Skip to main content

Citrinin

  • Chapter
  • First Online:
The Chemistry of Mycotoxins

Abstract

Citrinin (116) (Fig. 3.1), first reported in 1931 following its isolation from Penicillium citrinum (67), was found to display a significant antibiotic activity against several Gram-positive bacteria in the 1940’s (68, 69). In the following decade (at the time of the widespread application of penicillin), there was a considerable interest in citrinin (116) and other antibacterials of fungal origin. Despite this, and its additional insecticidal properties (70), the investigation of 116 for either therapeutic or agrochemical application was abandoned due to its substantial toxicity (71), including nephrotoxicity (72).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hetherington AC, Raistrick H (1931) Biochemistry of micro-organisms. XIV. Production and chemical constitution of a new yellow coloring matter, citrinin, produced from dextrose by Penicillium citrinum, Thom. Proc R Soc Ser B 220:269

    Google Scholar 

  2. Pollock AV (1947) Production of citrinin by five species of Penicillium. Nature 160:331

    Article  CAS  Google Scholar 

  3. Oxford AE (1942) Antibacterial substances from molds. III. The bacteriostatic powers of the mold products citrinin and penicillic acid. Chem Ind 48

    Google Scholar 

  4. Dobias J, Betina V, Nemec P (1980) Insecticidal activity of ramihyfin a, citrinin, and rugulosin. Biologia 35:431

    CAS  Google Scholar 

  5. Betina V (1989) Mycotoxins: chemical, biological, and environmental aspects. Elsevier, Amsterdam

    Google Scholar 

  6. Krogh P, Hasselager E, Friis P (1970) Fungal nephrotoxicity. 2. Isolation of Two nephrotoxic compounds from Penicillium viridicatum citrinin and oxalic acid. Acta Pathol Microbiol Scand B Microbiol Immunol 78:401

    CAS  Google Scholar 

  7. Brown JP, Cartwright NJ, Robertson A, Whalley WB (1948) Structure of Citrinin. Nature 162:72

    Google Scholar 

  8. Cram DJ (1950) Mold metabolites. V. The stereochemistry and ultraviolet absorption of citrinin. J Am Chem Soc 72:1001

    Article  CAS  Google Scholar 

  9. Rodig OR, Shiro M, Fernando Q (1971) Crystal and molecular structure of citrinin. J Chem Soc Chem Commun 1553

    Google Scholar 

  10. Mehta PP, Whalley WB (1963) Chemistry of fungi. XLII. Absolute configuration of citrinin. J Chem Soc 3777

    Google Scholar 

  11. Hill RK, Gardella LA (1964) Absolute configuration of citrinin. J Org Chem 29:776

    Article  Google Scholar 

  12. Cartwright NJ, Robertson A, Whalley WB (1949) Chemistry of fungi. VII. Synthesis of citrinin and dihydrocitrinin. J Chem Soc 1563

    Google Scholar 

  13. Warren HH, Dougherty G, Wallis ES (1949) Synthesis of citrinin and dihydrocitrinin. J Am Chem Soc 71:3422

    Article  CAS  Google Scholar 

  14. Curtis RF, Hassall CH, Nazar M (1968) Biosynthesis of phenols. XV. Metabolites of Penicillium citrinum related to citrinin. J Chem Soc C 85

    Google Scholar 

  15. Hirota M, Menta AB, Yoneyama K, Kitabatake N (2002) A major decomposition product, citrinin H2, from citrinin on heating with moisture. Biosci Biotechnol Biochem 66:206–210

    Article  CAS  Google Scholar 

  16. Trivedi AB, Hirota M, Etsushiro D, Kitabatake N (1993) Formation of a new toxic compound, citrinin H1, from citrinin on mild heating in water. J Chem Soc Perkin Trans 1:2167

    Article  Google Scholar 

  17. Clark RC, Capon RJ, Lacey E, Tennant S, Gill JH (2006) Citrinin revisited: from monomers to dimers and beyond. Org Biomol Chem 4:1520

    Article  CAS  Google Scholar 

  18. Barber JA, Staunton J, Wilkinson MR (1986) A diastereoselective synthesis of the polyketide antibiotic citrinin using toluate anion chemistry. J Chem Soc Perkin Trans 1:2101

    Article  Google Scholar 

  19. Anctil EJG, Snieckus V (2004) The directed ortho-metallation (DoM) cross-coupling nexus. Synthetic methodology for the formation of aryl-aryl and aryl-heteroatom-aryl bonds. In: de Meijere A, Diederich F (eds) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley, Weinheim, p 761

    Chapter  Google Scholar 

  20. Regan AC, Staunton J (1987) Asymmetric synthesis of (+)-citrinin using an ortho-toluate carbanion generated by a chiral base. J Chem Soc Chem Commun 520

    Google Scholar 

  21. Rödel T, Gerlach H (1995) Enantioselective synthesis of the polyketide antibiotic (3R,4S)-(–)-citrinin. Liebigs Ann 885

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bräse .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Bräse, S. et al. (2013). Citrinin. In: The Chemistry of Mycotoxins. Progress in the Chemistry of Organic Natural Products, vol 97. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1312-7_3

Download citation

Publish with us

Policies and ethics