Advertisement

Parasitic Helminths of Humans and Animals: Health Impact and Control

  • Gabriela HrckovaEmail author
  • Samuel Velebny
Chapter
Part of the SpringerBriefs in Pharmaceutical Science & Drug Development book series (BRIEFSPSDD)

Abstract

Organic compounds from terrestrial and marine organisms have been used extensively in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modifications. This chapter summarizes the present knowledge about anthelmintic effects of the extracts and some already purified natural compounds isolated from the lower marine organisms including bacteria, sponge, fungi, and algae as well as the higher plants. A brief summary on anthelmintics in use is also included to provide a background for the comparison of effective concentrations, mode of actions, and weaknesses in therapy. The main focus is placed on in vitro and in vivo activities of secondary plant metabolites (alkaloids, essential oils, flavonoids, saponins, amides, enzymes, condensed tannins, and lactones with endoperoxide bridge-artemisinins) against nematodes, trematodes, and cestodes of medical and veterinary importance, and experimental model infections. Several issues are highlighted; the synergistic effect of a number of bioactive components in plant extracts, multiple putative target sites in helminths for some of secondary plant metabolites, probably different from those of current anthelmintics, which is suggested by their modified mode of actions.

Keywords

Helminths Natural compounds Drug discovery Marine organisms Terrestrial plants Secondary plant metabolites Anthelmintic activity 

References

  1. Abdel-Ghaffar F, Semmler M, Al-Rasheid KAS, Strassen B, Fischer K, Aksu G, Klimpel S, Mehlhorn H (2011) The effects of different plant extracts on intestinal cestodes and on trematodes. Parasitol Res 108:979–984. doi: 10.1007/s00436-010-2167-5 PubMedGoogle Scholar
  2. Abu-El-Ezz NM (2005) Effects of Nigella sativa and Allium cepa oils on Trichinella spiralis in experimentally infected rats. J Egypt Soc Parasitol 35:511–523Google Scholar
  3. Ael-Banhawey M, Ashry MA, EL-Ansary AK, Aly SA (2007) Effect of Curcuma longa or parziquantel on Schistosoma mansoni infected mice liver—histological and histochemical study. Indian J Exp Biol 45:877–889Google Scholar
  4. Akkari H, Darghouth MA, Ben Salem H (2008) Preliminary investigations of the anti-nematode activity of Acacia cyanophylla Lindl: excretion of gastrointestinal nematode eggs in lambs browsing A. cyanophylla with and without PEG or grazing native grass. Small Rumin Res 74:78–83. doi: 10.1016/j.smallrumres.2007.03.012 Google Scholar
  5. Albuquerque AAC, Sorenson AL, Leal-Cardoso JH (1995) Effects of essential oil of Croton zehntneri, and of anethole and estragole on skeletal muscles. J Ethnopharmacol 49:41–49. doi: SSDI0378-8741(95)01301-S Google Scholar
  6. Allam G (2009) Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni. Immunobiology 214:712–727. doi: 10.1016/j.imbio.2008.11.017 PubMedGoogle Scholar
  7. Al-Shaibani IRM, Phulan MS, Arijo A, Qureshi TA (2008) Ovicidal and larvicidal properties of Adhatoda vasica (L.) extracts against gastrointestinal nematodes of sheep in vitro. Pakistan Vet J 28: 79–83Google Scholar
  8. Andlauer W, Furst P (2002) Nutraceuticals: a piece of history, present status and outlook. Food Res Int 35:171–176. doi: org/10.1016/S0963-9969(01)00179-X Google Scholar
  9. Aremu AO, Fawole OA, Chukwujekwu JC, Light ME, Finnie JF, Van Staden J (2010) In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidera sericea. J Ethnopharmacol 131:22-27. doi:  10.1016/j.jep.2010.05.043 Google Scholar
  10. Aroche LU, Sánchez SDO, de Gives MP, Arellano LME, Hernandez LE, Cisneros VG, Ataide ADM, Velazquez HV (2008) In vitro nematicidal effects of medicinal plants from Sirra de Huautla, Biosphere Reserve, Morelos, Mexico against Haemonchus contortus infective larvae. J Helminth 82:25–31Google Scholar
  11. Athanasiadou S, Kyriazakis I (2004) Plant secondary metabolites: antiparasitic effects and their role in ruminant production systems. Proc Nutr Soc 63:631–639. doi: 10.1079/PNS2004396 PubMedGoogle Scholar
  12. Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet Parasitol 99:205–219. doi: org/10.1016/S0304-4017(01)00467-8 PubMedGoogle Scholar
  13. Athanasiadou S, Githiori J, Kyriazakis I (2007) Medical plants for helminth parasite control: facts and fiction. Animal 1:1392–1400. doi: org/10.1017/S1751731107000730 PubMedGoogle Scholar
  14. Ayers S, Zink DL, Mohn K, Powell JS, Brown CHM, Murphy T, Brand R, Pretorius S, Stevenson D, Thompson D, Singh SB (2008) Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry 69:541–545. doi: 10.1016/j.phytochem.2007.08.003 PubMedGoogle Scholar
  15. Azando EVB,Hounzangbe-Adote MS, Olounlade PA, Brunet S, Fabre N, Valentin A, Hoste H (2011) Involvement of tannins and flavonoids in the in vitro effects of Newbouldia laevis and Zanthoxylum zanthoxyloides extracts on the exsheathment of third-stage infective larvae of gastrointestinal nematodes. Vet Parasitol 180:292–297. doi: 10.1016/j.vetpar.2011.03.010 Google Scholar
  16. Bakkali F, Averbeck S, Averbeck D, Zhiri A, Idaomar M (2005) Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae. Mutat Res 585:1–13PubMedGoogle Scholar
  17. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475. doi: 10.1016/j.fct.2007.09.106 PubMedGoogle Scholar
  18. Baraldi R, Isacchi B, Predieri S, Marconi G, Vincieri FF, Bilia AR (2008) Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth. Biochem Syst Ecol 36:340–348. doi: 10.1016/j.bse.2007.11.002 Google Scholar
  19. Barnes S (1998) Evolution of the health benefits of soy isoflavones. Proc Soc Exp Biol Med 217:386–392. doi: 10.3181/00379727-217-44249 PubMedGoogle Scholar
  20. Barrau E, Fabre N, Fouraste I, Hoste H (2005) Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology 131:531–538. doi: org/10.1017/S0031182005008024 PubMedGoogle Scholar
  21. Behnke JM, Buttle DJ, Stepek G, Lowe A, Duce IR (2008) Developing new anthelmintics from plant cysteine proteinases (review). Parasit Vectors 1:29. doi: 10.1186/1756-3305r-r1-29 PubMedGoogle Scholar
  22. Bernes G, Waller PJ, Christensson D (2000) The effect of birdsfoot trefoil (Lotus corniculatus) and white clover (Trifolium repens) in mixed pasture swards on incoming and established nematode infections in young lambs. Acta Vet Scand 41:351–361Google Scholar
  23. Bodiwala HS, Singh G, Singh R, Dey CS, Sharma SS, Bhutani KK, Singh IP (2007) Antileishmanial amides and lignans from Piper cubeba and Piper retrofractum. J Nat Med 61:418–421. doi: 10.1007/s11418-007-0159- Google Scholar
  24. Braguine CG, Bertanha CS, Goncalves UO, Magalhaes LG, Rodrigues V, Gimenez VMM, Groppo M, Silva MLAE, Cunha WR, Januario AH, Pauletti PM (2012) Schistosomicidal evaluation of flavonoids from two species of Styrax against Schistosoma mansoni adult worms. Pharmaceut Biol 50:925–929. doi: 10.3109/13880209.2011.649857 Google Scholar
  25. Brooker S, Clements ACA, Bundy DAP (2006) Global epidemiology, ecology and control of soil-transmitted helminth infections. Global mapping of infectious diseases: Methods, Examples and emerging applications book series. Adv Parasitol 62:221–261. doi: 10.1016/S0065-308X(05)62007-6 PubMedGoogle Scholar
  26. Brunet S, Hoste H (2006) Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. J Agric Food Chem 54:7481–7487. doi: 10.1021/jf0610007 PubMedGoogle Scholar
  27. Bryant C, Behm AC (1989) Biochemical adaptation in parasites. Chapman and Hall, London, pp 25–69Google Scholar
  28. Buttle DJ, Behnke JM, Bartley Y, Elsheikha HM, Bartley DJ, Garnett MC, Donnan AA, Jackson F, Lowe A, Duce IR (2011) Oral dosing with papaya latex is an effective anthelmintic treatment for sheep infected with Haemonchus contortus. Parasit Vectors 4:36Google Scholar
  29. Caixeta SC, Magalhães LG, Melo NI, Wakabayashi KAL, Aguiar GP, Aguiar DP, Mantovani ALL, Morais JA, Oliveira PF, Tavares DC, Groppo M, Rodrigues V, Cunha WR, Veneziani RCS, da Silva Filho AA, Crotti AEM (2011) Chemical composition and in vitro schistosomicidal activity of the essential oil of Plectranthus neochilus grown in Brazil Southeast. Chem Biodivers. doi: 10.1002/cbdv.201100167 PubMedGoogle Scholar
