Skip to main content

Analysis of the Genome of Cyanophora paradoxa: An Algal Model for Understanding Primary Endosymbiosis

  • Chapter
  • First Online:
Endosymbiosis

Abstract

Algae and plants rely on the plastid (e.g., chloroplast) to carry out photosynthesis. This organelle traces its origin to a cyanobacterium that was captured over a billion years ago by a single-celled protist. Three major photosynthetic lineages (the green algae and plants [Viridiplantae], red algae [Rhodophyta], and Glaucophyta) arose from this primary endosymbiotic event and are putatively united as the Plantae (also known as Archaeplastida). Glaucophytes comprise a handful of poorly studied species that retain ancestral features of the cyanobacterial endosymbiont such as a peptidoglycan cell wall. Testing the Plantae hypothesis and elucidating glaucophyte evolution has in the past been thwarted by the absence of complete genome data from these taxa. Furthermore, multigene phylogenetics has fueled controversy about the frequency of primary plastid acquisitions during eukaryote evolution because these approaches have generally failed to recover Plantae monophyly and often provide conflicting results. Here, we review some of the key insights about Plantae evolution that were gleaned from a recent analysis of a draft genome assembly from Cyanophora paradoxa (Glaucophyta). We present results that conclusively demonstrate Plantae monophyly. We also describe new insights that were gained into peptidoglycan biosynthesis in glaucophytes and the carbon concentrating mechanism (CCM) in C. paradoxa plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  PubMed  Google Scholar 

  • Burey SC, Poroyko V, Ozturk ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Löffelhardt W (2007) Acclimation to low [CO2] by an inorganic carbon concentrating mechanism in Cyanophora paradoxa. Plant Cell Environ 30:1422–1435

    Article  PubMed  CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2:e790

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379

    Article  Google Scholar 

  • Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red-and-green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJ (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  PubMed  CAS  Google Scholar 

  • Fathinejad S, Steiner JM, Reipert S, Marchetti M, Allmaier G, Burey SC, Ohnishi N, Fukuzawa H, Löffelhardt W, Bohnert HJ (2008) A carboxysomal CCM in the cyanelles of the “coelacanth” of the algal world, Cyanophora paradoxa? Physiol Plant 133:27–32

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Bhattacharya D (2008) Revaluating the evolution of the Toc/Tic protein translocons. Trends Plant Sci 14:13–20

    Article  PubMed  Google Scholar 

  • Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsider’s perspective. Nat Rev Genet 10:495–505

    Article  PubMed  CAS  Google Scholar 

  • Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Kinney JN, Axen SD, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosynth Res 109:21–32

    Article  PubMed  CAS  Google Scholar 

  • Löffelhardt W, Bohnert HJ (2001) The cyanelle (muroplast) of Cyanophora paradoxa: a paradigm for endosymbiotic organelle evolution. In: Seckbach J (ed) Symbiosis. Kluwer, Dordrecht, pp 111–130

    Google Scholar 

  • Löffelhardt W, Bohnert HJ, Bryant DA (1997) The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae). Plant Syst Evol 11(Suppl):149–162

    Article  Google Scholar 

  • Marbouty M, Mazouni K, Saguez C, Cassier-Chauvat C, Chauvat F (2009) Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. J Bacteriol 191:5123–5133

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT, p 349

    Google Scholar 

  • Marin B, Nowack ECM, Glöckner G, Melkonian M (2007) The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7:85

    Article  PubMed  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  PubMed  CAS  Google Scholar 

  • Nowack EC et al (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880

    Article  PubMed  Google Scholar 

  • Palmer JD (2003) The symbiotic birth of plastids: how many times and whodunit? J Phycol 39:4–11

    Article  CAS  Google Scholar 

  • Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Article  PubMed  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    Article  PubMed  CAS  Google Scholar 

  • Pfanzagl B, Zenker A, Pittenauer E, Allmaier G, Martinez-Torrecuadrada J, Schmid ER, De Pedro MA, Löffelhardt W (1996) Primary structure of cyanelle peptidoglycan of Cyanophora paradoxa: a prokaryotic cell wall as part of an organelle envelope. J Bacteriol 178:332–339

    PubMed  CAS  Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2003) Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol 38:47–53

    Article  Google Scholar 

  • Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway of plastids (review). Mol Membr Biol 22:73–86

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Yusa F, Pompe JA, Löffelhardt W (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Takechi K (2010) Plastid peptidoglycan. Biochim Biophys Acta 1800:144–151

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2 -dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    Article  PubMed  CAS  Google Scholar 

  • Yusa F, Steiner JM, Löffelhardt W (2008) Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evol Biol 8:304

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Bhattacharya, D., Price, D.C., Chan, C.X., Gross, J., Steiner, J.M., Löffelhardt, W. (2014). Analysis of the Genome of Cyanophora paradoxa: An Algal Model for Understanding Primary Endosymbiosis. In: Löffelhardt, W. (eds) Endosymbiosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1303-5_7

Download citation

Publish with us

Policies and ethics