Skip to main content

Abstract

In modern, high-density production systems, swine are challenged by pathogenic microorganisms—bacteria, viruses, and parasites that can cause infectious disease or pathology, especially for neonatal and weaned piglets (Yong-Gang et al. 2012). In these latter, immune system is not well developed in the first 4 weeks of life (Yang and Schultz 1986). Amino acids have been demonstrated to play important roles in immune responses by regulating (1) the activation of T lymphocytes, B lymphocytes, natural killer cells, and macrophages; (2) cellular redox state, gene expression, and lymphocyte proliferation; and (3) the production of antibodies, cytokines, and other cytotoxic substances (Li et al. 2007a, b; Kim et al. 2007). A number of studies have showed that dietary specific amino acids supplementation to pigs with malnutrition and infectious diseases enhance the immune status, thereby reducing morbidity and mortality (Ewaschuk et al. 2011; Johnsona et al. 2006; Liu et al. 2005, 2008; Han et al. 2008; Tan et al. 2009; Wenkai et al. 2012a, b). In this chapter, functions of amino acids in regulating the immune system and the amino acids requirements of immune system are described, in the hope of providing great promise in improving health and preventing infectious diseases in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420

    Article  PubMed  CAS  Google Scholar 

  • Bauchart-Thevret C, Stoll B, Chacko S, Burrin DG (2009) Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. Am J Physiol Endocrinol Metab 296:E1239–E1250

    Article  PubMed  CAS  Google Scholar 

  • Bernard AC, Mistry SK, Morris SM Jr, O’Brien WE, Tsuei BJ, Maley ME, Shirley LA, Kearney PA, Boulanger BR, Ochoa JB (2001) Alterations in arginine metabolic enzymes in trauma. Shock 15:215–219

    Article  PubMed  CAS  Google Scholar 

  • Blecha F (2001) Immunology. In: Pond WG, Mersmann HJ (eds) Biology of the domestic pig. Cornell University Press, Ithaca, NY, pp 688–711

    Google Scholar 

  • Brandtzaeg P, Pabst R (2004) Let’s go mucosal: communication on slippery ground. Trends Immunol 25:570–577

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Bruins MJ, Soeters PB, Deutz NE (2000) Endotoxemia affects organ protein metabolism differently during prolonged feeding in pigs. J Nutr 130:3003–3013

    PubMed  CAS  Google Scholar 

  • Bruins MJ, Soeters PB, Lamers WH, Deutz NE (2002) L-arginine supplementation in pigs decreases liver protein turnover and increases hindquarter protein turnover both during and after endotoxemia. Am J Clin Nutr 75:1031–1044

    PubMed  CAS  Google Scholar 

  • Burkey TE, Skjolaas KA, Minton JE (2009) BOARD-INVITED REVIEW: Porcine mucosal immunity of the gastrointestinal tract. J Anim Sci 87:1493–1501

    Article  PubMed  CAS  Google Scholar 

  • Burns CP (1975) Isoleucine metabolism by leukemic and normal human leukocytes in relation to cell maturity and type. Blood 45:643–651

    PubMed  CAS  Google Scholar 

  • Butler JE, Weber P, Sinkora M, Baker D, Schoenherr A, Mayer B, Francis D (2002) Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens. J Immunol 169(12):6822–6830

    PubMed  CAS  Google Scholar 

  • Calder PC (2006) Branched-chain amino acids and immunity. J Nutr 136:288S–293S

    PubMed  CAS  Google Scholar 

  • Calder PC, Yaqoob P (1999) Glutamine and the immune system. Amino Acids 17:227–241

    Article  PubMed  CAS  Google Scholar 

  • Cuaron JA, Chapple RP, Easter RA (1984) Effect of lysine and threonine supplementation of sorghum gestation diets on nitrogen balance and plasma constituents in first-litter gilts. J Anim Sci 58:631–637

    PubMed  CAS  Google Scholar 

  • Cunningham-Rundles S (2002) Evaluation of the effects of nutrients on immune function. In: Calder PC, Field CJ, Gill HS (eds) Nutrition and immune function. CABI Publishing, Wallingford, UK, pp 57–92

    Google Scholar 

  • Curi TCP, Demelo MP, Deazevedo RB, Zorn TMT, Curi R (1997) Glutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase. Am J Physiol 42:Cl124–Cl129

    Google Scholar 

  • Curi R, Newsholme P, Pithon-Curi TC, Pires-de-Melo M, Garcia C, Homem-de-Bittencourt PI Jr, Guimarães ARP (1999) Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils. Braz J Med Biol 32:15–21

    CAS  Google Scholar 

  • Deutz NE, Reijven PL, Athanasas G, Soeters PB (1992) Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs. Clin Sci 83:607–614