  30. Cala AC, Chagas ACS, Oliveira MCS, Matos AP, Borges LMF, Sousa LAD, Souza FA, Oliveira GP (2012) In vitro anthelmintic effect of Melia azedarach L. and Trichilia claussenii C. against sheep gastrointestinal nematodes. Exp Parasitol 130:98–102. doi: 10.1016/j.exppara.2011.12.011 PubMedGoogle Scholar
  31. Callahan HL, Crouch RK, James ER (1988) Helminth antioxidant enzymes: a protective mechanism against host oxidants? Parasitol Today 4:218–225Google Scholar
  32. Camura-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, Oliveira LMB, Braga RR, Silva RA, Vieira LS (2007) Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol 148:288–294. doi: 10.1016/j.vetpar.2007.06.012 Google Scholar
  33. Caner A, Döskaya M, Degirmenci A, Can H, Baykan S, Űner A, Basdemir G, Zeybek U, Gűrűz Y (2008) Comparison of the effects of Artemisia vulgaris and Artemisia absinthium growing in western Anatolia against trichinellosis (Trichinella spiralis) in rats. Exp Parasitol 119:173–179. doi: 10.1016/j.exppara.2008.01.012 PubMedGoogle Scholar
  34. Cao CH, Liu Y, Lehmann M (2007) Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death. JCB 176:843–852. doi: 10.1083/jcb.200611155 PubMedGoogle Scholar
  35. Capon RJ, Vuong D, Lacey E, Gill JH (2005) (-)-Echinobetaine A: Isolation structure elucidation, synthesis, and SAR studies on a new nematocide from a southern Australian marine sponge, Echinodictyum sp. J Nat Prod 68:179–182. doi: 10.1021/np049687h PubMedGoogle Scholar
  36. Carvalhoa CO, Chagas ACS, Cotinguiba F, Furlan M, Brito LG, Chaves FCM, Stephan MP, Bizzo HR, Amarante AFT (2012) The anthelmintic effect of plant extracts on Haemonchus contortus and Strongyloides venezuelensis. Vet Parasitol 183:260–268. doi: 10.1016/j.vetpar.2011.07.051 Google Scholar
  37. Challam M, Roy B, Tandon V (2010) Effect of Lysimachia ramosa (Primulaceae) on helminth parasites. Motility, mortality and scanning electron microscopic observations on surface topography. Vet Parasitol 169:214–218. doi: 10.1016/j.vetpar.2009.12.024 Google Scholar
  38. Chatterjee RK, Fatma N, Murthy PK, Sinha P, Kulshrestha DK, Dhawan BN (1992) Macrofilaricidal activity of the stembark of Streblus asper and its major active constituents. Drug Dev Res 26:67–78Google Scholar
  39. Chen DJ, Fu LF, Shao PP, Wu FZ, Fan CZ, Shu H, Ren CS, Sheng XL (1980) Studies on antischistosomal activity of qinghaosu in experimental therapy. Zhong Hui Yi Xue Zha Zhi 80:422–428 (in Chinese)Google Scholar
  40. Cioli D, Pica-Mattoccia L (2003) Praziquantel. Parasitol Res 90:S3–S9. doi: 10.1007/s00436-002-0751-z PubMedGoogle Scholar
  41. Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53. doi: 10.1016/S0278-2626(03)00284-7 PubMedGoogle Scholar
  42. Conder GA, Jen LW, Marbury KS, Johnson SS, Guimond PM, Thomas EM, Lee BL (1990) A novel anthelmintic model utilizing Meriones unguiculatus, infected with Haemonchus contortus. J Parasitol 76:168–170. doi: 10.2307/3283008 PubMedGoogle Scholar
  43. Crews P, Hunter LM (1993) The search for antiparasitic agents from marine animals. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology. Plenum Press, New York, USA, London, UK, pp 343–389Google Scholar
  44. Das B, Tandon V, Saha N (2004) Effects of phytochemicals of Flemingia vestita (Fabaceae) on glucose 6-phosphate dehydrogenase and enzymes of gluconeogenesis in a cestode Raillietina echinobothrida. Comp Biochem Physiol 139:141–146. doi: org/10.1016/j.cca.2004.10.004 Google Scholar
  45. Das B, Tandon V, Saha N (2006) Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl. Parasitol Inter 55:17–21. doi: org/10.1016/j.parint.2005.08.002 Google Scholar
  46. Das B, Tandon V, Lyndem LL, Gray AI, Ferro VA (2009) Phytochemicals from Flemingia vestita (fabaceae) and Stephania glabra (Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida. Comp Bioc Physiol 149:397–403. doi: org/10.1016/j.cbpc.2008.09.012 Google Scholar
  47. Dayan AD (2003) Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 86:141–159. doi: 10.1016/S0001-706X(03)00031-7 PubMedGoogle Scholar
  48. de Amorin A, Borba HR, Carauta JP, Lopes D, Kaplan MA(1999) Anthelmintic activity of the latex of Ficus species. J Ethnopharmacol 64:255–258. PII S0378-8741/98/00139-4Google Scholar
  49. De Gives PM, López Arellano ME, Hernández EL, Marcelino LA (2012) Plant extracts: a potential tool for controlling animal parasitic nematodes. In: The biosphere. ISBN: 978-953-51-0292-2. doi: 10.5772/34/783
  50. de Melo NI, Magalhaes LG, de Carvalho CE, Wakabayashi KAL, de P Aguiar G, Ramos RC, Mantovani ALL, Turatti ICC, Rodrigues V, Groppo M, Cunha WR (2011) Schistosomicidal activity of the essential oil of Ageratum conyzoides L. (Asteraceae) against adult Schistosoma mansoni worms. Molecules 16:762–73. doi: 10.3390/molecules16010762
  51. de Moraes J, Nascimento C, Lopes POMV, Nakano E, Yamaguchi LF, Kato MJ, Kawano T (2011) Schistosoma mansoni: in vitro schistosomicidal activity of piplartine. Exp Parasitol 127:357–364. doi: 10.1016/j.exppara.2010.08.021 PubMedGoogle Scholar
  52. de Moraes J, Nascimento C, Yamaguchi LF, Kato MJ, Nakano E(2012) Schistosoma mansoni in vitro schistosomicidal activity and tegumental alterations induced by piplartine on schistosomula. Exp Parasitol (in press) doi: org/10.1016/j.exppara.2012.07.004
  53. de Oliviera RN, Rehder VLG, Oliveira ASS, Montanari I Jr, de Carvalho JE, Gois de Ruiz ALT, Jeraldo VLS, Linhares AX, Allegretti SM (2012) Schistosoma mansoni: In vitro schistosomicidal activity of essential oil of Baccharis trimera. Exp Parasitol doi: 10.1016/j.exppara.2012.06.005 (in press)
  54. Diaz AMA, Acosta TJFJ, Castro SCA, Hoste H (2010) Tannins in tropical tree fodders fed to small ruminants: a friendly foe? Small Rumin Res 89:164–173. doi: 10.1016/j.smallrumres.2009.12.040 Google Scholar
  55. Doligalska M, Jozwicka K, Kiersnowska M, Mroczek A, Paczkowski C, Janiszowska W (2011) Triterpenoid saponins affect the function of P-glycoprotein and reduce the survival of the free-living stages of Heligmosomoides bakeri. Vet Parasitol 179:144–151. doi: 10.1016/j.vetpar.2011.01.053 PubMedGoogle Scholar
  56. Duthaler U, Smith TA, Keiser J (2010) In vivo and in vitro sensitivity of Fasciola hepatica to triclabendazole combined with artesunate, artemether, or OZ78. Antimicrob Agent Chemother 54:4596–4604. doi: 10.1128/AAC.00828-10 Google Scholar
  57. Duthaler U, Huwyler J, Rinaldi L, Cringoli G, Keiser J (2012) Evaluation of the pharmacokinetic profile of artesunate, artemether and their metabolites in sheep naturally infected with Fasciola hepatica. Vet Parasitol 186:270–280. doi: 10.1016/j.vetpar.2011.11.076 PubMedGoogle Scholar
  58. Egerton JR, Ostlind DA, Blair LS, Eary CH, Suhayda D, Cifeli S, Riek RF, Camphell WC (1979) Avermectins, new family of potent anthelmintic agents: efficacy of the B1α component. Antimicrob Agents Chemother 15:372–378Google Scholar
  59. Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007a) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus. J Ethnopharmacol 110:428–433. doi: 10.1016/j.jep.2006.10.003
  60. Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007b) Haemonchus contortus: in vitro and in vivo anthelmintic activity of aqueous and hydro-alcoholic extracts of Hedera helix. Exp Parasitol 116:340–345. doi: 10.1016/j.exppara.2007.01.019 PubMedGoogle Scholar
  61. Elissondo MC, Albani CM, Gende L, Eguaras M, Denegri G (2008) Efficacy of thymol against Echinococcus granulosus protoscoleces. Parasitol Int 57:185–190. doi: 10.1016/j.paraint.2007.12.005 Google Scholar
  62. EMEA-European Medicines Evaluation Agency (1996) Praziquantel summary report by CVMP. EMEA/MRL/141/96, Sept 1996. EMEA, LondonGoogle Scholar
  63. EMEA-European Medicines Evaluation Agency (1997) Albendazole summary report by CVMP. EMEA/MKL/247/97-Final, EMEA, LondonGoogle Scholar
  64. EMEA-European Medicines Evaluation Agency (1999) Mebendazole summary report by CVMP. EMEA/MKL/625/99-Final. July 1999. EMEA, LondonGoogle Scholar
  65. Fandohan P, Gnonlonfin B, Laleye A, Gbenou JD, Darbouxc R, Moudachirou M (2008) Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem Toxicol 46:2493–2497. doi: 10.1016/j.fct.2008.04.006 PubMedGoogle Scholar
  66. Ferreira JFS, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15:3135–3170. doi: 10.3390/molecules15053135 PubMedGoogle Scholar
