Skip to main content

Crystal Structures and Properties of MMX-Chain Compounds Based on Dithiocarboxylato-Bridged Dinuclear Complexes

  • Chapter
  • First Online:
  • 414 Accesses

Abstract

In this chapter, a comprehensive study of the syntheses, crystal structures, and properties of the series of one-dimensional (1D) halogen-bridged mixed-valence dimetal complexes, MMX-chain compounds, based on the dithiocarboxylato-bridged dinuclear complexes, [Pt2(RCS2)4I] (R = Me (1), Et (2), n-Pr (3), n-Bu (4), n-Pen (5), and n-Hex(6)) and [Ni2(RCS2)4I] (R = Me (7), Et (8), n-Pr (9), and n-Bu (10)) are described. The evolution from 1D halogen-bridged metal complex, MX-chain compounds, to MMX-chain compounds has produced a variety of electronic states and subtle balance of solid-state properties originating from the charge–spin–lattice coupling and the fluctuation of these degrees of freedom. With increasing the internal degrees of freedom originating from the mixed-valence diplatinum unit, the Pt MMX-chain compounds except for 3 show relatively high electrical conductivity of 0.84–43 S cm–1 at room temperature and exhibit metallic conducting behavior with T M–S = 205–324 K. These compounds at room temperature are considered to take the valence-ordered state close to an averaged-valence (AV) state of –Pt2.5+–Pt2.5+–I–. The analyses of the diffuse scattering observed in the metallic state of 2 revealed that the metallic state has appeared by the valence fluctuation accompanying the dynamic valence-ordering state of the charge-density-wave (CDW) type of –Pt2+–Pt2+–I–Pt3+–Pt3+–I–. On the other hand, the metallic Pt MMX-chain compounds become insulators with lowering temperature due to the lattice dimerization originating from an effective half-filled metallic band. The synchrotron radiation crystal structure analysis of 2 at 48 K revealed that the valence-ordered state in the LT phase is the alternate charge-polarization (ACP) state of –Pt2+–Pt3+–I–Pt3+–Pt2+–I–. Furthermore, the elongation of the alkyl chains introduces increasing motional degrees of freedom in the system. Interplay between electronic degrees of freedom and molecular dynamics is also expected to cause an intriguing structural phase transition accompanying an electronic and/or magnetic transition never observed for [M2(MeCS2)4I] (M = Pt (1), Ni (7)). With the elongation of alkyl chains in dithiocarboxylato ligands, the compounds 35 undergo two phase transitions at near 210 K and above room temperature, indicating the existence of the LT, RT, and HT phases. The periodicity of crystal lattice in the RT phase of 35 along 1D chain is threefold of a –Pt–Pt–I– unit, and the structural disorders have occurred for the dithiocarboxylato group and the alkyl chain belonging to only the central dinuclear units in the threefold periodicity. In the HT phase, the dithiocarboxylato groups of all the dinuclear units in 35 are disordered and the lattice periodicities in 3 and 4 change to onefold of a –Pt–Pt–I– period. Ikeuchi and Saito have revealed from the heat capacity measurements that the entropy (disorder) reserved in alkyl groups in the RT phase is transferred to the dithiocarboxylate groups with the RT–HT phase transition [50–52]. Whereas, the lattice periodicity of 4 in the LT phase changes to twofold periodicity being assigned to the ACP state similar to the LT phase of the compound 2 and the dithiocarboxylate groups of all the diplatinum units are ordered. Furthermore, accompanying to the RT–LT phase transition, the compound 4 exhibits the paramagnetic–nonmagnetic transition originating from the regular electronic Peierls transition. These facts suggest that the dynamics (motional degrees of freedom) of the dithiocarboxylato ligands and bridging iodine atoms affects the electronic and magnetic systems through the electron–lattice interaction.

