Skip to main content

POP-Type MMX-Chain Compounds with Binary Countercations and Vapochromism

  • Chapter
  • First Online:
Book cover Material Designs and New Physical Properties in MX- and MMX-Chain Compounds

Abstract

Pyrophosphito-bridged diplatinum complex is one of the most studied dinuclear complexes in a paddle-wheel structure. The chemistry of pyrophosphito-bridged diplatinum complex began at the discovery of the Pt(II)–Pt(II) complex, K4[Pt2(pop)4]⋅2H2O (pop = P2H2O 2−5 ) by Roundhill et al. in 1977 [1]. Since [Pt2(pop)4]4− shows intense long-lived phosphorescence, photochemistry and excited-state chemistry of [Pt2(pop)4]4− has been attracted much attention (see following early reviews and references therein [2, 3]). Although no chemical bond exist between two Pt(II) atoms in the ground state, 5dσ* → 6pσ transition should induce the bonding character between them. This excited-state structure has been confirmed by several optical methods [4–9]. The excited state of [Pt2(pop)4]4− is powerful one-electron reductant, therefore, it can be used as a photochemical catalyst for converting ethanol to acetaldehyde and hydrogen [10] and for the transfer hydrogenation of alkenes and alkynes [11, 12]. The Pt(III)–Pt(III) complex, [Pt2(pop)4H2]4−, is the active species of the catalytic reaction [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sperline RP, Dickson MK, Roundhill DM (1977) J Chem Soc Commun 62

    Google Scholar 

  2. Zipp AP (1988) Coord Chem Rev 84:47

    Article  CAS  Google Scholar 

  3. Roundhill DM, Gray HB, Che C-M (1989) Acc Chem Res 22:55

    Article  CAS  Google Scholar 

  4. Thiel DJ, Livins P, Stern EA, Lewis A (1993) Nature 362:40

    Article  CAS  Google Scholar 

  5. Thiel DJ, Livins P, Stern EA, Lewis A (1993) Nature 363:565

    Article  CAS  Google Scholar 

  6. Kim CD, Pillet S, Wu G, Fullagar WK, Coppens P (2002) Acta Crystallogr Sect A Found Crystallogr A58:133

    Article  CAS  Google Scholar 

  7. Ozawa Y, Terashima M, Mitsumi M, Toriumi K, Yasuda N, Uekusa H, Ohashi Y (2003) Chem Lett 32:62

    Article  CAS  Google Scholar 

  8. Yasuda N, Uekusa H, Ohashi Y (2004) Bull Chem Soc Jpn 77:933

    Article  CAS  Google Scholar 

  9. Christensen M, Haldrup K, Bechgaard K, Feidenhans’l R, Kong Q, Cammarata M, Russo ML, Wulff M, Harrit N, Nielsen MM (2009) J Am Chem Soc 131:502

    Article  CAS  Google Scholar 

  10. Harvey PD, Gray HB (1987) New J Chem 11:595

    CAS  Google Scholar 

  11. Che C-M, Lee W-M (1986) J Chem Soc Chem Commun 512

    Google Scholar 

  12. Lin J, Pittman CU Jr (1996) J Organomet Chem 512:69

    Article  CAS  Google Scholar 

  13. Harvey EL, Stiegman AE, Vlćek A Jr, Gray HB (1987) J Am Chem Soc 109:5233

    Article  CAS  Google Scholar 

  14. Stiegman AE, Miskowski VM, Gray HB (1986) J Am Chem Soc 108:2781

    Article  CAS  Google Scholar 

  15. Bennett MA, Bhargava SK, Bond AM, Bansal V, Forsyth CM, Guo S-X, Privér SH (2009) Inorg Chem 48:2593

    Article  CAS  Google Scholar 

  16. Che C-M, Herbstein FH, Schaefer WP, Marsh RE, Gray HB (1983) J Am Chem Soc 105:4604

    Article  CAS  Google Scholar 

  17. Robin MB, Day P (1967) Adv Inorg Chem Radiochem 9:247

    Google Scholar 

  18. Day P (1974) Low-dimensional cooperative phenomena In: Keller HJ (ed) Plenum Press, New York, pp 191–214

    Google Scholar 

  19. Welte L, Garcia-Couceiro U, Castillo O, Olea D, Polop C, Guijarro A, Luque A, Gomez-Rodriguez JM, Gomez-Herrero J, Zamora F (2009) Adv Mater 21:2025

    Article  CAS  Google Scholar 

  20. Welte L, Calzolari A, Felice RD, Zamora F, Gomez-Herrero J (2010) Nat Nanotechnol 5:110

    Article  CAS  Google Scholar 

  21. Guijarro A, Castillo O, Welte L, Calzolari A, Miguel PJS, Gomez-Garcia CJ, Olea D, Felice RD, Gomez-Herrero J, Zamora F (2010) Adv Funct Mater 20:1451

