Skip to main content

Abstract

Organic compounds from terrestrial and marine organisms have been used extensively in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modifications. This chapter summarizes the present knowledge about anthelmintic effects of the extracts and some already purified natural compounds isolated from the lower marine organisms including bacteria, sponge, fungi, and algae as well as the higher plants. A brief summary on anthelmintics in use is also included to provide a background for the comparison of effective concentrations, mode of actions, and weaknesses in therapy. The main focus is placed on in vitro and in vivo activities of secondary plant metabolites (alkaloids, essential oils, flavonoids, saponins, amides, enzymes, condensed tannins, and lactones with endoperoxide bridge-artemisinins) against nematodes, trematodes, and cestodes of medical and veterinary importance, and experimental model infections. Several issues are highlighted; the synergistic effect of a number of bioactive components in plant extracts, multiple putative target sites in helminths for some of secondary plant metabolites, probably different from those of current anthelmintics, which is suggested by their modified mode of actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghaffar F, Semmler M, Al-Rasheid KAS, Strassen B, Fischer K, Aksu G, Klimpel S, Mehlhorn H (2011) The effects of different plant extracts on intestinal cestodes and on trematodes. Parasitol Res 108:979–984. doi:10.1007/s00436-010-2167-5

    PubMed  Google Scholar 

  • Abu-El-Ezz NM (2005) Effects of Nigella sativa and Allium cepa oils on Trichinella spiralis in experimentally infected rats. J Egypt Soc Parasitol 35:511–523

    Google Scholar 

  • Ael-Banhawey M, Ashry MA, EL-Ansary AK, Aly SA (2007) Effect of Curcuma longa or parziquantel on Schistosoma mansoni infected mice liver—histological and histochemical study. Indian J Exp Biol 45:877–889

    Google Scholar 

  • Akkari H, Darghouth MA, Ben Salem H (2008) Preliminary investigations of the anti-nematode activity of Acacia cyanophylla Lindl: excretion of gastrointestinal nematode eggs in lambs browsing A. cyanophylla with and without PEG or grazing native grass. Small Rumin Res 74:78–83. doi:10.1016/j.smallrumres.2007.03.012

    Google Scholar 

  • Albuquerque AAC, Sorenson AL, Leal-Cardoso JH (1995) Effects of essential oil of Croton zehntneri, and of anethole and estragole on skeletal muscles. J Ethnopharmacol 49:41–49. doi:SSDI0378-8741(95)01301-S

    Google Scholar 

  • Allam G (2009) Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni. Immunobiology 214:712–727. doi:10.1016/j.imbio.2008.11.017

    PubMed  CAS  Google Scholar 

  • Al-Shaibani IRM, Phulan MS, Arijo A, Qureshi TA (2008) Ovicidal and larvicidal properties of Adhatoda vasica (L.) extracts against gastrointestinal nematodes of sheep in vitro. Pakistan Vet J 28: 79–83

    Google Scholar 

  • Andlauer W, Furst P (2002) Nutraceuticals: a piece of history, present status and outlook. Food Res Int 35:171–176. doi:org/10.1016/S0963-9969(01)00179-X

    Google Scholar 

  • Aremu AO, Fawole OA, Chukwujekwu JC, Light ME, Finnie JF, Van Staden J (2010) In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidera sericea. J Ethnopharmacol 131:22-27. doi: 10.1016/j.jep.2010.05.043

    Google Scholar 

  • Aroche LU, Sánchez SDO, de Gives MP, Arellano LME, Hernandez LE, Cisneros VG, Ataide ADM, Velazquez HV (2008) In vitro nematicidal effects of medicinal plants from Sirra de Huautla, Biosphere Reserve, Morelos, Mexico against Haemonchus contortus infective larvae. J Helminth 82:25–31

    Google Scholar 

  • Athanasiadou S, Kyriazakis I (2004) Plant secondary metabolites: antiparasitic effects and their role in ruminant production systems. Proc Nutr Soc 63:631–639. doi:10.1079/PNS2004396

    PubMed  CAS  Google Scholar 

  • Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet Parasitol 99:205–219. doi:org/10.1016/S0304-4017(01)00467-8

    PubMed  CAS  Google Scholar 

  • Athanasiadou S, Githiori J, Kyriazakis I (2007) Medical plants for helminth parasite control: facts and fiction. Animal 1:1392–1400. doi:org/10.1017/S1751731107000730

    PubMed  CAS  Google Scholar 

  • Ayers S, Zink DL, Mohn K, Powell JS, Brown CHM, Murphy T, Brand R, Pretorius S, Stevenson D, Thompson D, Singh SB (2008) Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry 69:541–545. doi:10.1016/j.phytochem.2007.08.003

    PubMed  CAS  Google Scholar 

  • Azando EVB,Hounzangbe-Adote MS, Olounlade PA, Brunet S, Fabre N, Valentin A, Hoste H (2011) Involvement of tannins and flavonoids in the in vitro effects of Newbouldia laevis and Zanthoxylum zanthoxyloides extracts on the exsheathment of third-stage infective larvae of gastrointestinal nematodes. Vet Parasitol 180:292–297. doi:10.1016/j.vetpar.2011.03.010

    Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Zhiri A, Idaomar M (2005) Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae. Mutat Res 585:1–13

    PubMed  CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475. doi:10.1016/j.fct.2007.09.106

    PubMed  CAS  Google Scholar 

  • Baraldi R, Isacchi B, Predieri S, Marconi G, Vincieri FF, Bilia AR (2008) Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth. Biochem Syst Ecol 36:340–348. doi:10.1016/j.bse.2007.11.002

    CAS  Google Scholar 

  • Barnes S (1998) Evolution of the health benefits of soy isoflavones. Proc Soc Exp Biol Med 217:386–392. doi:10.3181/00379727-217-44249

    PubMed  CAS  Google Scholar 

  • Barrau E, Fabre N, Fouraste I, Hoste H (2005) Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology 131:531–538. doi:org/10.1017/S0031182005008024

    PubMed  CAS  Google Scholar 

  • Behnke JM, Buttle DJ, Stepek G, Lowe A, Duce IR (2008) Developing new anthelmintics from plant cysteine proteinases (review). Parasit Vectors 1:29. doi:10.1186/1756-3305r-r1-29

    PubMed  Google Scholar 

  • Bernes G, Waller PJ, Christensson D (2000) The effect of birdsfoot trefoil (Lotus corniculatus) and white clover (Trifolium repens) in mixed pasture swards on incoming and established nematode infections in young lambs. Acta Vet Scand 41:351–361

    Google Scholar 

  • Bodiwala HS, Singh G, Singh R, Dey CS, Sharma SS, Bhutani KK, Singh IP (2007) Antileishmanial amides and lignans from Piper cubeba and Piper retrofractum. J Nat Med 61:418–421. doi:10.1007/s11418-007-0159-

    CAS  Google Scholar 

  • Braguine CG, Bertanha CS, Goncalves UO, Magalhaes LG, Rodrigues V, Gimenez VMM, Groppo M, Silva MLAE, Cunha WR, Januario AH, Pauletti PM (2012) Schistosomicidal evaluation of flavonoids from two species of Styrax against Schistosoma mansoni adult worms. Pharmaceut Biol 50:925–929. doi:10.3109/13880209.2011.649857

    CAS  Google Scholar 

  • Brooker S, Clements ACA, Bundy DAP (2006) Global epidemiology, ecology and control of soil-transmitted helminth infections. Global mapping of infectious diseases: Methods, Examples and emerging applications book series. Adv Parasitol 62:221–261. doi:10.1016/S0065-308X(05)62007-6

    PubMed  CAS  Google Scholar 

  • Brunet S, Hoste H (2006) Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. J Agric Food Chem 54:7481–7487. doi:10.1021/jf0610007

    PubMed  CAS  Google Scholar 

  • Bryant C, Behm AC (1989) Biochemical adaptation in parasites. Chapman and Hall, London, pp 25–69

    Google Scholar 

  • Buttle DJ, Behnke JM, Bartley Y, Elsheikha HM, Bartley DJ, Garnett MC, Donnan AA, Jackson F, Lowe A, Duce IR (2011) Oral dosing with papaya latex is an effective anthelmintic treatment for sheep infected with Haemonchus contortus. Parasit Vectors 4:36

    Google Scholar 

  • Caixeta SC, Magalhães LG, Melo NI, Wakabayashi KAL, Aguiar GP, Aguiar DP, Mantovani ALL, Morais JA, Oliveira PF, Tavares DC, Groppo M, Rodrigues V, Cunha WR, Veneziani RCS, da Silva Filho AA, Crotti AEM (2011) Chemical composition and in vitro schistosomicidal activity of the essential oil of Plectranthus neochilus grown in Brazil Southeast. Chem Biodivers. doi:10.1002/cbdv.201100167

    PubMed  Google Scholar 

  • Cala AC, Chagas ACS, Oliveira MCS, Matos AP, Borges LMF, Sousa LAD, Souza FA, Oliveira GP (2012) In vitro anthelmintic effect of Melia azedarach L. and Trichilia claussenii C. against sheep gastrointestinal nematodes. Exp Parasitol 130:98–102. doi:10.1016/j.exppara.2011.12.011

    PubMed  CAS  Google Scholar 

  • Callahan HL, Crouch RK, James ER (1988) Helminth antioxidant enzymes: a protective mechanism against host oxidants? Parasitol Today 4:218–225

    Google Scholar 

  • Camura-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, Oliveira LMB, Braga RR, Silva RA, Vieira LS (2007) Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol 148:288–294. doi:10.1016/j.vetpar.2007.06.012