On the other hand, unlike the metallic Pt MMX-chain compounds, all the Ni MMX-chain compounds are Mott–Hubbard semiconductor due to the strong on-site Columbic repulsion on the nickel atom. The room-temperature crystal structures of the compounds 710 indicate their valence states to be an averaged-valence (AV) state or a charge-polarization (CP) state of –Ni(2.5−δ)+–Ni(2.5+δ)+–I–Ni(2.5−δ)+–Ni(2.5+δ)+–Ni(2.5−δ)+–I– (\( \delta \ll 0.5 \)) close to an averaged-valence state. With the elongation of the alkyl chains in dithiocarboxylato ligands, the periodicity of crystal lattice in 9 and 10 along 1D chain in the RT phase is threefold of a –Ni–Ni–I– unit by the same origin as the diplatinum compounds 35, and furthermore, the lattice periodicity of 9 changes to onefold in the LT phase with a first-order phase transition at 205.6 K. The high temperature magnetic susceptibilities of 810 can be described by an S = 1/2 1D Heisenberg antiferromagnetic chain model with the very large exchange coupling constant |J|/k B ranging from 898(2) to 939(3) K. Furthermore, the compounds 8 and 9 undergo a spin-Peierls (SP) transition at relatively high T sp = 47 and 36 K, respectively, which are accompanied by superlattice reflections corresponding to twofold of a –Ni–Ni–I– period below T sp. The synchrotron radiation crystal structure analysis of 8 at 26 K revealed that the valence-ordered state changes from the CP state in the RT phase to the ACP state in the SP phase. These facts demonstrate that the electronic system of the Ni MMX-chain compounds in which the on-site Columbic repulsion U plays a dominant role in determining the electronic system is hardly affected by the molecular dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Robin MB, Day P (1967) Adv Inorg Chem Radiochem 10:247–422

    Article  CAS  Google Scholar 

  2. Day P (1975) In: Keller HJ (ed) Low-dimensional Cooperative Phenomena, vol. 7, NATO ASI series, series B, Plenum Press, New York, NY, pp 191–214

    Google Scholar 

  3. Day P (1977) In: Keller HJ (ed) Chemistry and physics of one-dimensional metals, vol 25, NATO ASI series, series B. Plenum, New York, NY, pp 197–223

    Chapter  Google Scholar 

  4. Soos ZG, Keller HJ (1977) In: Keller HJ (ed) Chemistry and physics of one-dimensional metals, vol 25, NATO ASI series, series B. Plenum, New York, NY, pp 391–412