    Article  CAS  Google Scholar 

  22. Mas-Balleste R, Gomez-Herrero J, Zamora F (2010) Chem Soc Rev 39:4220

    Article  CAS  Google Scholar 

  23. Kurmoo M, Clark RJH (1985) Inorg Chem 24:4420

    Article  CAS  Google Scholar 

  24. Clark RJH, Kurmoo M, Dawes H, Hursthouse MB (1986) Inorg Chem 25:409

    Article  CAS  Google Scholar 

  25. Butler LG, Zietlow MH, Che C-M, Schaefer WP, Sridhar S, Grunthaner PJ, Swanson BI, Clark RJH, Gray HB (1988) J Am Chem Soc 110:1155

    Article  CAS  Google Scholar 

  26. Stroud MA, Drickamer HG, Zietlow MH, Gray HB, Swanson BI (1989) J Am Chem Soc 111:66

    Article  CAS  Google Scholar 

  27. Yamashita M, Miya S, Kawashima T, Manabe T, Sonoyama T, Kitagawa H, Mitani T, Okamoto H, Ikeda R (1999) J Am Chem Soc 121:2321

    Article  CAS  Google Scholar 

  28. Takizawa K, Ishii T, Miyasaka H, Matsuzaka H, Yamashita M, Kawashima T, Matsuzaki H, Kishida H, Okamoto H (2002) Mol Cryst Liq Cryst 376:159

    Article  CAS  Google Scholar 

  29. Yamashita M, Takaishi S, Kobayashi A, Kitagawa H, Matsuzaki H, Okamoto H (2006) Coord Chem Rev 250:2335

    Article  CAS  Google Scholar 

  30. Iguchi H, Jiang D, Xie J, Takaishi S, Yamashita M (2011) Polymers 3:1652

    Article  CAS  Google Scholar 

  31. Iguchi H, Takaishi S, Breedlove BK, Yamashita M, Matsuzaki H, Okamoto H (2012) Inorg Chem 51:9967

    Google Scholar 

  32. Clark RJH (1984) Chem Soc Rev 13:219

    Article  CAS  Google Scholar 

  33. Clark RJH (1990) Chem Soc Rev 19:107

    Article  CAS  Google Scholar 

  34. Terauchi H (1978) Phys Rev B 17:2446

    Article  CAS  Google Scholar 

  35. Fujita W, Awaga K (1999) Science 286:261

    Article  CAS  Google Scholar 

  36. Kitagawa H, Onodera N, Sonoyama T, Yamamoto M, Fukawa T, Mitani T, Seto M, Maeda Y (1999) J Am Chem Soc 121:10068

    Article  CAS  Google Scholar 

  37. Ikeuchi S, Saito K, Nakazawa Y, Sato A, Mitsumi M, Toriumi K, Sorai M (2002) Phys Rev B 66:115110

    Article  Google Scholar 

  38. Tanaka H, Kuroda S, Yamashita T, Mitsumi M, Toriumi K (2003) J Phys Soc Jpn 72:2169

    Article  CAS  Google Scholar 

  39. Mitsumi M, Murase T, Kishida H, Yoshinari T, Ozawa Y, Toriumi K, Sonoyama T, Kitagawa H, Mitani T (2001) J Am Chem Soc 123:11179

    Article  CAS  Google Scholar 

  40. Mitsumi M, Kitamura K, Morinaga A, Ozawa Y, Kobayashi M, Toriumi K, Iso Y, Kitagawa H, Mitani T (2002) Angew Chem Int Ed 41:2767

    Article  CAS  Google Scholar 

  41. Mitsumi M, Yoshida Y, Kohyama A, Kitagawa Y, Ozawa Y, Kobayashi M, Toriumi K, Tadokoro M, Ikeda N, Okumura M, Kurmoo M (2009) Inorg Chem 48:6680

    Article  CAS  Google Scholar 

  42. Kobayashi A, Kitao S, Seto M, Ikeda R, Kitagawa H (2009) Inorg Chem 48:8044

    Article  CAS  Google Scholar 

  43. Ikeuchi S, Saito K, Nakazawa Y, Mitsumi M, Toriumi K, Sorai M (2004) J Phys Chem B 108:387

    Article  CAS  Google Scholar 

  44. Tanaka H, Hasegawa Y, Ito H, Kuroda S, Yamashita T, Mitsumi M, Toriumi K (2005) Synth Met 152:141

    Article  CAS  Google Scholar 

  45. Tanaka H, Kuroda S, Yamashita T, Mitsumi M, Toriumi K (2006) Phys Rev B 73:245102

    Article  Google Scholar 

  46. Iguchi H, Takaishi S, Miyasaka H, Yamashita M, Matsuzaki H, Okamoto H, Tanaka H, Kuroda S (2010) Angew Chem Int Ed 49:552