    Google Scholar 

  • Caner A, Döskaya M, Degirmenci A, Can H, Baykan S, Űner A, Basdemir G, Zeybek U, Gűrűz Y (2008) Comparison of the effects of Artemisia vulgaris and Artemisia absinthium growing in western Anatolia against trichinellosis (Trichinella spiralis) in rats. Exp Parasitol 119:173–179. doi:10.1016/j.exppara.2008.01.012

    PubMed  Google Scholar 

  • Cao CH, Liu Y, Lehmann M (2007) Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death. JCB 176:843–852. doi:10.1083/jcb.200611155

    PubMed  CAS  Google Scholar 

  • Capon RJ, Vuong D, Lacey E, Gill JH (2005) (-)-Echinobetaine A: Isolation structure elucidation, synthesis, and SAR studies on a new nematocide from a southern Australian marine sponge, Echinodictyum sp. J Nat Prod 68:179–182. doi:10.1021/np049687h

    PubMed  CAS  Google Scholar 

  • Carvalhoa CO, Chagas ACS, Cotinguiba F, Furlan M, Brito LG, Chaves FCM, Stephan MP, Bizzo HR, Amarante AFT (2012) The anthelmintic effect of plant extracts on Haemonchus contortus and Strongyloides venezuelensis. Vet Parasitol 183:260–268. doi:10.1016/j.vetpar.2011.07.051

    Google Scholar 

  • Challam M, Roy B, Tandon V (2010) Effect of Lysimachia ramosa (Primulaceae) on helminth parasites. Motility, mortality and scanning electron microscopic observations on surface topography. Vet Parasitol 169:214–218. doi:10.1016/j.vetpar.2009.12.024

    Google Scholar 

  • Chatterjee RK, Fatma N, Murthy PK, Sinha P, Kulshrestha DK, Dhawan BN (1992) Macrofilaricidal activity of the stembark of Streblus asper and its major active constituents. Drug Dev Res 26:67–78

    Google Scholar 

  • Chen DJ, Fu LF, Shao PP, Wu FZ, Fan CZ, Shu H, Ren CS, Sheng XL (1980) Studies on antischistosomal activity of qinghaosu in experimental therapy. Zhong Hui Yi Xue Zha Zhi 80:422–428 (in Chinese)

    Google Scholar 

  • Cioli D, Pica-Mattoccia L (2003) Praziquantel. Parasitol Res 90:S3–S9. doi:10.1007/s00436-002-0751-z

    PubMed  Google Scholar 

  • Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53. doi:10.1016/S0278-2626(03)00284-7

    PubMed  CAS  Google Scholar 

  • Conder GA, Jen LW, Marbury KS, Johnson SS, Guimond PM, Thomas EM, Lee BL (1990) A novel anthelmintic model utilizing Meriones unguiculatus, infected with Haemonchus contortus. J Parasitol 76:168–170. doi:10.2307/3283008

    PubMed  CAS  Google Scholar 

  • Crews P, Hunter LM (1993) The search for antiparasitic agents from marine animals. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology. Plenum Press, New York, USA, London, UK, pp 343–389

    Google Scholar 

  • Das B, Tandon V, Saha N (2004) Effects of phytochemicals of Flemingia vestita (Fabaceae) on glucose 6-phosphate dehydrogenase and enzymes of gluconeogenesis in a cestode Raillietina echinobothrida. Comp Biochem Physiol 139:141–146. doi:org/10.1016/j.cca.2004.10.004

    Google Scholar 

  • Das B, Tandon V, Saha N (2006) Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl. Parasitol Inter 55:17–21. doi:org/10.1016/j.parint.2005.08.002

    CAS  Google Scholar 

  • Das B, Tandon V, Lyndem LL, Gray AI, Ferro VA (2009) Phytochemicals from Flemingia vestita (fabaceae) and Stephania glabra (Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida. Comp Bioc Physiol 149:397–403. doi:org/10.1016/j.cbpc.2008.09.012

    Google Scholar 

  • Dayan AD (2003) Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 86:141–159. doi:10.1016/S0001-706X(03)00031-7

    PubMed  CAS  Google Scholar 

  • de Amorin A, Borba HR, Carauta JP, Lopes D, Kaplan MA(1999) Anthelmintic activity of the latex of Ficus species. J Ethnopharmacol 64:255–258. PII S0378-8741/98/00139-4

    Google Scholar 

  • De Gives PM, López Arellano ME, Hernández EL, Marcelino LA (2012) Plant extracts: a potential tool for controlling animal parasitic nematodes. In: The biosphere. ISBN: 978-953-51-0292-2. doi:10.5772/34/783

  • de Melo NI, Magalhaes LG, de Carvalho CE, Wakabayashi KAL, de P Aguiar G, Ramos RC, Mantovani ALL, Turatti ICC, Rodrigues V, Groppo M, Cunha WR (2011) Schistosomicidal activity of the essential oil of Ageratum conyzoides L. (Asteraceae) against adult Schistosoma mansoni worms. Molecules 16:762–73. doi:10.3390/molecules16010762

  • de Moraes J, Nascimento C, Lopes POMV, Nakano E, Yamaguchi LF, Kato MJ, Kawano T (2011) Schistosoma mansoni: in vitro schistosomicidal activity of piplartine. Exp Parasitol 127:357–364. doi:10.1016/j.exppara.2010.08.021

    PubMed  Google Scholar 

  • de Moraes J, Nascimento C, Yamaguchi LF, Kato MJ, Nakano E(2012) Schistosoma mansoni in vitro schistosomicidal activity and tegumental alterations induced by piplartine on schistosomula. Exp Parasitol (in press) doi:org/10.1016/j.exppara.2012.07.004

  • de Oliviera RN, Rehder VLG, Oliveira ASS, Montanari I Jr, de Carvalho JE, Gois de Ruiz ALT, Jeraldo VLS, Linhares AX, Allegretti SM (2012) Schistosoma mansoni: In vitro schistosomicidal activity of essential oil of Baccharis trimera. Exp Parasitol doi:10.1016/j.exppara.2012.06.005 (in press)

  • Diaz AMA, Acosta TJFJ, Castro SCA, Hoste H (2010) Tannins in tropical tree fodders fed to small ruminants: a friendly foe? Small Rumin Res 89:164–173. doi:10.1016/j.smallrumres.2009.12.040

    Google Scholar 

  • Doligalska M, Jozwicka K, Kiersnowska M, Mroczek A, Paczkowski C, Janiszowska W (2011) Triterpenoid saponins affect the function of P-glycoprotein and reduce the survival of the free-living stages of Heligmosomoides bakeri. Vet Parasitol 179:144–151. doi:10.1016/j.vetpar.2011.01.053

    PubMed  CAS  Google Scholar 

  • Duthaler U, Smith TA, Keiser J (2010) In vivo and in vitro sensitivity of Fasciola hepatica to triclabendazole combined with artesunate, artemether, or OZ78. Antimicrob Agent Chemother 54:4596–4604. doi:10.1128/AAC.00828-10

    CAS  Google Scholar 

  • Duthaler U, Huwyler J, Rinaldi L, Cringoli G, Keiser J (2012) Evaluation of the pharmacokinetic profile of artesunate, artemether and their metabolites in sheep naturally infected with Fasciola hepatica. Vet Parasitol 186:270–280. doi:10.1016/j.vetpar.2011.11.076

    PubMed  CAS  Google Scholar 

  • Egerton JR, Ostlind DA, Blair LS, Eary CH, Suhayda D, Cifeli S, Riek RF, Camphell WC (1979) Avermectins, new family of potent anthelmintic agents: efficacy of the B1α component. Antimicrob Agents Chemother 15:372–378

    Google Scholar 

  • Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007a) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus. J Ethnopharmacol 110:428–433. doi:10.1016/j.jep.2006.10.003

  • Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007b) Haemonchus contortus: in vitro and in vivo anthelmintic activity of aqueous and hydro-alcoholic extracts of Hedera helix. Exp Parasitol 116:340–345. doi:10.1016/j.exppara.2007.01.019

    PubMed  CAS  Google Scholar 

  • Elissondo MC, Albani CM, Gende L, Eguaras M, Denegri G (2008) Efficacy of thymol against Echinococcus granulosus protoscoleces. Parasitol Int 57:185–190. doi:10.1016/j.paraint.2007.12.005

    Google Scholar 

  • EMEA-European Medicines Evaluation Agency (1996) Praziquantel summary report by CVMP. EMEA/MRL/141/96, Sept 1996. EMEA, London

    Google Scholar 

  • EMEA-European Medicines Evaluation Agency (1997) Albendazole summary report by CVMP. EMEA/MKL/247/97-Final, EMEA, London

    Google Scholar 

  • EMEA-European Medicines Evaluation Agency (1999) Mebendazole summary report by CVMP. EMEA/MKL/625/99-Final. July 1999. EMEA, London

    Google Scholar 

  • Fandohan P, Gnonlonfin B, Laleye A, Gbenou JD, Darbouxc R, Moudachirou M (2008) Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem Toxicol 46:2493–2497. doi:10.1016/j.fct.2008.04.006

    PubMed  CAS  Google Scholar 

  • Ferreira JFS, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15:3135–3170. doi:10.3390/molecules15053135

    PubMed  CAS  Google Scholar 

  • Fester K (2010) Plant alkaloids. Published online. doi:10.1002/9780470015902.a0001914

  • Fioravanti CF, Walker DJ, Sandhu PS (1998) Metabolic transition in the development of Hymenolepis diminuta (Cestoda). Parasitol Res 84:777–782. doi:10.1007/s004360050487