    Chapter  Google Scholar 

  5. Keller HJ (1983) In: Miller JS (ed) Extended linear chain compounds, vol 1. Plenum, New York, NY, Chapter 8

    Google Scholar 

  6. Clark RJH (1990) Chem Soc Rev 19:107–131

    Article  CAS  Google Scholar 

  7. Yamada S, Tsuchida R (1956) Bull Chem Soc Jpn 29:894–898

    Article  CAS  Google Scholar 

  8. Okamoto H, Toriumi K, Mitani T, Yamashita M (1990) Phys Rev B 42:10381–10387

    Article  CAS  Google Scholar 

  9. Tanaka M, Kurita S, Okada Y, Kojima T, Yamada Y (1985) Chem Phys 96:343–348

    Article  CAS  Google Scholar 

  10. Clark RJH, Kurmoo M (1980) Inorg Chem 19:3522–3527

    Article  CAS  Google Scholar 

  11. Tanino H, Kobayashi K (1983) J Phys Soc Jpn 52:1446–1456

    Article  CAS  Google Scholar 

  12. Toriumi K, Wada Y, Mitani T, Bandow S, Yamashita M, Fujii Y (1989) J Am Chem Soc 111:2341–2342

    Article  CAS  Google Scholar 

  13. Nasu K (1983) J Phys Soc Jpn 52:3865–3873

    Article  CAS  Google Scholar 

  14. Kishida H, Matsuzaki H, Okamoto H, Manabe T, Yamashita M, Taguchi Y, Tokura Y (2000) Nature 405:929–932

    Article  CAS  Google Scholar 

  15. Takaishi S, Tobu Y, Kitagawa H, Goto A, Shimizu T, Okubo T, Mitani T, Ikeda R (2004) J Am Chem Soc 126:1614–1615

    Article  CAS  Google Scholar 

  16. Guo Y, Langlois J-M, Goddard WA (1988) Science 239:896–899

    Article  CAS  Google Scholar 

  17. Che C-M, Herbstein FH, Schaefer WP, Marsh RE, Gray HB (1983) J Am Chem Soc 105:4604–4607

    Article  CAS  Google Scholar 

  18. Kurmoo M, Clark RJH (1985) Inorg Chem 24:4420–4425

    Article  CAS  Google Scholar 

  19. Clark RJH, Kurmoo M, Dawes HM, Hursthouse MB (1986) Inorg Chem 25:409–412

    Article  CAS  Google Scholar 

  20. Butler LG, Zietlow MH, Che C-M, Schaefer WP, Sridhar S, Grunthaner PJ, Swanson BI, Clark RJH, Gray HB (1988) J Am Chem Soc 110:1155–1162

    Article  CAS  Google Scholar 

  21. Stroud MA, Drickamer HG, Zietlow MH, Gray HB, Swanson BI (1989) J Am Chem Soc 111:66–72

    Article  CAS  Google Scholar 

  22. Mitani T, Wada Y, Yamashita M, Toriumi K, Kobayashi A, Kobayashi H (1994) Synth Met 64:291–294

    Article  CAS  Google Scholar 

  23. Yamashita M, Miya S, Kawashima T, Manabe T, Sonoyama T, Kitagawa H, Mitani T, Okamoto H, Ikeda R (1999) J Am Chem Soc 121:2321–2322

    Article  CAS  Google Scholar 

  24. Matsuzaki H, Matsuoka T, Kishida H, Takizawa K, Miyasaka H, Sugiura K, Yamashita M, Okamoto H (2003) Phys Rev Lett 90:046401 (4 pages)

    Article  CAS  Google Scholar 

  25. Mastuzaki H, Kishida H, Okamoto H, Takizawa K, Matsunaga S, Takaishi S, Miyasaka H, Sugiura K, Yamashita M (2005) Angew Chem Int Ed 44:3240–3243

    Article  CAS  Google Scholar 

  26. Yamashita M, Takaishi S, Kobayashi A, Kitagawa H, Matsuzaki H, Okamoto H (2006) Coord Chem Rev 250:2335–2346

    Article  CAS  Google Scholar 

  27. Iguchi H, Takaishi S, Kajiwara T, Miyasaka H, Yamashita M, Matsuzaki H, Okamoto H (2008) J Am Chem Soc 130:17668–17669

    Article  CAS  Google Scholar 

  28. Bellitto C, Flamini A, Gastaldi L, Scaramuzza L (1983) Inorg Chem 22:444–449

    Article  CAS  Google Scholar 

  29. Yamashita M, Wada Y, Toriumi K, Mitani T (1992) Mol Cryst Liq Cryst 216:207–212

    Article  CAS  Google Scholar 

  30. Shirotani I, Kawamura A, Yamashita M, Toriumi K, Kawamura H, Yagi T (1994) Synth Met 64:265–270

    Article  CAS  Google Scholar 

  31. Kitagawa H, Onodera N, Sonoyama T, Yamamoto M, Fukawa T, Mitani T, Seto M, Maeda Y (1999) J Am Chem Soc 121:10068–10080

    Article  CAS  Google Scholar 

  32. Mitsumi M, Murase T, Kishida H, Yoshinari T, Ozawa Y, Toriumi K, Sonoyama T, Kitagawa H, Mitani T (2001) J Am Chem Soc 123:11179–11192

    Article  CAS  Google Scholar 

  33. Mitsumi M, Kitamura K, Morinaga A, Ozawa Y, Kobayashi M, Toriumi K, Iso Y, Kitagawa H, Mitani T (2002) Angew Chem Int Ed 41:2767–2771

    Article  CAS  Google Scholar 

  34. Mitsumi M, Umebayashi S, Ozawa Y, Toriumi K, Kitagawa H, Mitani T (2002) Chem Lett 31:258–259

    Article  Google Scholar 

  35. Mitsumi M, Yamashita T, Aiga Y, Toriumi K, Kitagawa H, Mitani T, Kurmoo M (2011) Inorg Chem 50:4368–4377

    Article  CAS  Google Scholar 

  36. Ikeuchi S, Yamamura Y, Mitsumi M, Toriumi K, Saitoh H, Atake T, Saito K (2009) Chem Lett 38:1190–1191

    Article  CAS  Google Scholar 

  37. Bellitto C, Dessy G, Fares V (1985) Inorg Chem 24:2815–2820

    Article  CAS  Google Scholar 

  38. Mitsumi M, Yoshida Y, Kohyama A, Kitagawa Y, Ozawa Y, Kobayashi M, Toriumi K, Tadokoro M, Ikeda N, Okumura M, Kurmoo M (2009) Inorg Chem 48:6680–6691

