and this may make preterm neonates more sensitive to serious feeding-induced gastrointestinal complications (Siggers et al. 2011). The immature gastrointestinal tract is less able to deal with microbiology, immunology, and nutrition-related challenges of postnatal life as a result of deficiencies in intestinal structural integrity, digestive capacity, and intestinal immunity (Neu 2007). Such deficiencies are associated with increased enteric disease susceptibility in preterm versus term neonates. Thus, investigating means of improving these deficiencies will aid in improving the maturation of the preterm gastrointestinal tract, in reducing gut inflammation, and in optimizing nutrition and health in this compromised population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostoni C, Carratù B, Boniglia C, Riva E, Sanzini E (2000) Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr 19:434–438

    PubMed  CAS  Google Scholar 

  • Alegria A, Barbera R, Farre R, Lagarda MJ, Lopez JC (1999) Amino acid contents of infant formulas. J Food Compos Anal 12:137–146

    Article  CAS  Google Scholar 

  • Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG et al (2002) Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr 140:425–431

    Article  PubMed  CAS  Google Scholar 

  • Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, Hernández-Barranco A, Margolles A, de Los Reyes-Gavilán CG, Gueimonde M (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79:763–772

    Article  PubMed  CAS  Google Scholar 

  • Atumal C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280:G922–G929

    Google Scholar 

  • Ball RO, House JD, Wykes LL, Pencharz PB (1996) A piglet model for neonatal amino acid metabolism during total parenteral nutrition. In: Tumbleson ME, Schook LB (eds) Advances in swine in biomedical research. Plenum Press, New York, pp 713–731

    Chapter  Google Scholar 

  • Bauer CR, Morrison JC, Poole WK, Korones SB, Boehm JJ, Rigatto H, Zachman RD (1984) A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics 73:682–688

    PubMed  CAS  Google Scholar 

  • Baxter D (2010) Impaired functioning of immune defenses to infection in premature and term infants and their implications for vaccination. Hum Vaccin 6:494–505

    Article  PubMed  Google Scholar 

  • Becker RM, Wu G, Galanko JA, Chen W, Maynor AR, Bose CL, Rhoads JM (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793

    Article  PubMed  CAS  Google Scholar 

  • Berman L, Moss RL (2011) Necrotizing enterocolitis: an update. Semin Fetal Neonatal Med 16:145–150

    Article  PubMed  Google Scholar 

  • Bittrich S, Philipona C, Hammon HM, Rome V, Guilloteau P, Blum JW (2004) Preterm as compared with full-term neonatal calves are characterized by morphological and functional immaturity of the small intestine. J Dairy Sci 87:1786–1795

    Article  PubMed  CAS  Google Scholar 

  • Bjornvad CR, Schmidt M, Petersen YM, Jensen SK, Offenberg H, Elnif J, Sangild PT (2005) Preterm birth makes the immature intestine sensitive to feeding-induced intestinal atrophy. Am J Physiol Regul Integr Comp Physiol 289:R1212–R1222

    Article  PubMed  CAS  Google Scholar 

  • Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, Schmidt M, Holst JJ, Hartmann B, Sangild PT (2000) GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Physiol Gastrointest Liver Physiol 279:G1249–G1256

    PubMed  CAS  Google Scholar 

  • Caicedo RA, Schanler RJ, Li N, Neu J (2005) The developing intestinal ecosystem: implications for the neonate. Pediatr Res 58:625–628

    Article  PubMed  Google Scholar 

  • Chapman KP, Courtney-Martin G, Moore AM, Ball RO, Pencharz PB (2009) Threonine requirement of parenterally fed postsurgical human neonates. Am J Clin Nutr 89:134–141

    Article  PubMed  CAS  Google Scholar 

  • Chauhan M, Henderson G, McGuire W (2008) Enteral feeding for very low birth weight infants: reducing the risk of necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 93:F162–166

    Article  PubMed  CAS  Google Scholar 

  • Christmas DM, Potokar J, Davies SJ (2011) A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase. Neuropsychiatr Dis Treat 7:431–439