    PubMed  CAS  Google Scholar 

  • Foster JG, Clapham WM, Belesky DP, Labreveux M, Hall MH, Sanderson MA (2006) Influence of cultivation site on sesquiterpene lactone composition of forage chicory (Cichorium intybus L.). J Agric Food Chem 54:1772–1778. doi:10.1021/jf052546g

    PubMed  CAS  Google Scholar 

  • Foster JG, Cassida KA, Turner KE (2011) In vitro analysis of the anthelmintic activity of forage chicory (Cichorium intybus L.) sesquiterpene lactones against a predominantly Haemonchus contortus egg population. Vet Parasitol 180:298–306. doi:10.1016/j.vetpar.2011.03.013

    PubMed  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605. doi:10.1079/BJN2002725

    PubMed  CAS  Google Scholar 

  • Frayha GJ, Smyth JD, Gobert JG, Savel J (1997) The mechanisms of action of antiprotozoal and anthelmintic drugs in man. Gen. Pharmacol 28:273–299. PII:S0306–S3623 (96)00149-8

    Google Scholar 

  • Gabino JAF, de Gives MMP, Sanchez SME, Hernandez LE, Velazquez HVM, Cisneros VG (2010) Anthelmintic effects of Prosopsis laevigata n-hexanic extract against Haemonchus contortus in artificially infected gerbils (Meriones unguiculatus). J Helminth 84:71–75

    Google Scholar 

  • Gaur RL, Sahoo MK, Dixit S, Fatma N, Rastogi S, Kulshreshtha DK, Chatterjee RK, Murthy PK (2008) Antifilarial activity of Caesalpinia bonducella against experimental filarial infections. Indian J Med Res 128:65–70

    Google Scholar 

  • Geary TG, Sangster NC, Thompson DP (1999) Frontiers in anthelmintic pharmacology. Vet Parasitol 84:275–295. doi:org/10.1016/S0304-4017(99)00042-4

    PubMed  CAS  Google Scholar 

  • Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK, de Silva N, Olliaro PL, Lazdins-Helds JK, Engels DA, Bundy DA (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40:1–13. doi:10.1016/j.ijpara.2009.11.001

    PubMed  CAS  Google Scholar 

  • Ghosh NK, Babu SP, Sukul NC, Ito A (1996) Cestocidal activity of Accacia auriculiformis. J Helminthol 70:171–172. doi:10.1017/S0022149X00015340

    Google Scholar 

  • Githiori JB, Athanasiadou S, Thamsborg SM (2006) Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet Parasitol 139:308–320. doi:10.1016/j.vetpar.2006.04.021

    PubMed  Google Scholar 

  • Gupta J, Misra S, Mishra SK, Srivastava S, Srivastava MN, Lakshmi V, Misra-Bhattacharya S (2012) Antifilarial activity of marine sponge Haliclona oculata against experimental Brugia malayi infection. Exp Parasitol 130:449–455. doi:10.1016/j.exppara.2012.01.009

    PubMed  Google Scholar 

  • Hale LP (2004) Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int Immunopharmacol 4:255–264. doi:10.1016/j.intimp.2003.12.010

    PubMed  CAS  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF—κB activations, wherwas flavone isorhamnetin, naringenin, and Pelargonidin inhibit only NF—κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm. doi:10.1155/2007/45673

    Google Scholar 

  • Hansson A, Veliz G, Naquira C, Amren M, Arroyo M, Arevalo G (1986) Preclinical and clinical studies with latex from Ficus glabrata HBK, a traditional intestinal anthelminthic in the Amazonian area. J Ethnopharamacol 17:105–138

    Google Scholar 

  • Haq A, Abdullatif M, Lobo PI, Khabar KSA, Sheth KV, Al-Sedairy ST (1995) Nigella sativa: effect on human lymphocytes and polymorphnuclear leukocyte phagocytic activity. Immunopharmacology 30:147–155. SSDI 0162-3109(95)00016-X

    Google Scholar 

  • Harder A, von Samson-Himmelstjerna G (2002) Cyclooctadepsipeptides—a new class of anthelmintically active compounds. Parasitol Res 88:481–488

    PubMed  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96: 67-202. doi:PII:S0163-7258(02)00298-X

  • Hernández-Villegas MM, Borges-Argáez R, Rodríguez-Vivas RI, Torres-Acosta JFJ, Méndez-Gonzáles M, Cáceres-Farfán M (2011) Ovicidal and larvicidal activity of the crude extracts from Phytolacca icosandra against Haemonchus contortus. Vet Parasitol 179:100–106. doi:10.1016/j.vetpar.2011.02.019

    PubMed  Google Scholar 

  • Hernández-Villegas MM, Borges-Argáez R, Rodríguez-Vivas RI, Torres-Acosta JFJ, Méndez-Gonzáles M, Cáceres-Farfán M (2012) In vivo anthelmintic activity of Phytolacca icosandra against Haemonchus contortus in goats. Vet Parasitol doi:org/10.1016/j.vetpar.2012.04.017 (in press)

  • Holden-Dye L, Walker RJ (2007) Anthelmintic drugs. In: Maricq V, McIntire L (eds) WormBook. The C. elegans research community. doi:10.1895/wormbook.1.143.1

  • Hördegen P, Hertzberg H, Heilmann J, Langhans W, Maurer V (2003) The anthelmintic efficacy of five plant products against gastrointestinal trichostrongylids in artificially infected lambs. Vet Parasitol 117:51–60. doi:10.1016/j.vetpar.2003.07.027

    PubMed  Google Scholar 

  • Hoste H, Torres-Acosta JFJ (2011) Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol 180:144–154. doi:10.1016/j.vetpar.2011.05.085

    PubMed  CAS  Google Scholar 

  • Hoste H, Torres-Acosta JF, Paolini V, Aguilar-Caballero A, Etter E, Lefrileux Y, Chartier C, Broqua C (2005) Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Ruminant Res 60:141–151. doi:10.1016/j.smallrumres.2005.06.008

    Google Scholar 

  • Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22:253–261. doi:org/10.1016/j.pt.2006.04.004

    PubMed  CAS  Google Scholar 

  • Hoste H, Martinez-Ortiz-De-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux I, Torres-Acosta JFJ, Sandoval-Castro CA (2012) Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol 186:18–27. doi:10.1016/j.vetpar.2011.11.042

    PubMed  CAS  Google Scholar 

  • Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J (2008) Helminth infections: the great neglected tropical diseases. J Clin Investig 118:1311–1321. doi:10.1172/JCI34261

    PubMed  CAS  Google Scholar 

  • Hu M, Konoki K, Tachibana K (1996) Cholesterol-independent membrane disruption caused by triterpenoid saponins. Biochim Biophys Acta 1299:252–258

    Google Scholar 

  • Iqbal Z, Khahid-Nadeem Q, Kham MN, Akthar MSS, Waraich FN (2001) In vitro anthelmintic activity of Allium sativum, Zingiber officinale and Ficus religiosus. Int J Agric Biol 3:454–457

    Google Scholar 

  • Iqbal Z, Lateef M, Ashraf M, Jabbar A (2004) Anthelmintic activity of Artemisia brevifolia in sheep. J Ethnopharmacol 93:265–268. doi:10.1016/j.jep.2004.03.046

    Google Scholar 

  • Itakura Y, Ichikawa M, Mori Y, Okino R, Udayama M, Morita T (2001) How to distinguish garlic from the other Allium vegetables. J Nutr 131:963S–967S

    Google Scholar 

  • Jabbar A, Zaman MA, Iqbal Z, Yassen M, Shamim A (2007) Anthelmintic activity of Chemopodium album (L) and Caesalpinia crista (L) against trichostrongylid nematodes of sheep. J Ethnopharmacol 114: 86–91

    Google Scholar 

  • Janse CJ, Waters AP, Kos J, Lugt CB (1994) Comparison of in vivo and in vitro antimalarial activity of artemisinin, dihydroartemisinin and sodium artesunate in the Plasmodium berghei rodent model. Int J Parasitol 24:589–594. doi:org.proxy.library.ucsb.edu:2048/10.1016/0020-7519(94)90150-3

    PubMed  CAS  Google Scholar 

  • Kahiya C, Mukaratirwa S, Thamsborg SM (2003) Effects of Acacia nilotica and Acacia karoo diet on Haemonchus contortus infection in goats. Vet Parasitol 115:265–274. doi:10.1016/S0304-4017(03)00213-9

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Rahuman AA (2011) Efficacy of anthelmintic properties of medicinal plant extracts against Haemonchus contortus. Res Vet Sci 91:400–404. doi:10.1016/j.rvsc.2010.09.018

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Mohamed MJ, Elango G, Rajakumar G, Zahir AA, Santhoshkumar T, Marimuthu S (2010a) Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida). Parasitol Res 106:1071–1077. doi:10.1007/s00436-010-1750-0

    PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010b) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412. doi:10.1007/s00436-010-1816-z

    PubMed  Google Scholar 

  • Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20:477–481. doi:org/10.1016/j.pt.2004.08.001

    PubMed  CAS  Google Scholar 

  • Kar P, Tandon V, Saha N (2002) Anthelmintic efficacy of Flemingia vestita: genistein-induced effect on the activity of nitric oxide syntase and nitric oxide in the trematode parasite, Fasciolopsis buski. Parasitol Int 51:249–257. PII:S1383-5769(02)00032-6

    Google Scholar 

  • Kar PK, Tandon V, Saha N (2004) Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the free amino acid pool and ammonia levels in the fluke Fasciolipsis bruski. Parasitol Int 53:287–291. doi:10.1016/j.parint.2004.04.001

    PubMed  CAS  Google Scholar 

  • Kasinathan RS, Morgan WM, Greenberg RM (2010) Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 173:25–31. doi:10.1016/j.molbiopara.2010.05.003