    Article  CAS  Google Scholar 

  39. Calzolari A, Alexandre SS, Zamora F, Felice RD (2008) J Am Chem Soc 130:5552–5562

    Article  CAS  Google Scholar 

  40. Robert V, Petit S, Borshch SA (1999) Inorg Chem 38:1573–1578

    Article  CAS  Google Scholar 

  41. Borshch SA, Prassides K, Robert V, Solonenko AO (1998) J Chem Phys 109:4562–4568

    Article  CAS  Google Scholar 

  42. Nakano S, Kitagawa Y, Kawakami T, Yamaguchi K (2003) Polyhedron 22:2027–2038

    Article  CAS  Google Scholar 

  43. Kitagawa Y, Shoji M, Koizumi K, Kawakami T, Okumura M, Yamaguchi K (2007) Polyhedron 26:2154–2160

    Article  CAS  Google Scholar 

  44. Hartke K, Rettberg N, Dutta D, Gerber H.-D (1993) Liebigs Ann Chem 1993:1081–1089

    Google Scholar 

  45. Bellitto C, Flamini A, Piovesana O, Zanazzi PF (1980) Inorg Chem 19:3632–3636

    Article  CAS  Google Scholar 

  46. Ozawa, Y.; Kim, M.; Takata, K.; Toriumi, K. unpublished results.

    Google Scholar 

  47. Sorai M, Nakano M, Miyazaki Y (2006) Chem Rev 106:976–1031

    Article  CAS  Google Scholar 

  48. Miyazaki Y, Wang Q, Sato A, Saito K, Yamamoto M, Kitagawa H, Mitani T, Sorai MJ (2002) Phys Chem B 106:197–202

    Article  CAS  Google Scholar 

  49. Ikeuchi, S.; Sato, A.; Saito, K.; Nakazawa, Y.; Mitsumi, M.; Toriumi,K.; Sorai, M. unpublished results.

    Google Scholar 

  50. Ikeuchi S, Saito K, Nakazawa Y, Mitsumi M, Toriumi K, Sorai MJ (2004) Phys Chem B 108:387–392

    Article  CAS  Google Scholar 

  51. Ikeuchi S, Saito K, Nakazawa Y, Sato A, Mitsumi M, Toriumi K, Sorai M (2002) Phys Rev B 66:115110 (7 pages)

    Article  Google Scholar 

  52. Saito K, Ikeuchi S, Nakazawa Y, Sato A, Mitsumi M, Yamashita T, Toriumi K, Sorai MJ (2005) Phys Chem B 109:2956–2961

    Article  CAS  Google Scholar 

  53. Mitsumi M, Yoshinari T, Ozawa Y, Toriumi K (2000) Mol Cryst Liq Cryst 342:127–132

    Article  CAS  Google Scholar 

  54. Diffuse scattering of [Pt2(n-BuCS2)4I] (4). Mitsumi, M.; Toriumi, K. unpublished results.

    Google Scholar 

  55. Electronic absorption spectra of [Pt2(RCS2)4I] (R = n-Pr (3), n-Bu (4)). Mitsumi, M.; Toriumi, K. unpublished results.