    PubMed  CAS  Google Scholar 

  • Cilieborg M, Boye M, Thymann T, Mølbak L, Sangild PT (2010) Preterm birth and necrotizing enterocolitis alter gut colonization in pigs. Pediatr Res 69:10–16

    Article  Google Scholar 

  • Clark JA, Lane RH, Maclennan NK, Holubec H, Dvorakova K, Halpern MD, Williams CS, Payne CM, Dvorak B (2005) Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 288:G755–G762

    Article  PubMed  CAS  Google Scholar 

  • Claud EC, Walker WA (2001) Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J 15:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Claud EC, Savidge T, Walker WA (2003) Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 53:419–425

    Article  PubMed  CAS  Google Scholar 

  • Clouard C, Meunier-Salaün MC, Val-Laillet D (2012) Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research? Animal 6:118–36

    Article  PubMed  CAS  Google Scholar 

  • Courtney-Martin G, Chapman KP, Moore AM, Kim JH, Ball RO, Pencharz PB (2008) Total sulfur amino acid requirement and metabolism in parenterally fed postsurgical human neonates. Am J Clin Nutr 88:115–124

    PubMed  CAS  Google Scholar 

  • Courtney-Martin G, Moore AM, Ball RO, Penchar PB (2010) The addition of cysteine to the total sulphur amino acid requirement as methionine does not increase erythrocytes glutathione synthesis in the parenterally fed human neonate. Pediatr Res 67:320–324

    Article  PubMed  CAS  Google Scholar 

  • Crissinger KD, Burney DL, Velasquez OR, Gonzalez E (1994) An animal model of necrotizing enterocolitis induced by infant formula and ischemia in developing piglets. Gastroenterology 106:1215–1222

    PubMed  CAS  Google Scholar 

  • Cvitkovic S, Bertolo RF, Brunton JA, Pencharz PB, Ball RO (2004) Enteral tryptophan requirement determined by oxidation of gastrically or intravenously infused phenylalanine is not different from the parenteral requirement in neonatal piglets. Pediatr Res 55:630–636

    Article  PubMed  CAS  Google Scholar 

  • Dekaney CM, Wu G, Jaeger LA (2003) Gene expression and activity of enzymes in the arginine biosynthetic pathway in porcine fetal small intestine. Pediatr Res 53:274–80

    Article  PubMed  CAS  Google Scholar 

  • Dyess DL, Peeples GL, Ardell JL, Tacchi EJ, Roberts WS, Ferrara JJ, Powell RW (1993) Indomethacin-induced blood flow distribution in premature and full-term piglets. J Pediatr Surg 28:1396–1400

    Article  PubMed  CAS  Google Scholar 

  • Elango R, Pencharz PB, Ball RO (2002) The branched-chain amino acid requirement of parenterally fed neonatal piglets is less than the enteral requirement. J Nutr 132:3123–3129

    PubMed  CAS  Google Scholar 

  • Estall JL, Drucker DJ (2005) Tales beyond the crypt: glucagon-like peptide-2 and cytoprotection in the intestinal mucosa. Endocrinology 146:19–21

    Article  PubMed  CAS  Google Scholar 

  • Ewaschuk JB, Murdoch GK, Johnson IR, Madsen KL, Field CJ (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106:870–877

    Article  PubMed  CAS  Google Scholar 

  • Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91:48–55

    PubMed  CAS  Google Scholar 

  • Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol Regul Integr Comp Physiol 271:R1149–R1155

    CAS  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  PubMed  CAS  Google Scholar 

  • Grishin AV, Wang J, Potoka DA, Hackam DJ, Upperman JS, Boyle P, Zamora R, Ford HR (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol 176:580–588

    PubMed  CAS  Google Scholar 

  • Hallstrom M, Eerola E, Vuento R, Janas M, Tammela O (2004) Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. Eur J Clin Microbiol Infect Dis 23:463–470