    PubMed  CAS  Google Scholar 

  • Katiki LM, Ferreira JFS, Zajac AM, Masler C, Lindsay DS, Chagas ACS, Amarante AFT (2011a) Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Vet Parasitol 182:264–268. doi:10.1016/j.vetpar.2011.05.020

    PubMed  CAS  Google Scholar 

  • Katiki LM, Chagasb ACS, Bizzoc HR, Ferreirad JFS, Amarantee AFT (2011b) Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Vet Parasitol 183:103–108. doi:10.1016/j.vetpar.2011.07.001

    PubMed  CAS  Google Scholar 

  • Katiki LM, Chagasb ACS, Takahirac RK, Juliani HR, Ferreirae JFS, Amarante AFT (2012) Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Vet Parasitol 186:312–318. doi:10.1016/j.vetpar.2011.12.003

    PubMed  CAS  Google Scholar 

  • Keiser J, Morson G (2008) Fasciola hepatica: tegumental alterations in adult flukes following in vitro and in vivo administration of artesunate and artemether. Exp Parasit 118:228–237. doi:10.1016/j.exppara.2007.08.007

    PubMed  CAS  Google Scholar 

  • Keiser J, Utzinger J (2005) Emerging foodborne trematodiasis. Emer Inf Dis 11:1507–1514. doi:10.1016/j.vetpar.2010.09.011

    Google Scholar 

  • Keiser J, Utzinger J (2007) Artemisinins and synthetic trioxolanes in the treatment of helminth infections (review). Curr Opin Infect Dis 20:605–612. doi:10.1097/QCO.0b013e3282f19ec4

    PubMed  CAS  Google Scholar 

  • Keiser J, Utzinger J (2010) The drugs we have and the drugs we need against major helminth infections—chapter 8. Adv Parasitol 73:197–230. http://dx.doi.org/10.1016/S0065-308X(10)73008-6

  • Keiser J, Vargas M (2010) Effect of artemether, artesunate, OZ78, praziquantel, and tribendimidine alone or in combination chemotherapy on the tegument of Clonorchis sinensis. Parasitol Int 59:472–476. doi:10.1016/j.parint2010.04.003

    PubMed  CAS  Google Scholar 

  • Keiser J, Xiao SH, Tanner M, Utzinger J (2006a) Artesunate and artemether are effective fasciolicides in the rat model and in vitro. J Antimicrob Chemother 57:1139–1145. doi:10.1093/jac/dkl125

    PubMed  CAS  Google Scholar 

  • Keiser J, Xiao SH, Xue J, Chang ZS, Odermatt P, Tesana S, Tanner M, Utzinger J (2006b) Effect of artesunate and artemether against Clonorchis sinensis and Opisthorchis viverrini in rodent models. Int J Antimicrob Agent 28:370–373. doi:10.1016/j.ijantimicag.2006.08.004

    CAS  Google Scholar 

  • Keiser J, Rinaldi L, Veneziano V, Mezzino L, Tanner M, Utzinger J, Cringoli G (2008) Efficacy and safety of artemether against a natural Fasciola hepatica infection in sheep. Parasitol Res 103:517–522. doi:10.1007/s00436-008-0998-0

    PubMed  Google Scholar 

  • Keiser J, Veneziano V, Rinaldi L, Mezzino L, Duthaler U, Cringoli G (2010) Anthelmintic activity of artesunate against Fasciola hepatica in naturally infected sheep. Res Vet Sci 88:107–110. doi:10.1016/j.rvsc.2009.05.007

    PubMed  CAS  Google Scholar 

  • Keiser J, Sayed H, El-Ghanam M, Sabry H, Anani S, El-Wakeel A, Hatz Ch, Utzinger J, Seif el Din S, El-Maadawy W, Botros S (2011) Efficacy and safety of artemether in the treatment of chronic Facioliasis in Egypt: exploratory phase-2 trials. PloS Negl Trop Dis 5:e1285. doi:10.1371/journal.pntd.0001285

    PubMed  CAS  Google Scholar 

  • Kennedy MW, Foley M, Kuo YM, Kusel JR, Garland PB (1987) Biophysical properties of the surface lipid of parasitic nematodes. Mol Biochem Parasitol 22:233–240. doi:10.1016/0166-6851(87)90054-5

    PubMed  CAS  Google Scholar 

  • Kerboeuf D, Guegnard F (2011) Anthelmintics are substrates and activators of nematode P Glycoprotein. Antimicrob Agent Chemother 55:2224–2232. doi:10.1128/AAC.01477-10

    CAS  Google Scholar 

  • Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G (2003) P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. Int J Antimicrob Agents 22:332–346. doi:10.1016/S0924-8579(03)00221-8

    PubMed  CAS  Google Scholar 

  • Kerboeuf D, Riou M, Neveu C, Issouf M (2010) Membrane drug transport in helminths. Anti-infect. Agent Med Chem 9:113–129. doi:10.1139/O09-126

    CAS  Google Scholar 

  • Ketzis JK, Taylor A, Bowman DD, Brown DL, Warnick LD, Erb HN (2002) Chenopodium ambrosioides and its essential oil as treatments for Haemonchus contortus and mixed adult-nematode infections in goats. Small Rumin Res 44:193–200. PII:S0921-4488/(02)00047-0

    Google Scholar 

  • Kim TI, Yoo WG, Li S, Hong ST, Keiser J, Hong SJ (2009) Efficacy of artesunate and artemether against Clonorchis sinensis in rabbits. Parasitol Res 106:153–156. doi:10.1007/s00436-009-1641-4

    PubMed  Google Scholar 

  • Kita K, Shiomi K, Omura S (2007) Advances in drug discovery and biochemical studies (review). Trends Parasitol 23:223–229. doi:10.1016/j.pt.2007.03.005

    PubMed  CAS  Google Scholar 

  • Klein CB, King AA (2007) Genistein genotoxicity: Critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol 224:1–11. doi:10.1016/j.taap.2007.06.022

    PubMed  CAS  Google Scholar 

  • Klimpel S, Abdel-Ghaffar FA, Al-Rasheid KAS, Aksu G, Fischer K, Strassen B, Melhorn H (2011) The effects of different plant extracts on nematodes. Parasitol Res 108:1047–1054. doi:10.1007/s00436-010-2168-4

    PubMed  Google Scholar 

  • Kohn AB, Roberts-Misterly JM, Anderson PAV, Khan N, Greenberg RM (2003) Specific sites in the beta interaction domain of a schistosome Ca2+ channel β-subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127:349–356. doi:10.1017/S003118200300386X

    PubMed  CAS  Google Scholar 

  • Königová A, Hrčkova G, Velebný S, Čorba J, Várady M (2008) Experimental infection of Haemonchus contortus strains resistant and susceptible to benzimidazoles and the effect on mast cells distribution in the stomach of Mongolian gerbils (Meriones unguiculatus). Parasitol Res 102:587–595. doi:10.1007/s00436-007-0792-4

    PubMed  Google Scholar 

  • Lacey E (1990) Mode of action of benzimidazoles. Parasitol Today 6:112–115

    Google Scholar 

  • Lakshmi V, Kumar R, Gupta P, Varshney V, Srivastava MN, Dikshit M, Murthy PK, Misra-Bhattacharya S (2004a) The antifilarial activity of a marine red alga, Botryocladia leptopoda, against experimental infections with animal and human filariae. Parasitol Res 93:468–474. doi:10.1007/s00436-004-1159-8

    PubMed  CAS  Google Scholar 

  • Lakshmi V, Saxena A, Pandey K, Preeti Bajpai, Misra-Bhattacharya S (2004b) Antifilarial activity of Zoanthus species (Phylum Coelenterata, Class Anthzoa) against human lymphatic filaria, Brugia malayi. Parasitol Res 93:268–273. doi: 10.1007/s00436-004-1124-6

  • Lakshmi V, Joseph SK, Srivastava S, Verma SK, Sahoo MK, Dube V, Mishra SK, Murthy PK (2010) Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop 116:127–133. doi:10.1016/j.actatropica.2010.06.006

    PubMed  CAS  Google Scholar 

  • Lespine A, Ménez C, Bourguinat C, Prichard RK (2012) P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance (invited review). Int J Parasitol Drugs Drug Resist 2:58–75. doi:10.1016/j.ijpddr.2011.10.001

    CAS  Google Scholar 

  • Li QG, Peggins JO, Fleckenstein LL, Masonic K, Heiffer MH, Brewer TG (1998) The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol 50:173–182

    Google Scholar 

  • Li YS, Chen HG, He HB, Hou XY, Ellis M, McManus DP (2005) A double-blind field trial on the effects of artemether on Schistosoma japonicum infection in a highly endemic focus in southern China. Acta Trop 96:184–190. doi:10.1016/j.actatropica.2005.07.013

    PubMed  CAS  Google Scholar 

  • Liu L, Song G, Hu Y (2007) GC–MS analysis of the essential oils of Piper nigrum L. and Piper longum L. Chromatographia 66:785–790. doi:10.1365/s10337-007-0408-2

    CAS  Google Scholar 

  • Lotfy WM (2009) Human schistosomiasis in Egypt: historical rewiew, assessment of the current picture and prediction of the future trends. J Med Res Inst 30:1–7

    Google Scholar 

  • Loukas A, Hotez PJ (2005) Chemotherapy of helminth infections. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill Companies, USA, pp 1073–1093

    Google Scholar 

  • Luz PP, Magalhães LG, Pereira AK, Cunha WR, Rodrigues V, Marcio L. Andrade E Silva (2012) Curcumin-loaded into PLGA nanoparticles. Preparation and in vitro schistosomicidal activity. Parasitol Res 110:593–598 doi:10.1007/s00436-011-2527-9