    PubMed  CAS  Google Scholar 

  • Dréau D, Lallès JP, Toullec R, Salmon H (1995) B and T lymphocytes are enhanced in the gut of piglets fed heat-treated soyabean proteins. Vet Immunol Immunopathol 47:69–79

    Article  PubMed  Google Scholar 

  • Ewaschuk JB, Murdoch GK, Johnson IR, Madsen KL, Field CJ (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106:870–877

    Article  PubMed  CAS  Google Scholar 

  • Geudens N, Wuyts WA, Rega FR, Vanaudenaerde BM, Neyrinck AP, Verleden GM, Lerut TE, Van Raemdonck DEM (2008) N-acetyl cysteine attenuates the inflammatory response in warm ischemic pig lungs. J Surg Res 146(2):177–183

    Article  PubMed  CAS  Google Scholar 

  • Glassy MC, Fur long CE (1981) Neutral amino acid transport during the cell cycle of cultured human lymphocytes. J Cell Physiol 107:69–74

    Article  PubMed  CAS  Google Scholar 

  • Grimble RF (2001) Nutritional modulation of immune function. Proc Nutr Soc 60:389–397

    Article  PubMed  CAS  Google Scholar 

  • Grimble RF (2006) The effects of sulfur amino acid intake on immune function in humans. J Nutr 136:1660S–1665S

    PubMed  CAS  Google Scholar 

  • Han J, Liu YL, Fan W, Chao J, Hou YQ, Yin YL, Zhu HL, Meng GQ, Che ZQ (2009) Dietary L-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 37:643–651

    Article  PubMed  CAS  Google Scholar 

  • Han GQ, Yu B, Chen DW, Xiang ZT, Chen Y, Chen H, Mao Q (2012) Effects of threonine on expression of immune-related genes of porcine intestinal epithelial cell infected with Pseudorabies virus in vitro. Chin J Anim Nutr 3:487–496

    Google Scholar 

  • Hibbs JB (1991) Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol 142:565–569

    Article  PubMed  CAS  Google Scholar 

  • Jahoor F, Wykes L, del Rosario MP, Frazer ME, Reeds PJ (1999) Chronic protein undernutrition and an acute inflammatory stimulus elicit different protein kinetic responses in plasma but not in muscle of piglets. J Nutr 129:693–699

    PubMed  CAS  Google Scholar 

  • Johansson AC, Hegardt P, Janelidze S, Visse E, Widegren B, Siesjö P (2002) Enhanced expression of iNOS intra-tumorally and at the immunization site after immunization with IFNγ -secreting rat glioma cells. J Neuroimmunol 123:135–143

    Article  PubMed  CAS  Google Scholar 

  • Johansson CC, Mougiakakos D, Trocme E, All-Ericsson C, Economou MA, Larsson O, Seregard S, Kiessling R (2010) Expression and prognostic significance of iNOS in uveal melanoma. Int J Cancer 126:2682–2689

    PubMed  CAS  Google Scholar 

  • Johnsona IR, Ball RO, Baracos VE, Field CJ (2006) Glutamine supplementation influences immune development in the newly weaned piglet. Dev Comp Immunol 30:1191–1202

    Article  Google Scholar 

  • Kelly E, Morris SM Jr, Billiar TR (1995) Nitric oxide, sepsis, and arginine metabolism. J Parenter Enteral Nutr 19:234–238

    Article  CAS  Google Scholar 

  • Kim SW, Mateo RD, Wu G, Carroll JA, Shinzato I (2006) Dietary L-arginine supplementation affects immune status of pregnant gilts. FASEB J A266.1

    Google Scholar 

  • Kim SW, Mateo RD, Yin YL, Wu GY (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Australas J Anim Sci 20:295–306

    CAS  Google Scholar 

  • Koch B, Schroder MT, Schafer G, Schauder P (1990) Comparison between transport and degradation of leucine and glutamine by peripheral human lymphocytes exposed to concanavalin A. J Cell Physiol 143:94–99

    Article  PubMed  CAS  Google Scholar 

  • Konashi S, Takahashi K, Akiba Y (2000) Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. Br J Nutr 83:449–456

    PubMed  CAS  Google Scholar 

  • Le Floc’h N, Sève B (2007) Biological roles of tryptophan and its metabolism: potential implications for pig feeding. Livest Sci 112:23–32

    Article  Google Scholar 

  • Le Floc’h N, Melchiora D, Obledb C (2004) Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livest Prod Sci 87(1):37–45

    Article  Google Scholar 

  • Li DF, Xiao CH, Qiao SY, Zhang JH, Johnsonb EW, Thacker PA (1999) Effects of dietary threonine on performance, plasma parameters and immune function of growing pigs. Anim Feed Sci Technol 78:179–188