    Article  PubMed  CAS  Google Scholar 

  • He QH, Kong XF, Wu GY, Ren PP, Tang HR, Hao FH, Huang RL, Li TJ, Tan BE, Li P, Tang ZR, Yin YL, Wu YN (2009) Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 37:199–208

    Article  PubMed  CAS  Google Scholar 

  • Heird WC, Gomez MR (1996) Parenteral nutrition in low-birth-weight infants. Annu Rev Nutr 16:471–499

    Article  PubMed  CAS  Google Scholar 

  • Hunter CJ, Upperman JS, Ford HR, Camerini V (2008) Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatr Res 63:117–123

    Article  PubMed  Google Scholar 

  • Kadrofske MM, Parimi PS, Gruca LL, Kalhan SC (2006) Effect of intravenous amino acids on glutamine and protein kinetics in low-birth-weight preterm infants during the immediate neonatal period. Am J Physiol Endocrinol Metab 290:E622–E630

    Article  PubMed  CAS  Google Scholar 

  • Kim SW, Mateo RD, Yin YL, Wu GY (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian Australas J Anim Sci 20:295–306

    CAS  Google Scholar 

  • Kuitunen M, Savilahti E (1995) Mucosal IgA, mucosal cow’s milk antibodies, serum cow’s milk antibodies and gastrointestinal permeability in infants. Pediatr Allergy Immunol 6:30–35

    Article  PubMed  CAS  Google Scholar 

  • Le Floc’h N, Melchior D, Sève B (2008) Dietary tryptophan helps to preserve tryptophan homeostasis in pigs suffering from lung inflammation. J Anim Sci 86:3473–3479

    Article  PubMed  CAS  Google Scholar 

  • Li N, DeMarco VG, West CM, Neu J (2003) Glutamine supports recovery from loss of transepithelial resistance and increase of permeability induced by media change in Caco-2 cells. J Nutr Biochem 14:401–408

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu GY (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li FN, Yin YL, Tan B, Kong XF, Wu GY (2011) Leucine nutrition in animals and humans: mTOR signaling 3 and beyond. Amino Acids 41:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Lin J (2004) Too much short chain fatty acids cause neonatal necrotizing enterocolitis. Med Hypotheses 62:291–293

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Huang JJ, Hou YQ, Zhu HL, Zhao SJ, Ding BY, Yin YL, Yi GF, Shi JX, Fan W (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100:552–560

    Article  PubMed  CAS  Google Scholar 

  • Maaike AR, van Beek RH, Gardi V, de Bie MH, Dassel AC, van Goudoever JB (2007a) Cysteine: a conditionally essential amino acid in low-birth-weight preterm infants? Am J Clin Nutr 86:1120–1125

    Google Scholar 

  • Maaike AR, Barbara S, Shaji C, Henk S, Agneta LS, Johannes BG, Douglas GB (2007b) Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc Natl Acad Sci U S A 104:3408–3413

    Article  CAS  Google Scholar 

  • Maingay-de Groof F, Huang L, Voortman GJ, Chao C, Huang Y, Van Goudoeve JB (2010) 148 branched chain amino acid requirements for term neonates. Pediatr Res 68:78

    Article  Google Scholar 

  • McIntire DD, Bloom SL, Casey BM, Leveno KJ (1999) Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 340:1234–1238

    Article  PubMed  CAS  Google Scholar 

  • Miller RG, Jahoor F, Jaksic T (1995) Decreased cysteine and praline synthesis in parenterally fed, premature infants. J Pediatr Surg 30:953–958

    Article  PubMed  CAS  Google Scholar 

  • Møller HK, Thymann T, Fink LN, Frokiaer H, Kvistgaard AS, Sangild PT (2011) Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br J Nutr 105:44–53

    Article  PubMed  CAS  Google Scholar 

  • Neu J (1996) Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 43:409–32

    Article  PubMed  CAS  Google Scholar 

  • Neu J (2007) Gastrointestinal development and meeting the nutritional needs of premature infants. Am J Clin Nutr 85:629S–634S