  • Macedo ITF, Bevilaqua CML, de Oliveira LMB, Camurca-Vasconcelos ALF, Vieira SL, Oliveira FR, Queiroz-Junior EM, Tomé RA, Nascimento NRF (2009) Atividade ovicida e larvicida in vitro do óleo essencial de Eucalyptus globulus sobre Haemonchus contortus. Rev Bras Parasitol Vet 18:62–66. doi:org/10.4322/rbpv.01803011

    Google Scholar 

  • Macedo ITF, Bevilaqua CML, de Oliveira LMB,Camurca-Vasconcelos ALF, Vieira SL, Oliveira FR, Queiroz-Junior EM, Tomé RA, Nascimento NRF (2010) Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Vet Parasitol 173:93–98. doi:10.1016/j.vetpar.2010.06.004

    Google Scholar 

  • Macedo IFT, Bevilaqua CML, de Oliveira LMB, Camurca-Vasconcelos ALF, Viera SL, Amóra SSA (2011) Evaluation of Eucalyptus citriodora essential oil on goat gastrointestinal nematodes. Rev Bras Parasitol Vet 20:223–227

    Google Scholar 

  • Magalhaes LG, Lizandra G, de Souza JM, Wakabayashi KAL, Laurentiz RD, Vinholis AHC, Rezende KCS, Simaro GV, Bastos JK, Rodrigues V, Esperandim VR, Ferreira DS, Crotti AEM, Cunha WR, Silva MLAE (2012) In vitro efficacy of the essential oil of Piper cubeba L. (Piperaceae) against Schistosoma mansoni. Parasitol Res 110:1747–1754. doi:10.1007/s00436-011-2695-7

  • Magalhães LG, Machado CB, Morais ER, Bueno de Carvalho Moreira E, Sossai Soares C, Henrique da Silva S, Da Silva Filho AA, Rodrigues V (2009) In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 104:1197–1201. doi:10.1007/s00436-008-1311-y

  • Magalhães LG, Kapadia GJ, Tonuci LRS, Caixeta SC, Parreira NA, RodriguesV, Filho AAS (2010) In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms. Parasitol Res 106:395–401. doi:10.1007/s00436-009-1674-8

  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. doi:10.1016/j.lfs.2005.12.007

    Google Scholar 

  • Mahmoud MR, El-Abhar HS, Saleh S (2002) The effect of Nigella sativa oil against the liver damage induced by Schistosoma mansoni infection in mice. J Ethnopharmacol 79:1–11. PII: S0378-8741(01)00310-5

    Google Scholar 

  • Martin RJ (1997) Modes of action of anthelmintic drugs. Vet J 154:11–34. doi:1(190-0233/t)7/04(1011-24/S12.00/0

    PubMed  CAS  Google Scholar 

  • Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochernicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–139. doi:10.1017/S1751731107000298

    Google Scholar 

  • Martin R, Pennington AJ (1988) Effect of dihydroavermectin B1α on chloride-single-channel currents in Ascaris muscle. Pestic Sci 24: 90–91

    Google Scholar 

  • Martin RJ, Robertson AP (2007) Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 134:1093–1104. doi:10.1017/S0031182007000029

    PubMed  CAS  Google Scholar 

  • Max RA (2010) Effect of repeated wattle tannin drenches on worm burdens, faecal egg counts and egg hatchability during naturally acquired nematode infections in sheep and goats. Vet Parasitol 169:138–143. doi:10.1016/j.vetpar.2009.12.022

    PubMed  CAS  Google Scholar 

  • Max RA, Wakelin D, Dawson J, Kimambo AE, Kassuku AA, Mtenga LA, Buttery PJ (2005) Effect of quebracho tannin on faecal egg counts, worm burdens and performance of temperate sheep with experimental nematode infections. J Agric Sci 143:519–527

    Google Scholar 

  • Mayer AMS, Hamann MT (2005) Marine pharmacology in 2001–2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral actities; affectin the cardiovascular, immune and nervous system and other miscellaneous mechanisms of action. Comp Biochem Physiol 140:265–286. doi:10.1016/j.cca.2005.04.004

    Google Scholar 

  • McKellar AQ, Jackson F (2004) Veterinary anthelmintics: old and new. Trends Parasitol 20:456–461. doi:10.1016/j.pt.2004.08.002

    PubMed  CAS  Google Scholar 

  • Mehlhorn H, Al-Quaraishy S, Al-Rasheid KAS, Jatzlau A, Abdel-Ghaffar F (2011a) Addition of a combination of anion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helmintic infection. Parasitol Res 108:1041–1046. doi:10.1007/s00436-010-2169-3

    PubMed  Google Scholar 

  • Mehlhorn H, Aksu G, Fischer K, Strassen B, Ghaffar FA, Al-Rasheid KAS, Klimpel S (2011b) The efficacy of extracts from plants- especially from coconut and onion—gainst tapeworms, trematodes, and nematodes. Nature helps-how plants and other organisms contribute to solve health problems. Book Ser Parasitol Res 1:109–139. doi:10.1007/978-3-642-19382-8_5

    Google Scholar 

  • Meshnick SR (2002) Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 32:1655–1660. doi:10.1016/S0020-7519(02)00194-7

    PubMed  CAS  Google Scholar 

  • Middleton E, Kandaswami CH, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673–751

    Google Scholar 

  • Milgate J, Roberts DCK (1995) The nutritional and biological significance of saponins. Nutr Res 15:1223–1249. doi:org/10.1016/0271-5317(95)00081-S

    CAS  Google Scholar 

  • Min BR, Hart SP (2003) Tannins for suppression of internal parasites. J Anim Sci 81:E102–E109

    Google Scholar 

  • Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19. doi:10.1016/S0377-8401(03)00041-5

    CAS  Google Scholar 

  • Misra N, Sharma M, Raj K, Dangi A, Srivastava S, Mishra-Bhattacharya S (2007) Chemical constituents and antifilarial activity of Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent models. Parasitol Res 100:439–448. doi:10.1007/s00436-006-0312-y

    PubMed  Google Scholar 

  • Misra S, Verma M, Mishra SK, Srivastava S, Lakshmi V, Misra-Bhattacharya S (2011) Gedunin and photogedunin of Xylocarpus granatum possess antifilarial activity against human lymphatic filarial parasite Brugia malayi in experimental rodent host. Parasitol Res 109:1351–1360. doi:10.1007/s00436-011-2380-x

    PubMed  Google Scholar 

  • Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Ōmura S (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinateubiquinone oxidoreductase). PNAS 100:473–477. doi:10.1073/pnas.0237315100

    PubMed  CAS  Google Scholar 

  • Moazeni M, Saharkhiz MJ, Hosseini AA (2012) In vitro lethal effect of ajowan (Trachyspermum ammi L.) essential oil on hydatid cyst protoscoleces. Vet Parasitol 187:203–208. doi:10.1016/j.vetpar.2011.12.025

    PubMed  CAS  Google Scholar 

  • Molan AL, Waghorn GC, Min BM, McNabb WC (2000a) The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro. Folia Parasitol 47:39–44. doi:10.1136/vr.150.3.65

    PubMed  CAS  Google Scholar 

  • Molan AL, Hoskin SO, Barry TN, McNabb WC (2000b) Effect of condensed tannins extracted from four forages on the viability of the larvae of deer lungworms and gastrointestinal nematodes. Vet Rec 147:44–48. doi:0.1136/vr.147.2.44

    PubMed  CAS  Google Scholar 

  • Molan AL, Alexander RA, Brookes IM, McNabb WC (2000c) Effect of an extract from sulla (Hedysarum coronarium) containing condensed tannins on the migration of three sheep gastrointestinal nematodes in vitro. Proc N Z Soc Anim Prod 60:21–25

    Google Scholar 

  • Molan AL, Waghorn GC, McNabb WC (2002) The impact of condensed tannins on egg hatching and larval development of Trichostrongylus colubriformis in vitro. Vet Rec 150:65–69

    Google Scholar 

  • Molan AL, Meagher LP, Spencer PA, Sivakumaran S (2003a) Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. Int J Parasitol 33:1691–1698. doi:10.1016/S0020-7519(03)00207-8

    PubMed  CAS  Google Scholar 

  • Molan AL, Duncan AJ, Barry TN, McNabbWC (2003b) Effects of condensed tannins and crude sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes. Parasitol Int 52:209–218. doi:10.1016/S1383-5769(03)00011-4

  • Mostafa OMS, Soliman MI (2010) Ultrastructure alterations of adult male of Schistosoma mansoni harbored in albino mice treated with Sidr honey and/or Nigella sativa oil. J. King Saud University (Sci) 22:111–121

    Google Scholar 

  • Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037. doi:10.1002/jsfa.2577

    CAS  Google Scholar 

  • Muraleedharan KM, Avery MA (2009) Progress in the development of peroxide- based anti-parasitic agents (review). Drug Disc Today 14:15–16. doi:10.1016/j.drudis.2009.05.008

    Google Scholar 

  • Murrell KD, Pozio E (2011) Worldwide occurrence and impact of human trichinellosis 1986–2009. Emerg Inf Dis 17:2194–2202. doi:10.3201/eid1712.110896

    Google Scholar 

  • Muthusamya VS, Ananda S, Sangeethaa KN, Sujathaa S, Arunb Balakrishnan, Lakshmi BS (2008) Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chem-Biol Interact 174:69–78. doi:10.1016/j.cbi.2008.04.016

  • Nagulesvaran A, Spicher M, Voniaufen N, Ortega-Mora LM, Torgerson P, Gottstein B, Hemphill A (2006) In vitro metacestodicidal activities of genistein and other isoflavones against Echinococcus multilocularis and Echinococcus granulosus. Antimicrob Agents Chemother 50:3770–3778. doi:10.1128/AAC.00578-06