    Article  CAS  Google Scholar 

  • Li JW, Chen DW, Zhang KY, Long DB (2007a) The effect of immune stress on ideal amino acid pattern for piglets. Front Agric China 1(2):210–213

    Article  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007b) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Litvak N, Rakhshandeh A, Htoo J, de Lange CFM (2011) Optimal dietary methionine to methionine plus cysteine ratio is increased during immune system stimulation in growing pigs. In: Proceedings of Mid-West American society of animal science meeting, Des Moines, Iowa

    Google Scholar 

  • Liu T, Peng J, Xiong Y, Zhou S, Cheng X (2002) Effects of dietary glutamine and glutamate supplementation on small intestinal structure, active absorption and DNA, RNA concentrations in skeletal muscle tissue of weaned piglets during d 28 to 42 of age. Asian-Australas J Anim Sci 15:238–242

    CAS  Google Scholar 

  • Liu YL, Huang JJ, Hou YQ, Zhu H, Zhao S, Ding B, Yin Y, Yi G, Shi J, Fan W (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Bri J Nutr 100:552–560

    Article  CAS  Google Scholar 

  • Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB (2006) CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085–2094

    PubMed  CAS  Google Scholar 

  • Mani V, Weber TE, Baumgard LH, Gabler NK (2012) Endotoxin inflammation and intestinal function in livestock. J Anim Sci. doi:10.2527/jas.2011-4627

  • Mayer L (2000) Mucosal immunity and gastrointestinal antigen processing. J Pediatr Gastroenterol Nutr 30:S4–S12

    Article  PubMed  CAS  Google Scholar 

  • Melchior D, Sève B, Le Floc’h N (2004) Chronic lung inflammation affects plasma amino acid concentrations in pigs. J Anim Sci 82:1091–1099

    PubMed  CAS  Google Scholar 

  • Melchior D, Mézière N, Sève B, Le Floc’h N (2005) Is tryptophan catabolism increased under indoleamine 2,3 dioxygenase activity during chronic lung inflammation in pigs? Reprod Nutr Dev 45:175–183

    Article  PubMed  CAS  Google Scholar 

  • Moffet JR, Namboodiri MA (2003) Tryptophan and immune response. Immunol Cell Biol 81:247–265

    Article  Google Scholar 

  • Morris SM Jr (2004) Enzymes of arginine metabolism. J Nutr 134(10):S2743–S2747

    Google Scholar 

  • Newsholme P (2001) Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:S2515–S2522

    Google Scholar 

  • Newsholme P, Curi R, Pithon-Curi TC, Murphy CJ, Garcia C, Pires-de-Melo M (1999) Glutamine metabolism by lymphocytes, macrophages and neutrophils. Its importance in health and disease. J Nutr Biochem 10:316–324

    Article  PubMed  CAS  Google Scholar 

  • Pond CM, Newsholme EA (1999) Coping with metabolic stress in wild and domestic animals. Brit Soc Anim Sci Publ Ser 24:9–20

    Google Scholar 

  • Popovic PJ, Zeh HJ III, Ochoa JB (2007) Arginine and immunity. J Nutr 137:S1681–S1686

    Google Scholar 

  • Rakhshandeh A, Htoo JK, de Lange CFM (2010) Immune system stimulation of growing pigs does not alter apparent ileal amino acid digestibility but reduces the ratio between whole body nitrogen and sulfur retention. Livest Sci 134(1):21–23

    Article  Google Scholar 

  • Reeds PJ, Jahoor F (2001) The amino acid requirement of disease. Clin Nutr 20:15–22

    Article  CAS  Google Scholar 

  • Ren WK, Yin YL, Liu G, Yu XL, Li YH, Yang G, Li TJ, Wu GY (2012a) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 (PCV2) infection. Amino Acids 42:2089–2094

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Luo W, Wu MM, Liu G, Yu XL, Fang J, Li TJ, Yin YL, Wu GY (2012b) Dietary L-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids. doi:10.1007/s00726-011-1134-5

  • Ren W, Zou L, Li N, Wang Y, Gang L, Peng Y, Ding J, Yin Y, Wu G (2013) Dietary arginine supplementation enhances immune responses to inactivated Pasteure llamultocid avaccination in mice. Br J Nutr 109:867–872

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  • Rothkötter HJ, Sowa E, Pabst R (2002) The pig as a model of developmental immunology. Hum Exp Toxicol 21:533–536

    Article  PubMed  Google Scholar 

  • Scharek L, Tedin K (2007) The porcine immune system—differences compared to man and mouse and possible consequences for infections by Salmonella serovars. Berl Munch Tierarztl Wochenschr 120(7–8):347–354