  67. Fester K (2010) Plant alkaloids. Published online. doi: 10.1002/9780470015902.a0001914
  68. Fioravanti CF, Walker DJ, Sandhu PS (1998) Metabolic transition in the development of Hymenolepis diminuta (Cestoda). Parasitol Res 84:777–782. doi: 10.1007/s004360050487 PubMedGoogle Scholar
  69. Foster JG, Clapham WM, Belesky DP, Labreveux M, Hall MH, Sanderson MA (2006) Influence of cultivation site on sesquiterpene lactone composition of forage chicory (Cichorium intybus L.). J Agric Food Chem 54:1772–1778. doi: 10.1021/jf052546g PubMedGoogle Scholar
  70. Foster JG, Cassida KA, Turner KE (2011) In vitro analysis of the anthelmintic activity of forage chicory (Cichorium intybus L.) sesquiterpene lactones against a predominantly Haemonchus contortus egg population. Vet Parasitol 180:298–306. doi: 10.1016/j.vetpar.2011.03.013 PubMedGoogle Scholar
  71. Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605. doi: 10.1079/BJN2002725 PubMedGoogle Scholar
  72. Frayha GJ, Smyth JD, Gobert JG, Savel J (1997) The mechanisms of action of antiprotozoal and anthelmintic drugs in man. Gen. Pharmacol 28:273–299. PII:S0306–S3623 (96)00149-8Google Scholar
  73. Gabino JAF, de Gives MMP, Sanchez SME, Hernandez LE, Velazquez HVM, Cisneros VG (2010) Anthelmintic effects of Prosopsis laevigata n-hexanic extract against Haemonchus contortus in artificially infected gerbils (Meriones unguiculatus). J Helminth 84:71–75Google Scholar
  74. Gaur RL, Sahoo MK, Dixit S, Fatma N, Rastogi S, Kulshreshtha DK, Chatterjee RK, Murthy PK (2008) Antifilarial activity of Caesalpinia bonducella against experimental filarial infections. Indian J Med Res 128:65–70Google Scholar
  75. Geary TG, Sangster NC, Thompson DP (1999) Frontiers in anthelmintic pharmacology. Vet Parasitol 84:275–295. doi: org/10.1016/S0304-4017(99)00042-4 PubMedGoogle Scholar
  76. Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK, de Silva N, Olliaro PL, Lazdins-Helds JK, Engels DA, Bundy DA (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40:1–13. doi: 10.1016/j.ijpara.2009.11.001 PubMedGoogle Scholar
  77. Ghosh NK, Babu SP, Sukul NC, Ito A (1996) Cestocidal activity of Accacia auriculiformis. J Helminthol 70:171–172. doi: 10.1017/S0022149X00015340 Google Scholar
  78. Githiori JB, Athanasiadou S, Thamsborg SM (2006) Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet Parasitol 139:308–320. doi: 10.1016/j.vetpar.2006.04.021 PubMedGoogle Scholar
  79. Gupta J, Misra S, Mishra SK, Srivastava S, Srivastava MN, Lakshmi V, Misra-Bhattacharya S (2012) Antifilarial activity of marine sponge Haliclona oculata against experimental Brugia malayi infection. Exp Parasitol 130:449–455. doi: 10.1016/j.exppara.2012.01.009 PubMedGoogle Scholar
  80. Hale LP (2004) Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int Immunopharmacol 4:255–264. doi: 10.1016/j.intimp.2003.12.010 PubMedGoogle Scholar
  81. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF—κB activations, wherwas flavone isorhamnetin, naringenin, and Pelargonidin inhibit only NF—κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm. doi: 10.1155/2007/45673 Google Scholar
  82. Hansson A, Veliz G, Naquira C, Amren M, Arroyo M, Arevalo G (1986) Preclinical and clinical studies with latex from Ficus glabrata HBK, a traditional intestinal anthelminthic in the Amazonian area. J Ethnopharamacol 17:105–138Google Scholar
  83. Haq A, Abdullatif M, Lobo PI, Khabar KSA, Sheth KV, Al-Sedairy ST (1995) Nigella sativa: effect on human lymphocytes and polymorphnuclear leukocyte phagocytic activity. Immunopharmacology 30:147–155. SSDI 0162-3109(95)00016-XGoogle Scholar
  84. Harder A, von Samson-Himmelstjerna G (2002) Cyclooctadepsipeptides—a new class of anthelmintically active compounds. Parasitol Res 88:481–488PubMedGoogle Scholar
  85. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96: 67-202. doi: PII:S0163-7258(02)00298-X
  86. Hernández-Villegas MM, Borges-Argáez R, Rodríguez-Vivas RI, Torres-Acosta JFJ, Méndez-Gonzáles M, Cáceres-Farfán M (2011) Ovicidal and larvicidal activity of the crude extracts from Phytolacca icosandra against Haemonchus contortus. Vet Parasitol 179:100–106. doi: 10.1016/j.vetpar.2011.02.019 PubMedGoogle Scholar
  87. Hernández-Villegas MM, Borges-Argáez R, Rodríguez-Vivas RI, Torres-Acosta JFJ, Méndez-Gonzáles M, Cáceres-Farfán M (2012) In vivo anthelmintic activity of Phytolacca icosandra against Haemonchus contortus in goats. Vet Parasitol doi:org/ 10.1016/j.vetpar.2012.04.017 (in press)
  88. Holden-Dye L, Walker RJ (2007) Anthelmintic drugs. In: Maricq V, McIntire L (eds) WormBook. The C. elegans research community. doi: 10.1895/wormbook.1.143.1
  89. Hördegen P, Hertzberg H, Heilmann J, Langhans W, Maurer V (2003) The anthelmintic efficacy of five plant products against gastrointestinal trichostrongylids in artificially infected lambs. Vet Parasitol 117:51–60. doi: 10.1016/j.vetpar.2003.07.027 PubMedGoogle Scholar
  90. Hoste H, Torres-Acosta JFJ (2011) Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol 180:144–154. doi: 10.1016/j.vetpar.2011.05.085 PubMedGoogle Scholar
  91. Hoste H, Torres-Acosta JF, Paolini V, Aguilar-Caballero A, Etter E, Lefrileux Y, Chartier C, Broqua C (2005) Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Ruminant Res 60:141–151. doi: 10.1016/j.smallrumres.2005.06.008 Google Scholar
  92. Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22:253–261. doi: org/10.1016/j.pt.2006.04.004 PubMedGoogle Scholar
  93. Hoste H, Martinez-Ortiz-De-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux I, Torres-Acosta JFJ, Sandoval-Castro CA (2012) Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol 186:18–27. doi: 10.1016/j.vetpar.2011.11.042 PubMedGoogle Scholar
  94. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J (2008) Helminth infections: the great neglected tropical diseases. J Clin Investig 118:1311–1321. doi: 10.1172/JCI34261 PubMedGoogle Scholar
  95. Hu M, Konoki K, Tachibana K (1996) Cholesterol-independent membrane disruption caused by triterpenoid saponins. Biochim Biophys Acta 1299:252–258Google Scholar
  96. Iqbal Z, Khahid-Nadeem Q, Kham MN, Akthar MSS, Waraich FN (2001) In vitro anthelmintic activity of Allium sativum, Zingiber officinale and Ficus religiosus. Int J Agric Biol 3:454–457Google Scholar
  97. Iqbal Z, Lateef M, Ashraf M, Jabbar A (2004) Anthelmintic activity of Artemisia brevifolia in sheep. J Ethnopharmacol 93:265–268. doi: 10.1016/j.jep.2004.03.046 Google Scholar
  98. Itakura Y, Ichikawa M, Mori Y, Okino R, Udayama M, Morita T (2001) How to distinguish garlic from the other Allium vegetables. J Nutr 131:963S–967SGoogle Scholar
  99. Jabbar A, Zaman MA, Iqbal Z, Yassen M, Shamim A (2007) Anthelmintic activity of Chemopodium album (L) and Caesalpinia crista (L) against trichostrongylid nematodes of sheep. J Ethnopharmacol 114: 86–91Google Scholar
  100. Janse CJ, Waters AP, Kos J, Lugt CB (1994) Comparison of in vivo and in vitro antimalarial activity of artemisinin, dihydroartemisinin and sodium artesunate in the Plasmodium berghei rodent model. Int J Parasitol 24:589–594. doi: org.proxy.library.ucsb.edu:2048/10.1016/0020-7519(94)90150-3 PubMedGoogle Scholar
  101. Kahiya C, Mukaratirwa S, Thamsborg SM (2003) Effects of Acacia nilotica and Acacia karoo diet on Haemonchus contortus infection in goats. Vet Parasitol 115:265–274. doi: 10.1016/S0304-4017(03)00213-9 PubMedGoogle Scholar
  102. Kamaraj C, Rahuman AA (2011) Efficacy of anthelmintic properties of medicinal plant extracts against Haemonchus contortus. Res Vet Sci 91:400–404. doi: 10.1016/j.rvsc.2010.09.018 PubMedGoogle Scholar
  103. Kamaraj C, Rahuman AA, Bagavan A, Mohamed MJ, Elango G, Rajakumar G, Zahir AA, Santhoshkumar T, Marimuthu S (2010a) Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida). Parasitol Res 106:1071–1077. doi: 10.1007/s00436-010-1750-0 PubMedGoogle Scholar
  104. Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010b) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412. doi: 10.1007/s00436-010-1816-z PubMedGoogle Scholar
  105. Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20:477–481. doi: org/10.1016/j.pt.2004.08.001 PubMedGoogle Scholar