    Google Scholar 

  • Nandi B, Roy S, Bhattacharya S, Babu SPS (2004) Free radicals mediated membrane damage by the saponins acaciaside A and acaciaside B. Phytother Res 18:191–194. doi:10.1002/ptr.1387

    PubMed  CAS  Google Scholar 

  • Navickiene HMD, Alécio AC, Kato MJ, Bolzani VD, Young MC, Cavalheiro AJ, Furlan M (2000) Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 55:621–626. doi:org/10.1016/S0031-9422(00)00226-0

    PubMed  CAS  Google Scholar 

  • Navickiene HMD, Bolzani VS, Kato MJ, Pereira AM, Bertoni BW, França SC, Furlan M (2003) Quantitative determination of anti-fungal and insecticide amides in adult plants, plantlets and callus from Piper tuberculatum by reversephase high-performance liquid chromatography. Phytochem Anal 14:281–284. doi:10.1002/pca.716

    PubMed  CAS  Google Scholar 

  • Nery PS, Nogueira FA, Martins ER, Duarte ER (2010) Effects of Anacardium humile leaf extracts on the development of gastrointestinal nematode larvae of sheep. Vet Parasitol 171:361–364. doi:10.1016/j.vetpar.2010.03.043

    PubMed  CAS  Google Scholar 

  • Nontprasert A, Pukrittayakamee S, Dondorp AM, Clemens R, Looareesuwan S, White NJ (2002) Neuropathologic toxicity of artemisinin derivates in a mouse model. Amer J Trop Med Hyg 67:423–429

    Google Scholar 

  • Novobilský A, Mueller-Harvey I, Thamsborg SM (2011) Condensed tannins act against cattle nematodes. Vet Parasit 182:213–220. doi:10.1016/j.vetpar.2011.06.003

    Google Scholar 

  • O’Neill JF, Johnston RC, Halferty L, Brennan GP, Keiser J, Fairweather I (2009) Adult triclabendazole-resistant Fasciola hepatica: morphological changes in the tegument and gut following in vivo treatment with artemether in the rat model. J Helminthol 83:151–163. doi:10.1017/S0022149X09344934

    PubMed  Google Scholar 

  • Oliveira LMB, Bevilaqua CML, Costa CTC, Macedo ITF, Barros RS, Rodrigues ACM, Camurca-Vasconcelos ALF, Morais SM, Lima YC, Vieira LS, Navarro AMC (2009) anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Vet Parasitol 159:55–59. doi:10.1016/j.vetpar.2008.10.018

    PubMed  CAS  Google Scholar 

  • Olliaro PL, Haynes RK, Meunier B, Yuthavong Y (2001) Possible modes of action of the artemisinin-type compounds. Trends Parasitol 17 PII: S1471-4922(00)01838-X PII: S0020-7519(01)00297-1

    Google Scholar 

  • Ōmura S (2002) Mode of action of avermectin. In Omura S (ed) Macrolide antibiotics. Chemistry, biology, and practice, 2nd edn. Academic Press, San Diego, pp 571–576

    Google Scholar 

  • Ōmura S, Miyadera H, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Nagamitsu T, Takano D, Sunazuka T, Harder A, Kölbl H, Namikoshi M, Miyoshi H, Sakamoto K, Kita K (2001) An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. Proc Natl Acad Sci USA 98:60–62. doi:10.1073/pnas.011524698

    PubMed  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence—a soap story. Trends Plant Sci 1:4–9. doi:10.1016/S13601385(96)80016-1

    Google Scholar 

  • Osbourn A, Goss RJM, Field RA (2011) The saponins—polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268. doi:10.1039/c1np00015b

    PubMed  CAS  Google Scholar 

  • Pal P, Tandon V (1998) Anthelmintic efficacy of Flemingia vestita (Leguminoceae): genistein-induced alterations in the activity of tegumental enzymes in the cestode, Raillietina echinobothrida. Parasitol Int 47:233–243. doi:org/10.1016/S1383-5769(98)00025-7

    Google Scholar 

  • Parreira NA, Magalhães LG, Morais DR, Caixeta SC, de Sousa JPB, Bastos JK, Cunha WR, Silva MLA, Nanayakkara NPD, Rodrigues V, da Silva Filho AA (2010) Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem Biodivers 7:993–100

    Google Scholar 

  • Perkins S, Verschoyle RD, Hill K, Parveen I, Threadgill MD, Sharma RA, Williams ML, Steward WP, Gescher AJ (2002) Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 11:535–540

    Google Scholar 

  • Pessoa LM, Morais SM, Bevilaqua CML, Luciano JHS (2002) Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Vet Parasitol 109:59–63. doi:PII:S0304-4017(02)00253-4

  • Pfarr KM, Qazi S, Fuhrman JA (2001) Nitric oxide synthase in filariae: demonstration of nitric oxide production by embryos in Brugia malayi and Acanthocheilonema viteae. Exp Parasitol 97:205–214. doi:10.1006/expr.2001

    PubMed  CAS  Google Scholar 

  • Pilatova M, Stupakova V, Varinska L, Sarissky M, Mirossay L, Mirossay A, Gal P, Kraus V, Dianiskova K, Mojzis J (2010) Effect of selected flavones on cancer and endothelial cells. Gen Physiol Biophys 29:134–143. doi:10.4149/gpb.2010.02.134

    PubMed  CAS  Google Scholar 

  • Poné JW, Tankoua OF, Yondo J, Komtangi MC, Mbida M, Bilong BCF (2011) The in vitro effects of aqueous and ethanolic extracts of the leaves of Ageratum conyzoides (Asteraceae) on three life cycle stages of the parasitic nematode Heligmosomoides bakeri (Nematoda: Heligmosomatidae). Vet Med Int 140293:5. doi:10.4061/2011/140293

  • Pozio E, La Rosa G, Morales MAG (2001) Epidemiology of human and animal trichinellosis in Italy since its discovery in 1887. Parasite 8:S106–S108

    Google Scholar 

  • Prichard R, Ménez C, Lespine A (2012) Moxidectin and avermectins: consanguinity but not identity. Int J Parasitol Drugs Drug Resist 2:134–153. http://dx.doi.org/10.1016/j.jpddr.2012.04.001

  • Ramadan MF, Kroh LW, Morsel JT (2003) Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961–6969

    Google Scholar 

  • Rao HSP, Reddy KS (1991) Isoflavones from Flemingia vestita. Fitoterapia 63:485

    Google Scholar 

  • Rees SB, Harborne JB (1985) The role of sequiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24:2225–2231. doi:0031-9422/85

    CAS  Google Scholar 

  • Reuben DK, Aji SB, Andrew W, Abdulrahaman FI (2011) Preliminary phytochemical screening and in vitro anthelminticeEffects of aqueous extracts of Salvadora persica and Terminalia avicennoides against strongyline nematodes of small ruminants in Nigeria. J. Animal Vet Adv 10:437–442

    Google Scholar 

  • Riou M, Guegnard F, Sizaret PY, Le Vern Y, Kerboeuf D (2010) Drug resistance is affected by colocalization of P-glycoproteins in raft-like structures unexpected in eggshells of the nematode Haemonchus contortus. Biochem Cell Biol 88:459–467. doi:10.1139/O09-1262760(95)00214-6

    PubMed  CAS  Google Scholar 

  • Rowan AD, Buttle DJ, Barrett AJ (1990) The cysteine proteinases of the pineapple plant. Biochem J 266:869–875

    Google Scholar 

  • Roy B, Lalchhandama K, Dutta BK (2007) Anticestodal efficacy of Accacia oxyphylla on Raillietina echinobothrida: a light and electron microscopic studies. Pharmacologyonline 1:279–287

    Google Scholar 

  • Sabah AA, Fletcher C, Webbe G, Doenhoff MJ (1986) Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol 61:294–303. doi:10.1016/0014-4894(86)90184-0

    PubMed  CAS  Google Scholar 

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem 91:621–632. doi:10.1016/j.foodchem.2004.06.031

    CAS  Google Scholar 

  • Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WPM, Krücken J, Harder A, von Samson-Himmelstjerna G, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334. doi:10.1096/fj.00-0664fje

    PubMed  CAS  Google Scholar 

  • Sahare KN, Anandhraman V, Meshram VG, Meshram SU, Reddy MVR, Tumane PM, Goswami K (2008) Anti-microfilarial activity of methanolic extract of Vitex negundo and Aegle marmelos and their phytochemical analysis. Indian J Exp Biol 46:128–131

    Google Scholar 

  • Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K (2012) Mitochondrial fumarate reductase as a target of chemotherapy: From parasites to cancer cells. Biochim Biophys Acta 1820:643–651. doi:10.1016/j.bbagen.2011.12.013

    PubMed  CAS  Google Scholar 

  • Salem ML (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L. seed (review). Int Immunopharmacol 5:1749–1770. doi:10.1016/j.intimp.2005.06.008

    PubMed  CAS  Google Scholar 

  • Sánchez ME, Turina A del V, García DA, Nolan MV, Perillo MA (2004) Surface activity of thymol: implications for the eventual pharmacological activity. Colloids Surf B 34:77–86. doi:10.1016/j.colsurfb.2003.11.007

  • Sandoval-Castro CA, Torres-Acosta JFJ, Hoste H, Salem AZM, Chan-Pérez JI (2012) Using plant bioactive materials to control gastrointestinal tract helminths in livestock. Anim Feed Sci Tech 176:192–201. doi:org/10.1016/j.anifeedsci.2012.07.023