    PubMed  CAS  Google Scholar 

  • Nusrat A, Turner JR, Madara JL (2000) Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279:G851–G857

    PubMed  CAS  Google Scholar 

  • Omari TI, Davidson GP (2003) Multipoint measurement of intragastric pH in healthy preterm infants. Arch Dis Child Fetal Neonatal Ed 88:F517–F520

    Article  PubMed  CAS  Google Scholar 

  • Oste M, Van Ginneken C, Van Haver E, Bjornvad CR, Thymann T, Sangild PT (2005) The intestinal trophic response to enteral food is reduced in parenterally fed preterm pigs and is associated with more nitrergic neurons. J Nutr 135:2657–2663

    PubMed  CAS  Google Scholar 

  • Parimi PS, Kalhan SC (2007) Glutamine supplementation in the newborn infant. Semin Fetal Neonatal Med 12:19–25

    Article  PubMed  Google Scholar 

  • Patrycja P, Barbara S (2008) Animal models to study neonatal nutrition in humans. Curr Opin Clin Nutr Metab Care 11:601–606

    Article  CAS  Google Scholar 

  • Patterson JK, Lei XG, Miller DD (2008) The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med (Maywood) 233:651–64

    Article  CAS  Google Scholar 

  • Rhoads JM, Chen W, Gookin J, Wu GY, Fu Q, Blikslager AT, Rippe RA, Argenzio RA, Cance WG, Weaver EM, Romer LH (2004) Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut 53:514–522

    Article  PubMed  CAS  Google Scholar 

  • Riezzo G, Indrio F, Raimondi F, Montagna O, Salvia G, Massimo B, Polimeno L, Cavallo L, Francavilla R (2009) Maturation of gastric electrical activity, gastric emptying and intestinal permeability in preterm newborns during the first month of life. Ital J Pediatr 35:6

    Article  PubMed  Google Scholar 

  • Roberts SA, Ball RO, Moore AM, Filler RM, Pencharz PB (2001) The effect of graded intake of glycyl-L-tyrosine on phenylalanine and tyrosine metabolism in parenterally fed neonates with an estimation of tyrosine requirement. Pediatr Res 49:111–119

    Article  PubMed  CAS  Google Scholar 

  • Rouwet EV, Heineman E, Buurman WA, ter Riet G, Ramsay G, Blanco CE (2002) Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period. Pediatr Res 51:64–70

    Article  PubMed  CAS  Google Scholar 

  • Sangild PT (2006) Gut responses to enteral nutrition in preterm infants and animals. Exp Biol Med 231:1695–1711

    CAS  Google Scholar 

  • Sangild PT, Schmidt M, Jacobsen H, Fowden AL, Forhead A, Avery B, Greve T (2000) Blood chemistry, nutrient uptake and organ weights of fetal and newborn calves derived from in vitro produced embryos. Biol Reprod 62:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Sangild PT, Petersen YM, Schmidt M, Elnif J, Petersen TK, Buddington RK, Greisen G, Michaelsen KF, Burrin DG (2002a) Preterm birth affects the intestinal response to parenteral and enteral nutrition in newborn pigs. J Nutr 132:3786–3794

    PubMed  Google Scholar 

  • Sangild PT, Petersen YM, Schmidt M, Elnif J, Petersen TK, Buddington RK, Michaelsen KF, Greisen G, Burrin DG (2002b) Preterm birth affects the gastrointestinal responses to parenteral and enteral nutrition in the newborn pig. J Nutr 132:2673–2681

    PubMed  CAS  Google Scholar 

  • Sangild PT, Schmidt M, Elnif J, Bjornvad CR, Buddington RK (2002c) Prenatal development of the gastrointestinal tract in pigs and the effect of fetal gut obstruction. Pediatr Res 52:416–424

    Article  PubMed  Google Scholar 

  • Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, Grondahl ML, Hansen AK, Jensen SK, Boye M, Moelbak L, Buddington RK, Westrom BR, Holst JJ, Burrin DG (2006) Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 130:1776–1792

    Article  PubMed  CAS  Google Scholar 

  • Schaart MW, de Bruijn AC, Schierbeek H, Tibboel D, Renes IB, van Goudoever JB (2009) Small intestinal MUC2 synthesis in human preterm infants. Am J Physiol Gastrointest Liver Physiol 296:G1085–G1090

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Buddington RK, Sangild PT, Siggers RH, Thymann T, Jensen BB, Mølbak L, Heegaard PM (2008) Elective cesarean delivery affects gut maturation and delays microbial colonization but does not increase necrotizing enterocolitis in preterm pigs. Am J Physiol Regul Integr Comp Physiol 294:R929–R938

    Article  PubMed  CAS  Google Scholar 

  • Schwiertz A, Gruhl B, Löbnitz M, Michel P, Radke M, Blaut M (2003) Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 54:393–399

    Article  PubMed  Google Scholar 

  • Shoveller AK, House JD, Brunton JA, Pencharz PB, Ball RO (2004) The balance of dietary sulfur amino acids and the route of feeding affect plasma homocysteine concentrations in neonatal piglets. J Nutr 134:609–612

    PubMed  CAS  Google Scholar 

  • Shulman RJ (2002) Effect of enteral administration of insulin on intestinal development and feeding tolerance in preterm infants: a pilot study. Arch Dis Child Fetal Neonatal 86:F131–F133

    Article  CAS  Google Scholar 

  • Siggers RH, Siggers J, Thymann T, Boye M, Sangild PT (2011) Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J Nutr Biochem 22:511–521

    Article  PubMed  CAS  Google Scholar 

  • Sodhi C, Richardson W, Gribar S, Hackam DJ (2008) The development of animal models for the study of necrotizing enterocolitis. Dis Model Mech 1:94–98

    Article  PubMed  Google Scholar 

  • Stechmiller JK, Childress B, Porter T (2004) Arginine immunonutrition in critically ill patients: a clinical dilemma. Am J Crit Care 13:17–23

    PubMed  Google Scholar 

  • Suryawan A, Nguyen HV, Almonaci RD, Davis TA (2012) Differential regulation of protein synthesis in skeletal muscle and liver of neonatal pigs by leucine through an mTORC1-dependent pathway. J Anim Sci Biotechnol 3:3

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu GY (2009) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Tang WJ, Xu HJ, Konga XF, Li XG, Yao K, Gu WT, Smith SB, Wu GY (2011) Dietary L-arginine supplementation differentially regulates expression of fat-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Gruca LL, Bennett C, Parimi PS, Hanson RW, Kalhan SC (2008) Metabolism of methionine in the newborn infant: response to the parenteral and enteral administration of nutrients. Pediatr Res 64:381–386

    Article  PubMed  CAS  Google Scholar 

  • Thompson SW, McClure BG, Tubman TRJ (2003) A randomized, controlled trial of parenteral glutamine in ill, very low birth-weight neonates. J Pediatr Gastroenterol Nutr 37:550–553

    Article  PubMed  CAS  Google Scholar 

  • Tubman TR, Thompson SW (2001) Glutamine supplementation for prevention of morbidity in preterm infants. Cochrane Database Syst Rev 4:CD001457

    PubMed  Google Scholar 

  • Upperman JS, Potoka D, Grishin A, Hackam D, Zamora R, Ford HR (2005) Mechanisms of nitric oxide-mediated intestinal barrier failure in necrotizing enterocolitis. Semin Pediatr Surg 14:159–66

    Article  PubMed  Google Scholar 

  • Urschel KL, Evans AR, Wilkinson CW, Pencharz PB, Ball RO (2007) Parenterally fed neonatal piglets have a low rate of endogenous arginine synthesis from circulating proline. J Nutr 137:601–606

    PubMed  CAS  Google Scholar 

  • van den Akker CH, Schierbeek H, Minderman G, Vermes A, Schoonderwaldt EM, Duvekot JJ, Steegers EA, van Goudoever JB (2011) Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics. Pediatr Res 70:566–71

    Article  PubMed  CAS  Google Scholar 

  • van Elburg RM, Fetter WP, Bunkers CM, Heymans HS (2003) Intestinal permeability in relation to birth weight and gestational and postnatal age. Arch Dis Child Fetal Neonatal Ed 88:F52–F55

    Article  PubMed  Google Scholar 

  • Verner A, Craig S, McGuire W (2007) Effect of taurine supplementation on growth and development in preterm or low birth weight infants. Cochrane Database Syst Rev 17:CD006072

    Google Scholar 

  • Vlaardingerbroek H, van den Akker CHP, de Groof F, Hogewind-Schoonenboom JE, Huang L, Riedijk MA, van der Schoor SRD, Huang Y, van Goudoever JB (2011) Amino acids for the neonate: search for the ideal dietary composition. NeoRev 12:e506–e516

    Article  Google Scholar 

  • Wang X, Qiao SY, Yin YL, Yu LG, Wang ZY, Wu GY (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P, Li XL, Zhou HJ, Wang FL, Li DF, Yin YL, Wu GY (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang J, Ford HR, Grishin AV (2010) NF-κB-mediated expression of MAPK phosphatase-1 is an early step in desensitization to TLR ligands in enterocytes. Mucosal Immunol 3:523–534

    Article  PubMed  CAS  Google Scholar 

  • Wang SP, Blachier F, Zhao F, Yin YL (2011) Intestinal microbiota: development, metabolism and functions. J Food Agric Environ 9:121–129

    Google Scholar 

  • Weaver LT, Austin S, Cole TJ (1991) Small intestinal length: a factor essential for gut adaptation. Gut 32:1321–1323

    Article  PubMed  CAS  Google Scholar 

  • WHO (2007) Protein and amino acid requirements in human nutrition. WHO Tech Rep Ser 935:1–265

    Google Scholar 

  • Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–8

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ, Kelly K, Watford M, Morris SM Jr (2000a) A cortisol surge mediates the enhanced expression of pig intestinal pyrroline-5-carboxylate synthase during weaning. J Nutr 130:1914–1919

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ, Knabe DA, Bazer FW, Rhoads JM (2000b) Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care 3:59–66

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Becker RM, Bose CL, Rhoads JM (2001) Serum amino acid concentrations in preterm infants. J Pediatr 139:334–337

    Google Scholar 

  • Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004) Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Wu GY, Bazer FW, Davis TA, Johnson GA, Kim SW, Knabe DA, Spencer TE, Yin YL (2007) Important roles for arginine-family amino acids in swine nutrition and production. Livest Sci 122:8–22

    Article  Google Scholar 

  • Wu GY, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY, Liu ZQ, Dun D, Li TJ, Huang RL, Zhang JS, Bie T, Wang WC, Wu GY (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yao K, Guan S, Li TJ, Huang RL, Wu GY, Ruan Z, Yin YL (2011) Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br J Nutr 105:703–709

    Article  PubMed  CAS  Google Scholar 

  • Yin YL, Tan BE (2010) Manipulation of dietary nitrogen, amino acids and phosphorus to reduce environmental impact of swine production and enhance animal health. J Food Agric Environ 8:447–462

    CAS  Google Scholar 

  • Yin YL, Yao K, Liu ZJ, Gong M, Ruan Z, Deng D, Tan BE, Liu ZQ, Wu GY (2010) Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hu, C., Yin, Y., Shan, A., He, X., Li, W., Fang, J. (2013). The Pig Model for Studying Amino Acid-Related Human Diseases: Amino Acids and Intestinal Diseases in Preterm Infants. In: Blachier, F., Wu, G., Yin, Y. (eds) Nutritional and Physiological Functions of Amino Acids in Pigs. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1328-8_13

Download citation

Publish with us

Policies and ethics