    Google Scholar 

  56. Torrance JB, Scott BA, Kaufman FB (1975) Solid State Commun 17:1369–1375

    Article  CAS  Google Scholar 

  57. Torrance JB, Scott BA, Welber B, Kaufman FB, Seiden PE (1979) Phys Rev B 19:730–741

    Article  CAS  Google Scholar 

  58. Tanaka J, Tanaka M, Kawai T, Takabe T, Maki O (1976) Bull Chem Soc Jpn 49:2358–2373

    Article  CAS  Google Scholar 

  59. Torrance JB (1987) In: Jérome D, Caron LG (eds) Low-dimensional conductors and superconductors, vol 155, NATO ASI series, series B. Plenum, New York, NY, pp 113–133

    Google Scholar 

  60. Graja A (1994) In: Farges J-P (ed) Organic conductors. Dekker, New York, NY, pp 229–267

    Google Scholar 

  61. Zeller HR, Beck A (1974) J Phys Chem Solids 35:77–80

    Article  CAS  Google Scholar 

  62. Kwak JF, Beni G, Chaikin PM (1976) Phys Rev B 13:641–646

    Article  CAS  Google Scholar 

  63. Chaikin PM, Greene RL, Etemad S, Engler E (1976) Phys Rev B 13:1627–1632

    Article  CAS  Google Scholar 

  64. Chaikin PM (1980) In: Alcácer L (ed) The physics and chemistry of low dimensional solids, vol 56, NATO ASI series. D. Reidel Publishing, Dordrecht, pp 53–75

    Chapter  Google Scholar 

  65. Otsubo K, Kobayashi A, Kitagawa H, Hedo M, Uwatoko Y, Sagayama H, Wakabayashi Y, Sawa H (2006) J Am Chem Soc 128:8140–8141

    Article  CAS  Google Scholar 

  66. Thielemans M, Deltour R, Jerome D, Cooper RJ (1976) Solid State Commun 19:21–27

    Article  CAS  Google Scholar 

  67. Guijarro A, Castillo O, Welte L, Calzolari A, Sanz Miguel PJ, Gómez-García CJ, Olea D, di Felice R, Gómez-Herrero J, Zamora F (2010) Adv Funct Mater 20:1451–1457

    Article  CAS  Google Scholar 

  68. Comès R (1977) In: Keller HJ (ed) Chemistry and physics of one-dimensional metals, vol 25, NATO ASI series, series B. Plenum, New York, NY, pp 315–339

    Chapter  Google Scholar 

  69. Pouget JP, Comès R, Bechgaard K (1980) In: Alcácer L (ed) The physics and chemistry of low dimensional solids, NATO ASI series, series C. D. Reidel Publishing, Dordrecht, pp 113–121

    Chapter  Google Scholar 

  70. Pouget JP (1987) In: Jérome D, Caron LG (eds) Low-dimensional conductors and superconductors, vol 155, NATO ASI series, series B. Plenum, New York, pp 17–45

    Google Scholar 

  71. Filhol A (1994) In: Farges J-P (ed) Organic conductors. Dekker, New York, NY, pp 147–228

    Google Scholar 

  72. Henriques RT, Alcácer L, Pouget JP, Jérome D (1984) J Phys C Solid State Phys 17:5197–5208

    Article  CAS  Google Scholar 

  73. Wakabayashi Y, Kobayashi A, Sawa H, Ohsumi H, Ikeda N, Kitagawa H (2006) J Am Chem Soc 128:6676–6682

    Article  CAS  Google Scholar 

  74. Kobayashi A, Kitao S, Seto M, Ikeda R, Kitagawa H (2009) Inorg Chem 48:8044–8049

    Article  CAS  Google Scholar 

  75. Scott JC (1988) Highly conducting quasi-one-dimensional organic crystals. In: Conwell E (ed) Magnetic properties, vol 27, Semiconductors and semimetals. Academic, San Diego, CA, p 386, and references therein

    Google Scholar 

  76. Temperature dependence of magnetic susceptibility of [Pt2(n-PrCS2)4I] (3). Mitsumi, M.; Toriumi, K. unpublished results.

    Google Scholar 

  77. Tanaka H, Kuroda S, Yamashita T, Mitsumi M, Toriumi K (2003) J Phys Soc Jpn 72:2169–2172

    Article  CAS  Google Scholar 

  78. Tanaka H, Kuroda S, Yamashita T, Mitsumi M, Toriumi K (2006) Phys Rev B 73:245102 (12 pages)

    Article  Google Scholar 

  79. Kobayashi A, Kojima T, Ikeda R, Kitagawa H (2006) Inorg Chem 45:322–327

    Article  CAS  Google Scholar 

  80. Ikeuchi S, Yamamura Y, Yoshida Y, Mitsumi M, Toriumi K, Saito K (2009) J Phys Soc Jpn 78:094704 (6pages)

    Article  Google Scholar 

  81. Ikeuchi S, Yamamura Y, Yoshida Y, Mitsumi M, Toriumi K, Saito K (2010) Bull Chem Soc Jpn 83:261–266

    Article  CAS  Google Scholar 

  82. Makiura R, Kitagawa H, Ikeda R (2002) Mol Cryst Liq Cryst 379:309–314

    Article  CAS  Google Scholar 

  83. Yamaguchi K, Kitagawa Y, Onishi T, Isobe H, Kawakami T, Nagao H, Takamizawa S (2002) Coord Chem Rev 226:235–249

    Article  CAS  Google Scholar 

  84. Yamaguchi K, Kawakami T, Takano Y, Kitagawa Y, Yamashita Y, Fujita H (2002) Int J Quant Chem 90:370–385

    Article  CAS  Google Scholar 

  85. Estes WE, Gavel DP, Hatfield WE, Hodgson DJ (1978) Inorg Chem 17:1415–1421

    Article  CAS  Google Scholar 

  86. Bray JW, Interrante LV, Jacobs IS, Bonner JC (1983) In: Miller JS (ed) Extended linear chain compounds, vol 3. Plenum, New York, NY, Chapter 7

    Google Scholar 

  87. Bray JW, Hart HR Jr, Interrante LV, Jacobs IS, Kasper JS, Watkins GD, Wee SH, Bonner JC (1975) Phys Rev Lett 35:744–747

    Article  CAS  Google Scholar 

  88. Hase M, Terasaki I, Uchinokura K (1993) Phys Rev Lett 70:3651–3654

    Article  CAS  Google Scholar 

  89. Nishi M, Fujita O, Akimitsu J (1994) Phys Rev B 50:6508–6510

    Article  Google Scholar 

  90. Isobe M, Ueda Y (1996) J Phys Soc Jpn 65:1178–1181

    Article  CAS  Google Scholar 

  91. Fujii Y, Nakao H, Yosihama T, Nishi M, Nakajima K, Kakurai K, Isobe M, Ueda Y, Sawa H (1997) J Phys Soc Jpn 66:326–329

    Article  CAS  Google Scholar 

  92. Ohama T, Isobe M, Yasuoka H, Ueda Y (1997) J Phys Soc Jpn 66:545–547

    Article  CAS  Google Scholar 

  93. Fagot-Revurat Y, Mehring M, Kremer RK (2000) Phys Rev Lett 84:4176–4179

    Article  CAS  Google Scholar 

  94. Ohwada K, Fujii Y, Katsuki Y, Muraoka J, Nakao H, Murakami Y, Sawa H, Ninomiya E, Isobe M, Ueda Y (2005) Phys Rev Lett 94:106401 (4 pages)

    Article  Google Scholar 

  95. Bulaevskii LN (1969) Sov Phys Solid State 11:921–924

    Google Scholar 

  96. Pytte E (1974) Phys Rev B 10:4637–4642

    Article  CAS  Google Scholar 

  97. Huizinga S, Kommandeur J, Sawatzky GA, Thole BT, Kopinga K, de Jonge WJM, Roos J (1979) Phys Rev B 19:4723–4732

    Article  CAS  Google Scholar 

  98. Cross MC, Fisher DS (1979) Phys Rev B 19:402–419

    Article  CAS  Google Scholar 

  99. Otsubo K, Kobayashi A, Hedo M, Uwatoko Y, Kitagawa H (2009) Chem Asian J 4:1673–1676

    Article  CAS  Google Scholar 

  100. Bonner JC, Fisher ME (1964) Phys Rev 135:A640–A658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Mitsumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Mitsumi, M. (2013). Crystal Structures and Properties of MMX-Chain Compounds Based on Dithiocarboxylato-Bridged Dinuclear Complexes. In: Yamashita, M., Okamoto, H. (eds) Material Designs and New Physical Properties in MX- and MMX-Chain Compounds. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1317-2_9

Download citation

Publish with us

Policies and ethics