    CAS  Google Scholar 

  • Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022A. J Antibiot (Tokyo) 45:692–697

    Google Scholar 

  • Satou T, Akao N, Matsuhashi R, Koike K, Fujita K, Nikaido T (2002a) Inhibitory effect of isoquinoline alkaloids on movement of second-stage larvae of Toxocara canis. Biol Pharm Bull 25:1651–1654

    Google Scholar 

  • Satou T, Koga M, Matsuhashi R, Koike K, Tada I, Nikaido T (2002b) Assay of nematocidal activity of isoquinoline alkaloids using third-stage larvae of Strongyloides ratti and S. venezuelensis.Vet Parasitol 104:131–138. PII:S0304-4017(01)00619-7

    Google Scholar 

  • Satou T, Horiuchi A, Akao N, Koike K, Fujita K, Nikaido T (2005) Toxocara canis: search for a potential drug amongst β-carboline alkaloids—in vitro and mouse studies. Exp Parasitol 110:134–139. doi:org/10.1016/j.exppara.2005.02.006

    PubMed  CAS  Google Scholar 

  • Satrija F, Nansen P, Bjorn H, Murtini S, He S (1994) Effect of papaya latex against Ascaris suum in naturally infected pigs. J Helminthol 68:343–346

    Google Scholar 

  • Satrija F, Nansen P, Murtini S, He S (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48:161–164

    Google Scholar 

  • Schweizer G, Braun U, Deplazes P, Torgerson PR (2005) Estimating the financial losses due to bovine fasciolosis in Switzerland. Vet Rec 157:188–193. doi:10.1136/vr.157.7.188

    PubMed  CAS  Google Scholar 

  • Scott JC, McManus DP (2000a) Molecular cloning and enzymatic expression of the 28-kDa glutathione S-transferase of Schistosoma japonicum: evidence for sequence variation but lack of consistent vaccine efficacy in the murine host. Parasitol Int 49:289–300. doi:S1383-5769

    CAS  Google Scholar 

  • Scott JC, McManus DP (2000b) Molecular cloning and enzymatic expression of the 28-kDa glutathione S-transferase of Schistosoma japonicum: evidence for sequence variation but lack of consistent vaccine efficacy in the murine host. Parasitol Int 49: 289-300. doi:10.1016/S1383-5769(00)00058-1

  • Shakir L, Hussain M, Javeed A, Ashraf M, Riaz A (2011) Artemisinins and immune system. Eur J Pharmacol 668:6–14. doi:10.1016/j.ejphar.2011.06.044

    PubMed  CAS  Google Scholar 

  • Shalaby HA, Hatem AEl, Namaky AH, Kamel ROA (2009) In vitro effect of artemether and triclabendazole on adult Fasciola gigantica. Vet Parasitol 160:76–82. doi:10.1016/j.vetpar.2008.10.027

  • Silveira RX, Chagas ACS, Botura MB, Batatinha MJM, Katiki LM, Carvalho CO, Bevilaqua CML, Branco A, Machado EAA, Borges SL, Almeida MAO (2012) Action of sisal (Agave sisalana, Perrine) extract in the in vitro development of sheep and goat gastrointestinal nematodes. Exp Parasitol 131:162–168. doi:org/10.1016/j.exppara.2012.03.018

    PubMed  Google Scholar 

  • Singh TU, Kumar D, Tandan SK, Mishra SK (2009) Inhibitory effect of essential oils of Allium sativum and Piper longum on spontaneous muscular activity of liver fluke, Fasciola gigantica. Exp Parasitol 123:302–308. doi:10.1016/j.exppara.2009.08.002

    PubMed  CAS  Google Scholar 

  • Ghosh M, Sinha Babu, SP, Sukul NC, Mahato SB (1993) Antifilarial effect of two triterpenoid saponins isolated from Acacia auriculiformis. Indian J Exp Biol 31:604–606

    Google Scholar 

  • Sinha Babu SP, Sarkar D, Ghosh NK, Saha A, Sukul NC, Bhattacharya S (1997) Enhancement of membrane damage by saponins isolated from Acacia auriculiformis. Jpn J Pharmacol 75:451–454

    Google Scholar 

  • Sobhona P, Dangprasertc T, Chuanchaiyakuld S, Meepoola A, Khawsuka W, Wanichanona C, Viyanantb V, Upathamb ES (2000) Fasciola gigantica: ultrastructure of the adult tegument. Sci Asia 26:137–148

    Google Scholar 

  • Socolsky C, Borkosky SA, Asakawa Y, Bardon A (2009) Molluscididal phloroglucinols from the fern Elaphoglossum piloselloides. J Nat Prod 72:787–790. doi:10.1021/np800724hSSDI0378-874(95)01298-R

    Google Scholar 

  • Soukhathammavong P, Odermatt P, Sayasone S, Vonghachack Y, Vounatsou P, Hatz CH, Akkhavong K, Keiser J (2011) Efficacy and safety of mefloquine, artesunate, mefloquine–artesunate, tribendimidine, and praziquantel in patients with Opisthorchis viverrini: a randomised, exploratory, open-label, phase 2 trial. Lancet Infect Dis 11:110–118. doi:10.1016/S1473-3099(10)70250-4

    PubMed  CAS  Google Scholar 

  • Spicher M, Roethlisberger C, Lany C, Stadelmann B, Keiser J, Ortega-Mora LM, Gottstein B, Hemphill A (2008) In Vitro and in vivo treatments of Echinococcus protoscoleces and metacestodes with artemisinin and artemisinin derivatives. Antimicrob Agent Chemoth 2:3447–3450. doi:10.1128/AAC.00553-08

    Google Scholar 

  • Squires JM, Ferreira JFS, Lindsay DS, Zajac AM (2011) Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Meriones unguiculatus). Vet Parasitol 175:103–108. doi:10.1016/j.vetpar.2010.09.011

    PubMed  CAS  Google Scholar 

  • Stepek G, Behnke JM, Buttle DJ, Ducel IR (2004) Natural plant cysteine proteinases as anthelmintics? Trends Parasitol 20:322–327. doi:10.1016/j.pt.2004.05.003

    PubMed  CAS  Google Scholar 

  • Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2006) In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology 132:681–689. doi:10.1017/S003118200500973X

    PubMed  CAS  Google Scholar 

  • Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007a) Anthelmintic action of plant cysteine proteinases against the rodent stomach nematode, Protospirura muricola, in vitro and in vivo. Parasitology 134:103–112. doi:10.1017/S0031182006001302

    PubMed  CAS  Google Scholar 

  • Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007b) In vitro anthelmintic effects of cysteine proteinases from plants against intestinal helminths of rodents. J Helminthol 81:353–360. doi:10.1017/S0022149X0786408X

    PubMed  Google Scholar 

  • Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007c) The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo. Parasitology 134:1409–1419. doi:10.1017/S0031182007002867

    PubMed  CAS  Google Scholar 

  • Tadros MM, Ghaly NS, Moharib MN (2008) Molluscicidal and schistosomicidal activities of a steroidal saponin containing fraction from Dracaena fragrans (L.). J Egypt Soc Parasitol 38:585–598

    Google Scholar 

  • Takahashi Y, Matsumoto A, Seino A, Ueno J, Iwai Y, Ōmura S (2002) Streptomyces avermectinius sp. nov., an avermectin-producing strain. Int J Syst Evol Microbiol 52:2163–2168. doi:10.1099/ijs.0.02237-0

    PubMed  CAS  Google Scholar 

  • Takano D, Nagamitsu T, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Kuwajima I, O′mura S (2001) Absolute configuration of nafuredin, a new specific NADH-fumarate reductase inhibitor. Tetrahedron Lett 42:3017–3020. doi:PII:S0040-4039(01)355-0

    Google Scholar 

  • Tandon V, Pal P, Roy B, Rao HSP, Reddy KS (1997) In vitro anthelmintic activity of root tuber extract of Flemingia vestita, an indigenous plant in India. Parasitol Res 83:492–498

    Google Scholar 

  • Tandon V, Das B, Saha N (2003) Anthelmintic efficacy of Flemingia vestita (Fabaceae): effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida. Parasite Int 52:179–183. doi:org/10.1016/S1383-5769(03)00006-0

    CAS  Google Scholar 

  • Tangpu VT, Yadav AK (2006) Anticestodal property of Strobilanthes discolor: an experimental study in Hymenolepis diminuta—rat model. J Ethnopharmacol 105:459–463. doi:10.1016/j.jep.2005.11.015

    Google Scholar 

  • Tangpu VT, Temjenmongla K, Yadav AK (2004) Anticestodal activity of Trifolium repens extracts. Pharmaceut Biol 42:656–658. doi:10.1080/13880200490902617

    Google Scholar 

  • Tansatit T, Sahaphong S, Riengrojpitak S, Viyanant V, Sobhon P (2012) Fasciola gigantica: the in vitro effects of artesunate as compared to triclabendazole on the 3-weeks-old juvenile. Exp Parasitol 131:8–19. doi:org/10.1016/j.exppara.2012.02.018

    Google Scholar 

  • Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 160:83–88. doi:10.1016/j.vetpar.2008.10.084

    PubMed  CAS  Google Scholar 

  • Thomas TRA, Kavlelar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8:1417–1468. doi:10.3390/md8041417

    PubMed  CAS  Google Scholar 

  • Turina AV, Nolan MV, Zygadlo JA, Perillo (2006) Natural terpens: self-assebly and membrane partitioning. Biophys Chem 122:101–113. doi:10.1016/j.bpc.2006.02.007

  • Türkdoğan MK, Ağaoğlu Z, Yener Z, Sekeroğlu R, Akkan HA, Avci ME (2001) The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes. Dtsch Tierarztl Wochenschr 108:71–73