  106. Kar P, Tandon V, Saha N (2002) Anthelmintic efficacy of Flemingia vestita: genistein-induced effect on the activity of nitric oxide syntase and nitric oxide in the trematode parasite, Fasciolopsis buski. Parasitol Int 51:249–257. PII:S1383-5769(02)00032-6Google Scholar
  107. Kar PK, Tandon V, Saha N (2004) Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the free amino acid pool and ammonia levels in the fluke Fasciolipsis bruski. Parasitol Int 53:287–291. doi: 10.1016/j.parint.2004.04.001 PubMedGoogle Scholar
  108. Kasinathan RS, Morgan WM, Greenberg RM (2010) Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 173:25–31. doi: 10.1016/j.molbiopara.2010.05.003 PubMedGoogle Scholar
  109. Katiki LM, Ferreira JFS, Zajac AM, Masler C, Lindsay DS, Chagas ACS, Amarante AFT (2011a) Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Vet Parasitol 182:264–268. doi: 10.1016/j.vetpar.2011.05.020 PubMedGoogle Scholar
  110. Katiki LM, Chagasb ACS, Bizzoc HR, Ferreirad JFS, Amarantee AFT (2011b) Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Vet Parasitol 183:103–108. doi: 10.1016/j.vetpar.2011.07.001 PubMedGoogle Scholar
  111. Katiki LM, Chagasb ACS, Takahirac RK, Juliani HR, Ferreirae JFS, Amarante AFT (2012) Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Vet Parasitol 186:312–318. doi: 10.1016/j.vetpar.2011.12.003 PubMedGoogle Scholar
  112. Keiser J, Morson G (2008) Fasciola hepatica: tegumental alterations in adult flukes following in vitro and in vivo administration of artesunate and artemether. Exp Parasit 118:228–237. doi: 10.1016/j.exppara.2007.08.007 PubMedGoogle Scholar
  113. Keiser J, Utzinger J (2005) Emerging foodborne trematodiasis. Emer Inf Dis 11:1507–1514. doi: 10.1016/j.vetpar.2010.09.011 Google Scholar
  114. Keiser J, Utzinger J (2007) Artemisinins and synthetic trioxolanes in the treatment of helminth infections (review). Curr Opin Infect Dis 20:605–612. doi: 10.1097/QCO.0b013e3282f19ec4 PubMedGoogle Scholar
  115. Keiser J, Utzinger J (2010) The drugs we have and the drugs we need against major helminth infections—chapter 8. Adv Parasitol 73:197–230. http://dx.doi.org/10.1016/S0065-308X(10)73008-6
  116. Keiser J, Vargas M (2010) Effect of artemether, artesunate, OZ78, praziquantel, and tribendimidine alone or in combination chemotherapy on the tegument of Clonorchis sinensis. Parasitol Int 59:472–476. doi: 10.1016/j.parint2010.04.003 PubMedGoogle Scholar
  117. Keiser J, Xiao SH, Tanner M, Utzinger J (2006a) Artesunate and artemether are effective fasciolicides in the rat model and in vitro. J Antimicrob Chemother 57:1139–1145. doi: 10.1093/jac/dkl125 PubMedGoogle Scholar
  118. Keiser J, Xiao SH, Xue J, Chang ZS, Odermatt P, Tesana S, Tanner M, Utzinger J (2006b) Effect of artesunate and artemether against Clonorchis sinensis and Opisthorchis viverrini in rodent models. Int J Antimicrob Agent 28:370–373. doi: 10.1016/j.ijantimicag.2006.08.004 Google Scholar
  119. Keiser J, Rinaldi L, Veneziano V, Mezzino L, Tanner M, Utzinger J, Cringoli G (2008) Efficacy and safety of artemether against a natural Fasciola hepatica infection in sheep. Parasitol Res 103:517–522. doi: 10.1007/s00436-008-0998-0 PubMedGoogle Scholar
  120. Keiser J, Veneziano V, Rinaldi L, Mezzino L, Duthaler U, Cringoli G (2010) Anthelmintic activity of artesunate against Fasciola hepatica in naturally infected sheep. Res Vet Sci 88:107–110. doi: 10.1016/j.rvsc.2009.05.007 PubMedGoogle Scholar
  121. Keiser J, Sayed H, El-Ghanam M, Sabry H, Anani S, El-Wakeel A, Hatz Ch, Utzinger J, Seif el Din S, El-Maadawy W, Botros S (2011) Efficacy and safety of artemether in the treatment of chronic Facioliasis in Egypt: exploratory phase-2 trials. PloS Negl Trop Dis 5:e1285. doi: 10.1371/journal.pntd.0001285 PubMedGoogle Scholar
  122. Kennedy MW, Foley M, Kuo YM, Kusel JR, Garland PB (1987) Biophysical properties of the surface lipid of parasitic nematodes. Mol Biochem Parasitol 22:233–240. doi: 10.1016/0166-6851(87)90054-5 PubMedGoogle Scholar
  123. Kerboeuf D, Guegnard F (2011) Anthelmintics are substrates and activators of nematode P Glycoprotein. Antimicrob Agent Chemother 55:2224–2232. doi: 10.1128/AAC.01477-10 Google Scholar
  124. Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G (2003) P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. Int J Antimicrob Agents 22:332–346. doi: 10.1016/S0924-8579(03)00221-8 PubMedGoogle Scholar
  125. Kerboeuf D, Riou M, Neveu C, Issouf M (2010) Membrane drug transport in helminths. Anti-infect. Agent Med Chem 9:113–129. doi: 10.1139/O09-126 Google Scholar
  126. Ketzis JK, Taylor A, Bowman DD, Brown DL, Warnick LD, Erb HN (2002) Chenopodium ambrosioides and its essential oil as treatments for Haemonchus contortus and mixed adult-nematode infections in goats. Small Rumin Res 44:193–200. PII:S0921-4488/(02)00047-0Google Scholar
  127. Kim TI, Yoo WG, Li S, Hong ST, Keiser J, Hong SJ (2009) Efficacy of artesunate and artemether against Clonorchis sinensis in rabbits. Parasitol Res 106:153–156. doi: 10.1007/s00436-009-1641-4 PubMedGoogle Scholar
  128. Kita K, Shiomi K, Omura S (2007) Advances in drug discovery and biochemical studies (review). Trends Parasitol 23:223–229. doi: 10.1016/j.pt.2007.03.005 PubMedGoogle Scholar
  129. Klein CB, King AA (2007) Genistein genotoxicity: Critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol 224:1–11. doi: 10.1016/j.taap.2007.06.022 PubMedGoogle Scholar
  130. Klimpel S, Abdel-Ghaffar FA, Al-Rasheid KAS, Aksu G, Fischer K, Strassen B, Melhorn H (2011) The effects of different plant extracts on nematodes. Parasitol Res 108:1047–1054. doi: 10.1007/s00436-010-2168-4 PubMedGoogle Scholar
  131. Kohn AB, Roberts-Misterly JM, Anderson PAV, Khan N, Greenberg RM (2003) Specific sites in the beta interaction domain of a schistosome Ca2+ channel β-subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127:349–356. doi: 10.1017/S003118200300386X PubMedGoogle Scholar
  132. Königová A, Hrčkova G, Velebný S, Čorba J, Várady M (2008) Experimental infection of Haemonchus contortus strains resistant and susceptible to benzimidazoles and the effect on mast cells distribution in the stomach of Mongolian gerbils (Meriones unguiculatus). Parasitol Res 102:587–595. doi: 10.1007/s00436-007-0792-4 PubMedGoogle Scholar
  133. Lacey E (1990) Mode of action of benzimidazoles. Parasitol Today 6:112–115Google Scholar
  134. Lakshmi V, Kumar R, Gupta P, Varshney V, Srivastava MN, Dikshit M, Murthy PK, Misra-Bhattacharya S (2004a) The antifilarial activity of a marine red alga, Botryocladia leptopoda, against experimental infections with animal and human filariae. Parasitol Res 93:468–474. doi: 10.1007/s00436-004-1159-8 PubMedGoogle Scholar
  135. Lakshmi V, Saxena A, Pandey K, Preeti Bajpai, Misra-Bhattacharya S (2004b) Antifilarial activity of Zoanthus species (Phylum Coelenterata, Class Anthzoa) against human lymphatic filaria, Brugia malayi. Parasitol Res 93:268–273. doi:  10.1007/s00436-004-1124-6
  136. Lakshmi V, Joseph SK, Srivastava S, Verma SK, Sahoo MK, Dube V, Mishra SK, Murthy PK (2010) Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop 116:127–133. doi: 10.1016/j.actatropica.2010.06.006 PubMedGoogle Scholar
  137. Lespine A, Ménez C, Bourguinat C, Prichard RK (2012) P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance (invited review). Int J Parasitol Drugs Drug Resist 2:58–75. doi: 10.1016/j.ijpddr.2011.10.001 Google Scholar
  138. Li QG, Peggins JO, Fleckenstein LL, Masonic K, Heiffer MH, Brewer TG (1998) The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol 50:173–182Google Scholar
  139. Li YS, Chen HG, He HB, Hou XY, Ellis M, McManus DP (2005) A double-blind field trial on the effects of artemether on Schistosoma japonicum infection in a highly endemic focus in southern China. Acta Trop 96:184–190. doi: 10.1016/j.actatropica.2005.07.013 PubMedGoogle Scholar
  140. Liu L, Song G, Hu Y (2007) GC–MS analysis of the essential oils of Piper nigrum L. and Piper longum L. Chromatographia 66:785–790. doi: 10.1365/s10337-007-0408-2 Google Scholar
  141. Lotfy WM (2009) Human schistosomiasis in Egypt: historical rewiew, assessment of the current picture and prediction of the future trends. J Med Res Inst 30:1–7Google Scholar
  142. Loukas A, Hotez PJ (2005) Chemotherapy of helminth infections. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill Companies, USA, pp 1073–1093Google Scholar
  143. Luz PP, Magalhães LG, Pereira AK, Cunha WR, Rodrigues V, Marcio L. Andrade E Silva (2012) Curcumin-loaded into PLGA nanoparticles. Preparation and in vitro schistosomicidal activity. Parasitol Res 110:593–598 doi: 10.1007/s00436-011-2527-9
  144. Macedo ITF, Bevilaqua CML, de Oliveira LMB, Camurca-Vasconcelos ALF, Vieira SL, Oliveira FR, Queiroz-Junior EM, Tomé RA, Nascimento NRF (2009) Atividade ovicida e larvicida in vitro do óleo essencial de Eucalyptus globulus sobre Haemonchus contortus. Rev Bras Parasitol Vet 18:62–66. doi: org/10.4322/rbpv.01803011 Google Scholar
  145. Macedo ITF, Bevilaqua CML, de Oliveira LMB,Camurca-Vasconcelos ALF, Vieira SL, Oliveira FR, Queiroz-Junior EM, Tomé RA, Nascimento NRF (2010) Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Vet Parasitol 173:93–98. doi: 10.1016/j.vetpar.2010.06.004 Google Scholar
  146. Macedo IFT, Bevilaqua CML, de Oliveira LMB, Camurca-Vasconcelos ALF, Viera SL, Amóra SSA (2011) Evaluation of Eucalyptus citriodora essential oil on goat gastrointestinal nematodes. Rev Bras Parasitol Vet 20:223–227Google Scholar
  147. Magalhaes LG, Lizandra G, de Souza JM, Wakabayashi KAL, Laurentiz RD, Vinholis AHC, Rezende KCS, Simaro GV, Bastos JK, Rodrigues V, Esperandim VR, Ferreira DS, Crotti AEM, Cunha WR, Silva MLAE (2012) In vitro efficacy of the essential oil of Piper cubeba L. (Piperaceae) against Schistosoma mansoni. Parasitol Res 110:1747–1754. doi: 10.1007/s00436-011-2695-7
  148. Magalhães LG, Machado CB, Morais ER, Bueno de Carvalho Moreira E, Sossai Soares C, Henrique da Silva S, Da Silva Filho AA, Rodrigues V (2009) In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 104:1197–1201. doi: 10.1007/s00436-008-1311-y
  149. Magalhães LG, Kapadia GJ, Tonuci LRS, Caixeta SC, Parreira NA, RodriguesV, Filho AAS (2010) In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms. Parasitol Res 106:395–401. doi: 10.1007/s00436-009-1674-8
  150. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. doi: 10.1016/j.lfs.2005.12.007 Google Scholar
  151. Mahmoud MR, El-Abhar HS, Saleh S (2002) The effect of Nigella sativa oil against the liver damage induced by Schistosoma mansoni infection in mice. J Ethnopharmacol 79:1–11. PII: S0378-8741(01)00310-5Google Scholar
  152. Martin RJ (1997) Modes of action of anthelmintic drugs. Vet J 154:11–34. doi: 1(190-0233/t)7/04(1011-24/S12.00/0 PubMedGoogle Scholar
  153. Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochernicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–139.  doi:10.1017/S1751731107000298 Google Scholar
  154. Martin R, Pennington AJ (1988) Effect of dihydroavermectin B1α on chloride-single-channel currents in Ascaris muscle. Pestic Sci 24: 90–91Google Scholar
  155. Martin RJ, Robertson AP (2007) Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 134:1093–1104. doi: 10.1017/S0031182007000029 PubMedGoogle Scholar
  156. Max RA (2010) Effect of repeated wattle tannin drenches on worm burdens, faecal egg counts and egg hatchability during naturally acquired nematode infections in sheep and goats. Vet Parasitol 169:138–143. doi: 10.1016/j.vetpar.2009.12.022 PubMedGoogle Scholar
  157. Max RA, Wakelin D, Dawson J, Kimambo AE, Kassuku AA, Mtenga LA, Buttery PJ (2005) Effect of quebracho tannin on faecal egg counts, worm burdens and performance of temperate sheep with experimental nematode infections. J Agric Sci 143:519–527Google Scholar
  158. Mayer AMS, Hamann MT (2005) Marine pharmacology in 2001–2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral actities; affectin the cardiovascular, immune and nervous system and other miscellaneous mechanisms of action. Comp Biochem Physiol 140:265–286. doi: 10.1016/j.cca.2005.04.004 Google Scholar
  159. McKellar AQ, Jackson F (2004) Veterinary anthelmintics: old and new. Trends Parasitol 20:456–461. doi: 10.1016/j.pt.2004.08.002 PubMedGoogle Scholar
  160. Mehlhorn H, Al-Quaraishy S, Al-Rasheid KAS, Jatzlau A, Abdel-Ghaffar F (2011a) Addition of a combination of anion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helmintic infection. Parasitol Res 108:1041–1046. doi: 10.1007/s00436-010-2169-3 PubMedGoogle Scholar
  161. Mehlhorn H, Aksu G, Fischer K, Strassen B, Ghaffar FA, Al-Rasheid KAS, Klimpel S (2011b) The efficacy of extracts from plants- especially from coconut and onion—gainst tapeworms, trematodes, and nematodes. Nature helps-how plants and other organisms contribute to solve health problems. Book Ser Parasitol Res 1:109–139. doi:10.1007/978-3-642-19382-8_5Google Scholar
  162. Meshnick SR (2002) Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 32:1655–1660. doi: 10.1016/S0020-7519(02)00194-7 PubMedGoogle Scholar
  163. Middleton E, Kandaswami CH, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673–751Google Scholar
  164. Milgate J, Roberts DCK (1995) The nutritional and biological significance of saponins. Nutr Res 15:1223–1249. doi: org/10.1016/0271-5317(95)00081-S Google Scholar
  165. Min BR, Hart SP (2003) Tannins for suppression of internal parasites. J Anim Sci 81:E102–E109Google Scholar
  166. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19. doi: 10.1016/S0377-8401(03)00041-5 Google Scholar
  167. Misra N, Sharma M, Raj K, Dangi A, Srivastava S, Mishra-Bhattacharya S (2007) Chemical constituents and antifilarial activity of Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent models. Parasitol Res 100:439–448. doi: 10.1007/s00436-006-0312-y PubMedGoogle Scholar
  168. Misra S, Verma M, Mishra SK, Srivastava S, Lakshmi V, Misra-Bhattacharya S (2011) Gedunin and photogedunin of Xylocarpus granatum possess antifilarial activity against human lymphatic filarial parasite Brugia malayi in experimental rodent host. Parasitol Res 109:1351–1360. doi: 10.1007/s00436-011-2380-x PubMedGoogle Scholar
  169. Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Ōmura S (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinateubiquinone oxidoreductase). PNAS 100:473–477. doi: 10.1073/pnas.0237315100 PubMedGoogle Scholar
  170. Moazeni M, Saharkhiz MJ, Hosseini AA (2012) In vitro lethal effect of ajowan (Trachyspermum ammi L.) essential oil on hydatid cyst protoscoleces. Vet Parasitol 187:203–208. doi: 10.1016/j.vetpar.2011.12.025 PubMedGoogle Scholar
  171. Molan AL, Waghorn GC, Min BM, McNabb WC (2000a) The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro. Folia Parasitol 47:39–44. doi: 10.1136/vr.150.3.65 PubMedGoogle Scholar
  172. Molan AL, Hoskin SO, Barry TN, McNabb WC (2000b) Effect of condensed tannins extracted from four forages on the viability of the larvae of deer lungworms and gastrointestinal nematodes. Vet Rec 147:44–48. doi: 0.1136/vr.147.2.44 PubMedGoogle Scholar
  173. Molan AL, Alexander RA, Brookes IM, McNabb WC (2000c) Effect of an extract from sulla (Hedysarum coronarium) containing condensed tannins on the migration of three sheep gastrointestinal nematodes in vitro. Proc N Z Soc Anim Prod 60:21–25Google Scholar
  174. Molan AL, Waghorn GC, McNabb WC (2002) The impact of condensed tannins on egg hatching and larval development of Trichostrongylus colubriformis in vitro. Vet Rec 150:65–69Google Scholar
  175. Molan AL, Meagher LP, Spencer PA, Sivakumaran S (2003a) Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. Int J Parasitol 33:1691–1698. doi: 10.1016/S0020-7519(03)00207-8 PubMedGoogle Scholar
  176. Molan AL, Duncan AJ, Barry TN, McNabbWC (2003b) Effects of condensed tannins and crude sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes. Parasitol Int 52:209–218. doi: 10.1016/S1383-5769(03)00011-4
  177. Mostafa OMS, Soliman MI (2010) Ultrastructure alterations of adult male of Schistosoma mansoni harbored in albino mice treated with Sidr honey and/or Nigella sativa oil. J. King Saud University (Sci) 22:111–121Google Scholar
  178. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037. doi: 10.1002/jsfa.2577 Google Scholar
  179. Muraleedharan KM, Avery MA (2009) Progress in the development of peroxide- based anti-parasitic agents (review). Drug Disc Today 14:15–16. doi: 10.1016/j.drudis.2009.05.008 Google Scholar
  180. Murrell KD, Pozio E (2011) Worldwide occurrence and impact of human trichinellosis 1986–2009. Emerg Inf Dis 17:2194–2202. doi: 10.3201/eid1712.110896 Google Scholar
  181. Muthusamya VS, Ananda S, Sangeethaa KN, Sujathaa S, Arunb Balakrishnan, Lakshmi BS (2008) Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chem-Biol Interact 174:69–78. doi: 10.1016/j.cbi.2008.04.016
  182. Nagulesvaran A, Spicher M, Voniaufen N, Ortega-Mora LM, Torgerson P, Gottstein B, Hemphill A (2006) In vitro metacestodicidal activities of genistein and other isoflavones against Echinococcus multilocularis and Echinococcus granulosus. Antimicrob Agents Chemother 50:3770–3778. doi: 10.1128/AAC.00578-06 Google Scholar
  183. Nandi B, Roy S, Bhattacharya S, Babu SPS (2004) Free radicals mediated membrane damage by the saponins acaciaside A and acaciaside B. Phytother Res 18:191–194. doi: 10.1002/ptr.1387 PubMedGoogle Scholar
  184. Navickiene HMD, Alécio AC, Kato MJ, Bolzani VD, Young MC, Cavalheiro AJ, Furlan M (2000) Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 55:621–626. doi: org/10.1016/S0031-9422(00)00226-0 PubMedGoogle Scholar
  185. Navickiene HMD, Bolzani VS, Kato MJ, Pereira AM, Bertoni BW, França SC, Furlan M (2003) Quantitative determination of anti-fungal and insecticide amides in adult plants, plantlets and callus from Piper tuberculatum by reversephase high-performance liquid chromatography. Phytochem Anal 14:281–284. doi: 10.1002/pca.716 PubMedGoogle Scholar
  186. Nery PS, Nogueira FA, Martins ER, Duarte ER (2010) Effects of Anacardium humile leaf extracts on the development of gastrointestinal nematode larvae of sheep. Vet Parasitol 171:361–364. doi: 10.1016/j.vetpar.2010.03.043 PubMedGoogle Scholar
  187. Nontprasert A, Pukrittayakamee S, Dondorp AM, Clemens R, Looareesuwan S, White NJ (2002) Neuropathologic toxicity of artemisinin derivates in a mouse model. Amer J Trop Med Hyg 67:423–429Google Scholar
  188. Novobilský A, Mueller-Harvey I, Thamsborg SM (2011) Condensed tannins act against cattle nematodes. Vet Parasit 182:213–220. doi: 10.1016/j.vetpar.2011.06.003 Google Scholar
  189. O’Neill JF, Johnston RC, Halferty L, Brennan GP, Keiser J, Fairweather I (2009) Adult triclabendazole-resistant Fasciola hepatica: morphological changes in the tegument and gut following in vivo treatment with artemether in the rat model. J Helminthol 83:151–163. doi: 10.1017/S0022149X09344934 PubMedGoogle Scholar
  190. Oliveira LMB, Bevilaqua CML, Costa CTC, Macedo ITF, Barros RS, Rodrigues ACM, Camurca-Vasconcelos ALF, Morais SM, Lima YC, Vieira LS, Navarro AMC (2009) anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Vet Parasitol 159:55–59. doi: 10.1016/j.vetpar.2008.10.018 PubMedGoogle Scholar
  191. Olliaro PL, Haynes RK, Meunier B, Yuthavong Y (2001) Possible modes of action of the artemisinin-type compounds. Trends Parasitol 17 PII: S1471-4922(00)01838-X PII: S0020-7519(01)00297-1Google Scholar
  192. Ōmura S (2002) Mode of action of avermectin. In Omura S (ed) Macrolide antibiotics. Chemistry, biology, and practice, 2nd edn. Academic Press, San Diego, pp 571–576Google Scholar
  193. Ōmura S, Miyadera H, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Nagamitsu T, Takano D, Sunazuka T, Harder A, Kölbl H, Namikoshi M, Miyoshi H, Sakamoto K, Kita K (2001) An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. Proc Natl Acad Sci USA 98:60–62. doi: 10.1073/pnas.011524698 PubMedGoogle Scholar
  194. Osbourn A (1996) Saponins and plant defence—a soap story. Trends Plant Sci 1:4–9. doi: 10.1016/S13601385(96)80016-1 Google Scholar
  195. Osbourn A, Goss RJM, Field RA (2011) The saponins—polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268. doi: 10.1039/c1np00015b PubMedGoogle Scholar
  196. Pal P, Tandon V (1998) Anthelmintic efficacy of Flemingia vestita (Leguminoceae): genistein-induced alterations in the activity of tegumental enzymes in the cestode, Raillietina echinobothrida. Parasitol Int 47:233–243. doi: org/10.1016/S1383-5769(98)00025-7 Google Scholar
  197. Parreira NA, Magalhães LG, Morais DR, Caixeta SC, de Sousa JPB, Bastos JK, Cunha WR, Silva MLA, Nanayakkara NPD, Rodrigues V, da Silva Filho AA (2010) Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem Biodivers 7:993–100Google Scholar
  198. Perkins S, Verschoyle RD, Hill K, Parveen I, Threadgill MD, Sharma RA, Williams ML, Steward WP, Gescher AJ (2002) Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 11:535–540Google Scholar
  199. Pessoa LM, Morais SM, Bevilaqua CML, Luciano JHS (2002) Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Vet Parasitol 109:59–63. doi: PII:S0304-4017(02)00253-4
  200. Pfarr KM, Qazi S, Fuhrman JA (2001) Nitric oxide synthase in filariae: demonstration of nitric oxide production by embryos in Brugia malayi and Acanthocheilonema viteae. Exp Parasitol 97:205–214. doi: 10.1006/expr.2001 PubMedGoogle Scholar
  201. Pilatova M, Stupakova V, Varinska L, Sarissky M, Mirossay L, Mirossay A, Gal P, Kraus V, Dianiskova K, Mojzis J (2010) Effect of selected flavones on cancer and endothelial cells. Gen Physiol Biophys 29:134–143. doi: 10.4149/gpb.2010.02.134 PubMedGoogle Scholar
  202. Poné JW, Tankoua OF, Yondo J, Komtangi MC, Mbida M, Bilong BCF (2011) The in vitro effects of aqueous and ethanolic extracts of the leaves of Ageratum conyzoides (Asteraceae) on three life cycle stages of the parasitic nematode Heligmosomoides bakeri (Nematoda: Heligmosomatidae). Vet Med Int 140293:5. doi: 10.4061/2011/140293
  203. Pozio E, La Rosa G, Morales MAG (2001) Epidemiology of human and animal trichinellosis in Italy since its discovery in 1887. Parasite 8:S106–S108Google Scholar
  204. Prichard R, Ménez C, Lespine A (2012) Moxidectin and avermectins: consanguinity but not identity. Int J Parasitol Drugs Drug Resist 2:134–153. http://dx.doi.org/10.1016/j.jpddr.2012.04.001
  205. Ramadan MF, Kroh LW, Morsel JT (2003) Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961–6969Google Scholar
  206. Rao HSP, Reddy KS (1991) Isoflavones from Flemingia vestita. Fitoterapia 63:485Google Scholar
  207. Rees SB, Harborne JB (1985) The role of sequiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24:2225–2231. doi: 0031-9422/85 Google Scholar
  208. Reuben DK, Aji SB, Andrew W, Abdulrahaman FI (2011) Preliminary phytochemical screening and in vitro anthelminticeEffects of aqueous extracts of Salvadora persica and Terminalia avicennoides against strongyline nematodes of small ruminants in Nigeria. J. Animal Vet Adv 10:437–442Google Scholar
  209. Riou M, Guegnard F, Sizaret PY, Le Vern Y, Kerboeuf D (2010) Drug resistance is affected by colocalization of P-glycoproteins in raft-like structures unexpected in eggshells of the nematode Haemonchus contortus. Biochem Cell Biol 88:459–467. doi: 10.1139/O09-1262760(95)00214-6 PubMedGoogle Scholar
  210. Rowan AD, Buttle DJ, Barrett AJ (1990) The cysteine proteinases of the pineapple plant. Biochem J 266:869–875Google Scholar
  211. Roy B, Lalchhandama K, Dutta BK (2007) Anticestodal efficacy of Accacia oxyphylla on Raillietina echinobothrida: a light and electron microscopic studies. Pharmacologyonline 1:279–287Google Scholar
  212. Sabah AA, Fletcher C, Webbe G, Doenhoff MJ (1986) Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol 61:294–303. doi: 10.1016/0014-4894(86)90184-0 PubMedGoogle Scholar
  213. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem 91:621–632. doi: 10.1016/j.foodchem.2004.06.031 Google Scholar
  214. Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WPM, Krücken J, Harder A, von Samson-Himmelstjerna G, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334. doi: 10.1096/fj.00-0664fje PubMedGoogle Scholar
  215. Sahare KN, Anandhraman V, Meshram VG, Meshram SU, Reddy MVR, Tumane PM, Goswami K (2008) Anti-microfilarial activity of methanolic extract of Vitex negundo and Aegle marmelos and their phytochemical analysis. Indian J Exp Biol 46:128–131Google Scholar
  216. Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K (2012) Mitochondrial fumarate reductase as a target of chemotherapy: From parasites to cancer cells. Biochim Biophys Acta 1820:643–651. doi: 10.1016/j.bbagen.2011.12.013 PubMedGoogle Scholar
  217. Salem ML (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L. seed (review). Int Immunopharmacol 5:1749–1770. doi: 10.1016/j.intimp.2005.06.008 PubMedGoogle Scholar
  218. Sánchez ME, Turina A del V, García DA, Nolan MV, Perillo MA (2004) Surface activity of thymol: implications for the eventual pharmacological activity. Colloids Surf B 34:77–86. doi: 10.1016/j.colsurfb.2003.11.007
  219. Sandoval-Castro CA, Torres-Acosta JFJ, Hoste H, Salem AZM, Chan-Pérez JI (2012) Using plant bioactive materials to control gastrointestinal tract helminths in livestock. Anim Feed Sci Tech 176:192–201. doi: org/10.1016/j.anifeedsci.2012.07.023 Google Scholar
  220. Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022A. J Antibiot (Tokyo) 45:692–697Google Scholar
  221. Satou T, Akao N, Matsuhashi R, Koike K, Fujita K, Nikaido T (2002a) Inhibitory effect of isoquinoline alkaloids on movement of second-stage larvae of Toxocara canis. Biol Pharm Bull 25:1651–1654Google Scholar
  222. Satou T, Koga M, Matsuhashi R, Koike K, Tada I, Nikaido T (2002b) Assay of nematocidal activity of isoquinoline alkaloids using third-stage larvae of Strongyloides ratti and S. venezuelensis.Vet Parasitol 104:131–138. PII:S0304-4017(01)00619-7Google Scholar
  223. Satou T, Horiuchi A, Akao N, Koike K, Fujita K, Nikaido T (2005) Toxocara canis: search for a potential drug amongst β-carboline alkaloids—in vitro and mouse studies. Exp Parasitol 110:134–139. doi: org/10.1016/j.exppara.2005.02.006 PubMedGoogle Scholar
  224. Satrija F, Nansen P, Bjorn H, Murtini S, He S (1994) Effect of papaya latex against Ascaris suum in naturally infected pigs. J Helminthol 68:343–346Google Scholar
  225. Satrija F, Nansen P, Murtini S, He S (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48:161–164Google Scholar
  226. Schweizer G, Braun U, Deplazes P, Torgerson PR (2005) Estimating the financial losses due to bovine fasciolosis in Switzerland. Vet Rec 157:188–193. doi: 10.1136/vr.157.7.188 PubMedGoogle Scholar
  227. Scott JC, McManus DP (2000a) Molecular cloning and enzymatic expression of the 28-kDa glutathione S-transferase of Schistosoma japonicum: evidence for sequence variation but lack of consistent vaccine efficacy in the murine host. Parasitol Int 49:289–300. doi: S1383-5769 Google Scholar
  228. Scott JC, McManus DP (2000b) Molecular cloning and enzymatic expression of the 28-kDa glutathione S-transferase of Schistosoma japonicum: evidence for sequence variation but lack of consistent vaccine efficacy in the murine host. Parasitol Int 49: 289-300. doi: 10.1016/S1383-5769(00)00058-1
  229. Shakir L, Hussain M, Javeed A, Ashraf M, Riaz A (2011) Artemisinins and immune system. Eur J Pharmacol 668:6–14. doi: 10.1016/j.ejphar.2011.06.044 PubMedGoogle Scholar
  230. Shalaby HA, Hatem AEl, Namaky AH, Kamel ROA (2009) In vitro effect of artemether and triclabendazole on adult Fasciola gigantica. Vet Parasitol 160:76–82. doi: 10.1016/j.vetpar.2008.10.027
  231. Silveira RX, Chagas ACS, Botura MB, Batatinha MJM, Katiki LM, Carvalho CO, Bevilaqua CML, Branco A, Machado EAA, Borges SL, Almeida MAO (2012) Action of sisal (Agave sisalana, Perrine) extract in the in vitro development of sheep and goat gastrointestinal nematodes. Exp Parasitol 131:162–168. doi: org/10.1016/j.exppara.2012.03.018 PubMedGoogle Scholar
  232. Singh TU, Kumar D, Tandan SK, Mishra SK (2009) Inhibitory effect of essential oils of Allium sativum and Piper longum on spontaneous muscular activity of liver fluke, Fasciola gigantica. Exp Parasitol 123:302–308. doi: 10.1016/j.exppara.2009.08.002 PubMedGoogle Scholar
  233. Ghosh M, Sinha Babu, SP, Sukul NC, Mahato SB (1993) Antifilarial effect of two triterpenoid saponins isolated from Acacia auriculiformis. Indian J Exp Biol 31:604–606Google Scholar
  234. Sinha Babu SP, Sarkar D, Ghosh NK, Saha A, Sukul NC, Bhattacharya S (1997) Enhancement of membrane damage by saponins isolated from Acacia auriculiformis. Jpn J Pharmacol 75:451–454Google Scholar
  235. Sobhona P, Dangprasertc T, Chuanchaiyakuld S, Meepoola A, Khawsuka W, Wanichanona C, Viyanantb V, Upathamb ES (2000) Fasciola gigantica: ultrastructure of the adult tegument. Sci Asia 26:137–148Google Scholar
  236. Socolsky C, Borkosky SA, Asakawa Y, Bardon A (2009) Molluscididal phloroglucinols from the fern Elaphoglossum piloselloides. J Nat Prod 72:787–790. doi: 10.1021/np800724hSSDI0378-874(95)01298-R Google Scholar
  237. Soukhathammavong P, Odermatt P, Sayasone S, Vonghachack Y, Vounatsou P, Hatz CH, Akkhavong K, Keiser J (2011) Efficacy and safety of mefloquine, artesunate, mefloquine–artesunate, tribendimidine, and praziquantel in patients with Opisthorchis viverrini: a randomised, exploratory, open-label, phase 2 trial. Lancet Infect Dis 11:110–118. doi: 10.1016/S1473-3099(10)70250-4 PubMedGoogle Scholar
  238. Spicher M, Roethlisberger C, Lany C, Stadelmann B, Keiser J, Ortega-Mora LM, Gottstein B, Hemphill A (2008) In Vitro and in vivo treatments of Echinococcus protoscoleces and metacestodes with artemisinin and artemisinin derivatives. Antimicrob Agent Chemoth 2:3447–3450. doi: 10.1128/AAC.00553-08 Google Scholar
  239. Squires JM, Ferreira JFS, Lindsay DS, Zajac AM (2011) Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Meriones unguiculatus). Vet Parasitol 175:103–108. doi: 10.1016/j.vetpar.2010.09.011 PubMedGoogle Scholar
  240. Stepek G, Behnke JM, Buttle DJ, Ducel IR (2004) Natural plant cysteine proteinases as anthelmintics? Trends Parasitol 20:322–327. doi: 10.1016/j.pt.2004.05.003 PubMedGoogle Scholar
  241. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2006) In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology 132:681–689. doi: 10.1017/S003118200500973X PubMedGoogle Scholar
  242. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007a) Anthelmintic action of plant cysteine proteinases against the rodent stomach nematode, Protospirura muricola, in vitro and in vivo. Parasitology 134:103–112. doi: 10.1017/S0031182006001302 PubMedGoogle Scholar
  243. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007b) In vitro anthelmintic effects of cysteine proteinases from plants against intestinal helminths of rodents. J Helminthol 81:353–360. doi: 10.1017/S0022149X0786408X PubMedGoogle Scholar
  244. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2007c) The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo. Parasitology 134:1409–1419. doi: 10.1017/S0031182007002867 PubMedGoogle Scholar
  245. Tadros MM, Ghaly NS, Moharib MN (2008) Molluscicidal and schistosomicidal activities of a steroidal saponin containing fraction from Dracaena fragrans (L.). J Egypt Soc Parasitol 38:585–598Google Scholar
  246. Takahashi Y, Matsumoto A, Seino A, Ueno J, Iwai Y, Ōmura S (2002) Streptomyces avermectinius sp. nov., an avermectin-producing strain. Int J Syst Evol Microbiol 52:2163–2168. doi: 10.1099/ijs.0.02237-0 PubMedGoogle Scholar
  247. Takano D, Nagamitsu T, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Kuwajima I, O′mura S (2001) Absolute configuration of nafuredin, a new specific NADH-fumarate reductase inhibitor. Tetrahedron Lett 42:3017–3020. doi: PII:S0040-4039(01)355-0 Google Scholar
  248. Tandon V, Pal P, Roy B, Rao HSP, Reddy KS (1997) In vitro anthelmintic activity of root tuber extract of Flemingia vestita, an indigenous plant in India. Parasitol Res 83:492–498Google Scholar
  249. Tandon V, Das B, Saha N (2003) Anthelmintic efficacy of Flemingia vestita (Fabaceae): effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida. Parasite Int 52:179–183. doi: org/10.1016/S1383-5769(03)00006-0 Google Scholar
  250. Tangpu VT, Yadav AK (2006) Anticestodal property of Strobilanthes discolor: an experimental study in Hymenolepis diminuta—rat model. J Ethnopharmacol 105:459–463. doi: 10.1016/j.jep.2005.11.015 Google Scholar
  251. Tangpu VT, Temjenmongla K, Yadav AK (2004) Anticestodal activity of Trifolium repens extracts. Pharmaceut Biol 42:656–658. doi: 10.1080/13880200490902617 Google Scholar
  252. Tansatit T, Sahaphong S, Riengrojpitak S, Viyanant V, Sobhon P (2012) Fasciola gigantica: the in vitro effects of artesunate as compared to triclabendazole on the 3-weeks-old juvenile. Exp Parasitol 131:8–19. doi: org/10.1016/j.exppara.2012.02.018 Google Scholar
  253. Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 160:83–88. doi: 10.1016/j.vetpar.2008.10.084 PubMedGoogle Scholar
  254. Thomas TRA, Kavlelar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8:1417–1468. doi: 10.3390/md8041417 PubMedGoogle Scholar
  255. Turina AV, Nolan MV, Zygadlo JA, Perillo (2006) Natural terpens: self-assebly and membrane partitioning. Biophys Chem 122:101–113. doi: 10.1016/j.bpc.2006.02.007
  256. Türkdoğan MK, Ağaoğlu Z, Yener Z, Sekeroğlu R, Akkan HA, Avci ME (2001) The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes. Dtsch Tierarztl Wochenschr 108:71–73Google Scholar
  257. Tzamaloukas O, Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2005) The consequences of short-term grazing of bioactive forages on established adult and incoming larva populations of Teladorsagia circumcincta in lambs. Int J Parasitol 35:329–335. doi: 10.1016/j.ijpara.2004.11.013 PubMedGoogle Scholar
  258. Tzamaloukas O, Athanasiadou S, Kyriazakis I, Huntley JF (2006) The effect of chicory (Cichorium intybus) and sulla (Hedysarum coronarium) on larval development and mucosal cell responses of growing lambs challenged with Teladorsagia circumcincta. Parasitology 132:419–426. doi: 10.1017/S0031182005009194 PubMedGoogle Scholar
  259. Utzinger J, Xiao SH, Goran EKN, Bergquist R, Tanner M (2001) The potential of artemether for the control of schistosomiasis. Int J Parasitol 31:1549–1562. doi: 10.1016/S0020-7519(00)00297-1 PubMedGoogle Scholar
  260. Utzinger J, Xiao SH, Tanner M, Keiser J (2007) Artemisinins for schistosomiasisand beyond. Curr Opin Investig Drugs 8:105–116Google Scholar
  261. Utzinger J, Raso G, Brooker S, DeSavigny D, Tanner M, Ørnbjerg N, Singer BH, Goran EKN (2009) Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136:1859–1874. doi: 10.1017/S0031182009991600 PubMedGoogle Scholar
  262. Várady M, Čorba J, Letková V, Kováč G (2009) Comparison of two versions of larval development test to detect anthelmintic resistance in Haemonchus contortus. Vet Parasilot 160:267–271. doi: 10.1016/j.vetpar.2008.11.010 Google Scholar
  263. Varinska L, Mirossay L, Mojzisova G, Mojzis J (2010) Antiangogenic effect of selected phytochemicals. Pharmazie 65:57–63. doi: 10.1691/ph.2010.9667 PubMedGoogle Scholar
  264. Verdrengh M, Collins LV, Bergin P, Tarkowski A (2004) Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect 6:86–92. doi: 10.1016/j.micinf.2003.10.005 PubMedGoogle Scholar
  265. von Son-de Fernex E, Alonso-Díaz MA, Valles-de la Mora B, Capetillo-Leal CM (2012) In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae. Exp Parasitol 131:413–418. doi: org/10.1016/j.exppara.2012.05.010 Google Scholar
  266. Vuong D, Capon RJ, Lacey E, Gill JH, Heiland K, Friedel T (2001) Onnamide F: a new nematocide from a southern Australian marine sponge, Trachycladus laevispirulifer. J Nat Prod 64:640–642. doi: 10.1021/np000474b PubMedGoogle Scholar
  267. Waghorn GC, McNabb WC (2003) Consequences of plant phenolic compounds for productivity and health of ruminants. Proc Nutr Soc 62:383–392. doi: org/10.1079/PNS2003245 PubMedGoogle Scholar
  268. Waller PJ (2006) From discovery to development: current industry perspectives for the development of novel methods of helminth control in livestock. Vet Parasitol 139:1–14. doi: 10.1016/j.vetpar.2006.02.036 PubMedGoogle Scholar
  269. Waterman PG (1999) The tannins - an overview. In Brooker JD (ed) Tannins in livestock and human nutrition. Proceedings of international workshop, Adelaide, Australia, Australian Centre for International Agricultural Research, pp 10–13. doi:  10.1016/j.pt.2006.04.004
  270. Watson M (2009) Praziquantel. Review. J Exotic Pet Med 18:229–231. doi: 10.1053/j.jepm.2009.06.005 Google Scholar
  271. Watts KR, Tenney K, Crews P (2010) The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opinion Biotechnol 21:808–818. doi: 10.1016/j.copbio.2010.09.015 Google Scholar
  272. Weissenberg M (2001) Isolation of solasodine and other steroidal alkaloids and sapogenins by direct hydrolysis-extraction of Solanum plants or glycosides therefrom. Phytochemistry 58:501–508. doi: 10.1016/S0031-9422(01)00185-6 Google Scholar
  273. Wu LJ, Li SW, Xuan YX, Xu PS, Liu ZD, Hu LS, Zhou SY, Qiu YX, Liu YM (1995) Field application of artesunate in prophylaxis of schistosomiasis: an observation of 346 cases. Chin J Schisto Control 7:323–327 (in Chinese)Google Scholar
  274. Xiao SH (2005a) Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop 96:153–167. doi: 10.1016/j.actatropica.2005.07.010 Google Scholar
  275. Xiao SH (2005b) Study on prevention and cure of artemether against schistosomiasis. Chin J Schisto Control 17:310–320 (in Chinese)Google Scholar
  276. Xiao SH, Catto BA (1989) In vitro and in vivo studies of the effect of artemether on Schistosoma mansoni. Antimicrob Agent Chemother 33:1557–1562. doi: 10.101128/AAC.33.9.1557 Google Scholar
  277. Xiao SH, Yue WJ, Yang YQ, You JQ (1987) Susceptibility of Schistosoma japonicum to different developmental stages to praziquantel. Chin Med J 100:759–768Google Scholar
  278. Xiao SH, You JQ, Yang YQ, Wang CZ (1995) Experimental studies on early treatment of schistosomal infection with artemether. Southeast Asian J Trop Med Public Health 26:306–318Google Scholar
  279. Xiao SH, Hotez PJ, Tanner M (2000a) Artemether, an effective new agent for chemoprophylaxis against schistosomiasis in China: its in vivo effect on the biochemical metabolism of the Asian schistosome. Southeast Asian J Trop Med Public Health 31:724–732Google Scholar
  280. Xiao SH, Chollet J, Weiss NA, Bergquist RN, Tanner M (2000b) Preventive effect of artemether in experimental animals infected with Schistosoma mansoni. Parasitol Int 49:19–24Google Scholar
  281. Xiao SH, Utzinger J, Chollet J, Endriss Y, N’Goran EK, Tanner M (2000f) Effect of artemether against Schistosoma haematobium in experimentally infected hamsters. Int J Parasitol 30:1001–1006. doi: 10.1016/S0020-7519(00)00091-6 Google Scholar
  282. Xiao SH, Ji-Qing Y, Hui-Fang G, Jin-Yan M, Pei-Ying J, Chollet J, Tanner M, Utzinger (2002) Schistosoma japonicum: effect of artemether on glutathione S-transferase and superoxide dismutase. Exp Parasitol 102:38–45. doi: 10.1016/S0014-4894(02)00145-5
  283. Xiao SH, Xue J, Tanner M, Zhang Yong-Nian, Keiser J, Utzinger J, Qiang H-Q (2008) Artemether, artesunate, praziquantel and tribendimidine administered singly at different dosages against Clonorchis sinensis: a comparative in vivo study. Acta Tropica 106: 54–59. doi: 10.1016/j.actatropica.2008.01.003 Google Scholar
  284. Xiao SH, Keiser J, Xue J, Tanner M, Morson G, Utzinger J (2009) Effect of single-dose oral artemether and tribendimidine on the tegument of adult Clonorchis sinensis in rats. Parasitol Res 104:533–541. doi: 10.1007/s00436-008-1227-6 Google Scholar
  285. Xiao SH, Keiser J, Chen MG, Tanner M, Utzinger J. (2010) Research and development of antischistosomal drugs in the People’s Republic of China: a 60-year review. In: Zhou XN, Bergquist R, Olveda R et al (eds) Adv Parasitol 73:231–295. doi: 10.1016/S0065/S0065-308X(10)73009-8
  286. Yadav AK, Tangpu V (2008) Anticestodal activity of Adhatoda vasica extracts against Hymenolepis diminuta infection in rats. J Ethnopharmacol 119:322–324. doi: 10.1016/j.jep.2008.07.012
  287. Yadav AK, Tangpu V (2009) Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats. J Parasitol Dis 33:42–47. doi: 10.1007/s12639-009-0007-2 Google Scholar
  288. Yadav AK, Tangpu V (2012) Anthelmintic activity of ripe fruit extract of Solanum myriacanthum Dunal (Solanaceae) against experimentally induced Hymenolepis diminuta (Cestoda) infections in rats. Parasitol Res 110:1047–1053. doi: 10.1007/s00436-011-2596-9 PubMedGoogle Scholar
  289. Yang YQ, Xiao SH, Tanner M, Utzinger J, Chollet J, Wu JD, Guo J (2001) Histopathological changes in juvenile Schistosoma haematobium harboured in hamsters treated with artemether. Acta Trop 79:135–141. doi: 10.1016/S0001-706X(01)00069-9 PubMedGoogle Scholar
  290. Zang X, Maizels RM (2001) Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem Sci 26:191–197. doi: PII:S0968-0004(00)01761-8 Google Scholar
  291. Zibaei M, Sarlak A, Delfa B, Ezatpour B, Azargoon A (2012) Scolicidal effects of Olea europaea and Satureja khuzestanica extracts on protoscolices of hydatid cysts. Korean J Parasitol 50:53–56. doi:org/ 10.3347/kjp.2012.50.1.53
  292. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Ann Rev Plant Biol 59:735–769. doi: 10.1146/annurev.arplant.59.032607.092730 Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Slovak Academy of SciencesInsitute of ParasitologyKosiceSlovakia

Personalised recommendations