    PubMed  CAS  Google Scholar 

  • Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65

    Article  PubMed  CAS  Google Scholar 

  • Sinkora M, Butler JE (2009) The ontogeny of the porcine immune system. Dev Comp Immunol 33(3):273–283

    Article  PubMed  CAS  Google Scholar 

  • Sinkora M, Sinkora J, Rehakova Z, Splichal I, Yang H, Parkhouse RM, Trebichavsky I (1998) Prenatal ontogeny of lymphocyte subpopulations in pigs. Immunology 95(4):595–603

    Article  PubMed  CAS  Google Scholar 

  • Sinkora M, Sinkora J, Rehakova Z, Butler JE (2000) Early ontogeny of thymoctes in pigs: sequential colonization of the thymus by T cell progenitors. J Immunol 165(4):1832–1839

    PubMed  CAS  Google Scholar 

  • Sinkora M, Butler JE, Holtmeier W, Sinkorova J (2005) Lymphocyte development in fetal piglets: facts and surprises. Vet Immunol Immunopathol 108(1–2):177–184

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF, Yao K, Wu GY, Yin YL (2008) Effect of arginine on development, mucosal morphology and IL-2 gene expression levels of digestive tract in early-weaned piglets. Scientia Agricultura Sinica 41(9):2783–2788

    CAS  Google Scholar 

  • Tan BE, Li XG, Kong XF, Huang RL, Ruan Z, Yao K, Deng ZY, Xie MY, Shinzato I, Yin YL, GY W (2009) Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331

    Article  PubMed  CAS  Google Scholar 

  • Van Heugten E, Spears JW, Coffey MT, Kegley EB, Qureshi MA (1994) The effect of methionine and aflatoxin on immune function in weanling pigs. J Anim Sci 72:658–664

    PubMed  Google Scholar 

  • Walrand S, Guillet C, Gachon P, Rousset P, Giraudet C, Vasson MP, Boirie Y (2004) Protein synthesis rates of human PBMC and PMN can be determined simultaneously in vivo using small blood samples. Am J Physiol Cell Physiol 286:C1474–C1478

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Qiao SY, Liu M, Ma YX (2006) Effects of graded levels of true ileal digestible threonine on performance, serum parameters and immune function of 10–25 kg pigs. Anim Feed Sci Technol 129:264–278

    Article  CAS  Google Scholar 

  • Wang X, Qiao SY, Yin YL, Yue LY, Wang ZY, Wu GY (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P, Li XL, Zhou HJ, Wang FL, Li DF, Yin YL, Wu GY (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163

    Article  PubMed  CAS  Google Scholar 

  • Wilmore DW, Shabert JK (1998) Role of glutamine in immunologic responses. Nutrition 14:618–626

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1996) Effects of concanavalin A and phorbolmyristate acetate on glutamine metabolism and proliferation of porcine intraepithelial lymphocytes. Comp Biochem Physiol 114:363–368

    Article  CAS  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  PubMed  CAS  Google Scholar 

  • Wu GY, Bazer FW, Davis TA, Johnson GA, Kim SW, Knabe DA, Spencer TE, Yin YL (2007) Important roles for arginine-family amino acids in swine nutrition and production. Livest Sci 122:8–22

    Article  Google Scholar 

  • Yang WC, Schultz RD (1986) Ontogeny of natural killer cell activity and antibody dependent cell-mediated cytotoxicity in pigs. Dev Comp Immunol 10:405–418

    Article  PubMed  CAS  Google Scholar 

  • Yoneda J, Andou A, Takehana K (2009) Regulatory roles of amino acids in immune response. Curr Rheumatol Rev 5:252–258

    Article  CAS  Google Scholar 

  • Yoo SS, Field CJ, McBurney MI (1997) Glutamine supplementation maintains intramuscular glutamine concentrations and normalizes lymphocyte function in infected early-weaned pigs. J Nutr 127:2253–2259

    PubMed  CAS  Google Scholar 

  • Yu IT, Wu JF, Yang PC, Liu CY, Lee DN, Yen HT (2002) Roles of glutamine and nucleotides in combination in growth, immune responses and FMD antibody titres of weaned pigs. Anim Sci 75:379–385

    CAS  Google Scholar 

  • Zhang Y, Yin Y, Fang J, Wang Q (2012) Pig production in subtropical agriculture. J Sci Food Agric 92:1016–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Tan, B., Xie, M., Yin, Y. (2013). Amino Acids and Immune Functions. In: Blachier, F., Wu, G., Yin, Y. (eds) Nutritional and Physiological Functions of Amino Acids in Pigs. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1328-8_12

Download citation

Publish with us

Policies and ethics