    Article  CAS  Google Scholar 

  47. Iguchi H, Takaishi S, Kajiwara T, Miyasaka H, Yamashita M, Matsuzaki H, Okamoto H (2008) J Am Chem Soc 130:17668

    Article  CAS  Google Scholar 

  48. Matsunaga S, Takizawa K, Kawakami D, Iguchi H, Takaishi S, Kajiwara T, Miyasaka H, Yamashita M, Matsuzaki H, Okamoto H (2008) Eur J Inorg Chem 3269

    Google Scholar 

  49. Shannon RD (1976) Acta Cryst A32:751

    CAS  Google Scholar 

  50. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  51. Matsuzaki H, Matsuoka T, Kishida H, Takizawa K, Miyasaka H, Sugiura K, Yamashita M, Okamoto H (2003) Phys Rev Lett 90:046401

    Article  CAS  Google Scholar 

  52. Matsuzaki H, Kishida H, Okamoto H, Takizawa K, Matsunaga S, Takaishi S, Miyasaka H, Sugiura K, Yamashita M (2005) Angew Chem Int Ed 44:3240

    Article  Google Scholar 

  53. Tanaka H, Kuroda S, Iguchi H, Takaishi S, Yamashita M (2012) Phys Rev B 85:073104

    Article  Google Scholar 

  54. Yamashita M, Takizawa K, Matsunaga S, Kawakami D, Iguchi H, Takaishi S, Kajiwara T, Iwahori F, Ishii T, Miyasaka H, Sugiura KI, Matsuzaki H, Kishida H, Okamoto H (2006) Bull Chem Soc Jpn 79:1404

    Article  CAS  Google Scholar 

  55. Murray LJ, Dinca M, Long JR (2009) Chem Soc Rev 38:1294

    Article  CAS  Google Scholar 

  56. Li JR, Kuppler RJ, Zhou HC (2009) Chem Soc Rev 38:1477

    Article  CAS  Google Scholar 

  57. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450

    Article  CAS  Google Scholar 

  58. Kurmoo M (2009) Chem Soc Rev 38:1353

    Article  CAS  Google Scholar 

  59. Ohba M, Yoneda K, Agusti G, Munoz MC, Gaspar AB, Real JA, Yamasaki M, Ando H, Nakao Y, Sakaki S, Kitagawa S (2009) Angew Chem Int Ed 48:4767

    Article  CAS  Google Scholar 

  60. Kato M (2007) Bull Chem Soc Jpn 80:287

    Article  CAS  Google Scholar 

  61. Allendorf MD, Bauer CA, Bhakta RK, Houk RJ (2009) Chem Soc Rev 38:1330

    Article  CAS  Google Scholar 

  62. Fuma Y, Ebihara M, Kutsumizu S, Kawamura T (2004) J Am Chem Soc 126:12238

    Article  CAS  Google Scholar 

  63. Takaishi S, Hosoda M, Kajiwara T, Miyasaka H, Yamashita M, Nakanishi Y, Kitagawa Y, Yamaguchi K, Kobayashi A, Kitagawa H (2009) Inorg Chem 48:9048

    Article  CAS  Google Scholar 

  64. Kobayashi Y, Jacobs B, Allendorf MD, Long JR (2010) Chem Mater 22:4120

    Article  CAS  Google Scholar 

  65. Yamashita M, Kawakami D, Matsunaga S, Nakayama Y, Sasaki M, Takaishi S, Iwahori F, Miyasaka H, Sugiura K, Wada Y, Miyamae H, Matsuzaki H, Okamoto H, Tanaka H, Marumoto K, Kuroda S (2004) Angew Chem Int Ed 43:4763

    Article  CAS  Google Scholar 

  66. Iguchi H, Takaishi S, Kajiwara T, Miyasaka H, Yamashita M, Matsuzaki H, Okamoto H (2009) J Inorg Organomet Polym Mater 19:85

    Article  CAS  Google Scholar 

  67. Kimura N, Ohki H, Ikeda R, Yamashita M (1994) Chem Phys Lett 220:40

    Article  CAS  Google Scholar 

  68. Yamamoto S, Ichioka M (2002) J Phys Soc Jpn 71:189

    Article  CAS  Google Scholar 

  69. Ohara J, Yamamoto S (2006) Phys Rev B 73:045122

    Article  Google Scholar 

  70. Kuwabara M, Yonemitsu K, Ohta H (2002) In: Kawamori A, Yamaguchi J, Ohta H (ed) EPR in the 21st century, Elsevier Science, p 59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Iguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Iguchi, H., Takaishi, S., Yamashita, M. (2013). POP-Type MMX-Chain Compounds with Binary Countercations and Vapochromism. In: Yamashita, M., Okamoto, H. (eds) Material Designs and New Physical Properties in MX- and MMX-Chain Compounds. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1317-2_10

Download citation

Publish with us

Policies and ethics