    Google Scholar 

  • Tzamaloukas O, Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2005) The consequences of short-term grazing of bioactive forages on established adult and incoming larva populations of Teladorsagia circumcincta in lambs. Int J Parasitol 35:329–335. doi:10.1016/j.ijpara.2004.11.013

    PubMed  CAS  Google Scholar 

  • Tzamaloukas O, Athanasiadou S, Kyriazakis I, Huntley JF (2006) The effect of chicory (Cichorium intybus) and sulla (Hedysarum coronarium) on larval development and mucosal cell responses of growing lambs challenged with Teladorsagia circumcincta. Parasitology 132:419–426. doi:10.1017/S0031182005009194

    PubMed  CAS  Google Scholar 

  • Utzinger J, Xiao SH, Goran EKN, Bergquist R, Tanner M (2001) The potential of artemether for the control of schistosomiasis. Int J Parasitol 31:1549–1562. doi:10.1016/S0020-7519(00)00297-1

    PubMed  CAS  Google Scholar 

  • Utzinger J, Xiao SH, Tanner M, Keiser J (2007) Artemisinins for schistosomiasisand beyond. Curr Opin Investig Drugs 8:105–116

    Google Scholar 

  • Utzinger J, Raso G, Brooker S, DeSavigny D, Tanner M, Ørnbjerg N, Singer BH, Goran EKN (2009) Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136:1859–1874. doi:10.1017/S0031182009991600

    PubMed  CAS  Google Scholar 

  • Várady M, Čorba J, Letková V, Kováč G (2009) Comparison of two versions of larval development test to detect anthelmintic resistance in Haemonchus contortus. Vet Parasilot 160:267–271. doi:10.1016/j.vetpar.2008.11.010

    Google Scholar 

  • Varinska L, Mirossay L, Mojzisova G, Mojzis J (2010) Antiangogenic effect of selected phytochemicals. Pharmazie 65:57–63. doi:10.1691/ph.2010.9667

    PubMed  CAS  Google Scholar 

  • Verdrengh M, Collins LV, Bergin P, Tarkowski A (2004) Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect 6:86–92. doi:10.1016/j.micinf.2003.10.005

    PubMed  CAS  Google Scholar 

  • von Son-de Fernex E, Alonso-Díaz MA, Valles-de la Mora B, Capetillo-Leal CM (2012) In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae. Exp Parasitol 131:413–418. doi:org/10.1016/j.exppara.2012.05.010

    Google Scholar 

  • Vuong D, Capon RJ, Lacey E, Gill JH, Heiland K, Friedel T (2001) Onnamide F: a new nematocide from a southern Australian marine sponge, Trachycladus laevispirulifer. J Nat Prod 64:640–642. doi:10.1021/np000474b

    PubMed  CAS  Google Scholar 

  • Waghorn GC, McNabb WC (2003) Consequences of plant phenolic compounds for productivity and health of ruminants. Proc Nutr Soc 62:383–392. doi:org/10.1079/PNS2003245

    PubMed  CAS  Google Scholar 

  • Waller PJ (2006) From discovery to development: current industry perspectives for the development of novel methods of helminth control in livestock. Vet Parasitol 139:1–14. doi:10.1016/j.vetpar.2006.02.036

    PubMed  CAS  Google Scholar 

  • Waterman PG (1999) The tannins - an overview. In Brooker JD (ed) Tannins in livestock and human nutrition. Proceedings of international workshop, Adelaide, Australia, Australian Centre for International Agricultural Research, pp 10–13. doi: 10.1016/j.pt.2006.04.004

  • Watson M (2009) Praziquantel. Review. J Exotic Pet Med 18:229–231. doi:10.1053/j.jepm.2009.06.005

    Google Scholar 

  • Watts KR, Tenney K, Crews P (2010) The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opinion Biotechnol 21:808–818. doi:10.1016/j.copbio.2010.09.015

    CAS  Google Scholar 

  • Weissenberg M (2001) Isolation of solasodine and other steroidal alkaloids and sapogenins by direct hydrolysis-extraction of Solanum plants or glycosides therefrom. Phytochemistry 58:501–508. doi:10.1016/S0031-9422(01)00185-6

    Google Scholar 

  • Wu LJ, Li SW, Xuan YX, Xu PS, Liu ZD, Hu LS, Zhou SY, Qiu YX, Liu YM (1995) Field application of artesunate in prophylaxis of schistosomiasis: an observation of 346 cases. Chin J Schisto Control 7:323–327 (in Chinese)

    Google Scholar 

  • Xiao SH (2005a) Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop 96:153–167. doi:10.1016/j.actatropica.2005.07.010

    Google Scholar 

  • Xiao SH (2005b) Study on prevention and cure of artemether against schistosomiasis. Chin J Schisto Control 17:310–320 (in Chinese)

    Google Scholar 

  • Xiao SH, Catto BA (1989) In vitro and in vivo studies of the effect of artemether on Schistosoma mansoni. Antimicrob Agent Chemother 33:1557–1562. doi:10.101128/AAC.33.9.1557

    CAS  Google Scholar 

  • Xiao SH, Yue WJ, Yang YQ, You JQ (1987) Susceptibility of Schistosoma japonicum to different developmental stages to praziquantel. Chin Med J 100:759–768

    Google Scholar 

  • Xiao SH, You JQ, Yang YQ, Wang CZ (1995) Experimental studies on early treatment of schistosomal infection with artemether. Southeast Asian J Trop Med Public Health 26:306–318

    Google Scholar 

  • Xiao SH, Hotez PJ, Tanner M (2000a) Artemether, an effective new agent for chemoprophylaxis against schistosomiasis in China: its in vivo effect on the biochemical metabolism of the Asian schistosome. Southeast Asian J Trop Med Public Health 31:724–732

    Google Scholar 

  • Xiao SH, Chollet J, Weiss NA, Bergquist RN, Tanner M (2000b) Preventive effect of artemether in experimental animals infected with Schistosoma mansoni. Parasitol Int 49:19–24

    Google Scholar 

  • Xiao SH, Utzinger J, Chollet J, Endriss Y, N’Goran EK, Tanner M (2000f) Effect of artemether against Schistosoma haematobium in experimentally infected hamsters. Int J Parasitol 30:1001–1006. doi:10.1016/S0020-7519(00)00091-6

    Google Scholar 

  • Xiao SH, Ji-Qing Y, Hui-Fang G, Jin-Yan M, Pei-Ying J, Chollet J, Tanner M, Utzinger (2002) Schistosoma japonicum: effect of artemether on glutathione S-transferase and superoxide dismutase. Exp Parasitol 102:38–45. doi:10.1016/S0014-4894(02)00145-5

  • Xiao SH, Xue J, Tanner M, Zhang Yong-Nian, Keiser J, Utzinger J, Qiang H-Q (2008) Artemether, artesunate, praziquantel and tribendimidine administered singly at different dosages against Clonorchis sinensis: a comparative in vivo study. Acta Tropica 106: 54–59. doi:10.1016/j.actatropica.2008.01.003

    Google Scholar 

  • Xiao SH, Keiser J, Xue J, Tanner M, Morson G, Utzinger J (2009) Effect of single-dose oral artemether and tribendimidine on the tegument of adult Clonorchis sinensis in rats. Parasitol Res 104:533–541. doi:10.1007/s00436-008-1227-6

    Google Scholar 

  • Xiao SH, Keiser J, Chen MG, Tanner M, Utzinger J. (2010) Research and development of antischistosomal drugs in the People’s Republic of China: a 60-year review. In: Zhou XN, Bergquist R, Olveda R et al (eds) Adv Parasitol 73:231–295. doi:10.1016/S0065/S0065-308X(10)73009-8

  • Yadav AK, Tangpu V (2008) Anticestodal activity of Adhatoda vasica extracts against Hymenolepis diminuta infection in rats. J Ethnopharmacol 119:322–324. doi:10.1016/j.jep.2008.07.012

  • Yadav AK, Tangpu V (2009) Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats. J Parasitol Dis 33:42–47. doi:10.1007/s12639-009-0007-2

    Google Scholar 

  • Yadav AK, Tangpu V (2012) Anthelmintic activity of ripe fruit extract of Solanum myriacanthum Dunal (Solanaceae) against experimentally induced Hymenolepis diminuta (Cestoda) infections in rats. Parasitol Res 110:1047–1053. doi:10.1007/s00436-011-2596-9

    PubMed  Google Scholar 

  • Yang YQ, Xiao SH, Tanner M, Utzinger J, Chollet J, Wu JD, Guo J (2001) Histopathological changes in juvenile Schistosoma haematobium harboured in hamsters treated with artemether. Acta Trop 79:135–141. doi:10.1016/S0001-706X(01)00069-9

    PubMed  CAS  Google Scholar 

  • Zang X, Maizels RM (2001) Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem Sci 26:191–197. doi:PII:S0968-0004(00)01761-8

    Google Scholar 

  • Zibaei M, Sarlak A, Delfa B, Ezatpour B, Azargoon A (2012) Scolicidal effects of Olea europaea and Satureja khuzestanica extracts on protoscolices of hydatid cysts. Korean J Parasitol 50:53–56. doi:org/10.3347/kjp.2012.50.1.53

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Ann Rev Plant Biol 59:735–769. doi:10.1146/annurev.arplant.59.032607.092730

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Hrckova .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Hrckova, G., Velebny, S. (2013). Parasitic Helminths of Humans and Animals: Health Impact and Control. In: Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. SpringerBriefs in Pharmaceutical Science & Drug Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1325-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1325-7_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1324-0

  • Online ISBN: 978-3-7091-1325-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics