Skip to main content

The Single Primary Endosymbiotic Event

  • Chapter
  • First Online:
Book cover Endosymbiosis

Abstract

Eukaryotic phototrophs arose between about 1,600 and 1,200 Mya through the incorporation of a cyanobacterium by a phagotrophic eukaryote. In a very special and complex process, the cyanobacterium and the heterotrophic cell complemented each other that well to change the predator–prey relationship to a mutualistic one: the cyanobacterium was converted into an obligate endosymbiont allowing phototrophy of the host cell and ultimately into an organelle, the plastid. Pros and cons of a scenario assuming a single primary endosymbiotic event leading to a protoalga ancestral to the kingdom “Plantae” are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DG, Duggan PS, Jackson O (2012) Symbiotic interactions. In: Whitton B (ed) The ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 593–664

    Chapter  Google Scholar 

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Adler S, Trapp EM, Dede C, Maier UG, Zauner S (2013) Rhopalodia gibba – the first steps in the birth of a novel organelle? In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien

    Google Scholar 

  • Allen JF, de Paula WBM, Puthiyaveetil S, Nield J (2011) A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci 16:645–655

    Article  PubMed  CAS  Google Scholar 

  • Armbruster U, Pesaresi P, Pribil M, Hertle A, Leister D (2011) Update on chloroplast research: new tools, new topics, and new trends. Mol Plant 4:1–16

    Article  PubMed  CAS  Google Scholar 

  • Baker A, Schatz G (1987) Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc Natl Acad Sci U S A 84:3117–3121

    Article  PubMed  CAS  Google Scholar 

  • Ball SG (2013) Evolution of storage polysaccharide metabolism in Archaeplastida opens an unexpected window on the molecular mechanisms that drove plastid endosymbiosis. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 111–134

    Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333

    Article  PubMed  CAS  Google Scholar 

  • Chan CX, Bhattacharya D, Reyes-Prieto A (2012) Endosymbiotic and horizontal gene transfer in microbial eukaryotes: impacts on cell evolution and the tree of life. Mob Genet Elements 2:101–105

    Article  PubMed  Google Scholar 

  • Criscuolo A, Gribaldo S (2011) Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol 28:3019–3032

    Article  PubMed  CAS  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 105:10039–10044

    Article  PubMed  CAS  Google Scholar 

  • Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, Tandeau de Marsac N, Gugger M, Lockhart PJ, Allen JF, Brune I, Maus I, Pühler A, Martin WF (2013) Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 5:31–44

    Article  PubMed  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Facchinelli F, Weber APM (2013) Insertion of metabolite transporters into the endosymbiont membrane(s) as a prerequisite for primary endosymbiosis. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 53–80

    Google Scholar 

  • Fuentes I, Karcher D, Bock R (2012) Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus. Curr Biol 22:763–771

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Hagemann R (2007) The reception of the Schimper-Mereschkowski endosymbiont hypothesis on the origins of plastids between 1883 and 1960 –many negative, but a few relevant positive reactions. Ann Hist Phil Biol 12:41–59

    Google Scholar 

  • Hewitt V, Lithgow T, Waller RF (2013) Modifications and innovations in the evolution of mitochondrial protein import pathways. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 19–38

    Google Scholar 

  • Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD (2008) The origin of plastids. Philos Trans R Soc Lond B Biol Sci 363:2675–2685

    Article  PubMed  CAS  Google Scholar 

  • Huang JL, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99

    Article  PubMed  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Kalanon M, McFadden GI (2008) The chloroplast protein translocation complexes of Chlamydomonas reinhardtii. A bioinformatic comparison of Toc and Tic components in plants, green algae, and red algae. Genetics 179:95–112

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (2013) Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339:571–574

    Article  PubMed  CAS  Google Scholar 

  • Kovács-Bogdán E, Benz JP, Soll J, Bölter B (2011) Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biol 11:133

    Article  PubMed  Google Scholar 

  • Kowallik KV (1994) From endosymbionts to chloroplasts: evidence for a single prokaryotic/eukaryotic endocytobiosis. Endocytobiosis Cell Res 10:137–149

    Google Scholar 

  • Lang BF (2013) Mitochondria and the origin of eukaryotes. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 3–18

    Google Scholar 

  • Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kleine T (2011) Role of intercompartmental DNA transfer in producing genetic diversity. Int Rev Cell Mol Biol 291:73–114

    Article  PubMed  CAS  Google Scholar 

  • Lister DL, Bateman JM, Purton S, Howe CJ (2003) DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316:33–38

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AH, Timmis JN (2011) The origin and characterization of new nuclear genes originating from a cytoplasmic organellar genome. Mol Biol Evol 28:2019–2028

    Article  PubMed  CAS  Google Scholar 

  • Löffelhardt W, Bohnert HJ, Bryant DA (1997) The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae). Plant Syst Evol 11:149–162

    Article  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. WH Freeman and Company, San Francisco, CA

    Google Scholar 

  • Marin B, Nowack EC, Glöckner G, Melkonian M (2007) The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium. BMC Evol Biol 7:85

    Article  PubMed  Google Scholar 

  • Martijn J, Ettema TJG (2013) From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41:451–457

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci U S A 100:8612–8614

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Brinkmann H, Savona C, Cerff R (1993) Evidence for a chimaeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A 90:8692–8696

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  PubMed  CAS  Google Scholar 

  • Novack EC, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 109:5340–5345

    Article  Google Scholar 

  • Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M (2007) Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol 24:1592–1595

    Article  PubMed  CAS  Google Scholar 

  • Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Article  PubMed  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629

    Article  PubMed  CAS  Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  PubMed  CAS  Google Scholar 

  • Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng W-W, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 5:e11486

    Article  PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Raven PH (1970) A multiple origin for plastids and mitochondria. Science 169:641–646

    Article  PubMed  CAS  Google Scholar 

  • Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5:465–475

    PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007a) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae. Mol Biol Evol 24:2358–2361

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007b) Phylogeny of calvin cycle enzymes supports plantae monophyly. Mol Phylogenet Evol 45:384–391

    Article  PubMed  CAS  Google Scholar 

  • Ris H, Plaut W (1962) Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol 13:383–391

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  Google Scholar 

  • Rousseau-Gueutin M, Ayliffe MA, Timmis JN (2011) Conservation of plastid sequences in the plant nuclear genome for millions of years facilitates endosymbiotic evolution. Plant Physiol 157:2181–2193

    Article  PubMed  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–275

    Article  CAS  Google Scholar 

  • Schirrmeister BE, de Vosb JM, Antonellic A, Bagheria HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci U S A 110:1791–1796

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Crosby K, Lee RW (2011) Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol 3:365–371

    Article  PubMed  CAS  Google Scholar 

  • Sommer MS, Schleiff E (2013) Evolution of the protein translocons of the chloroplast envelope. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 81–110

    Google Scholar 

  • Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18:2869–2878

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Löffelhardt W (2005) Protein translocation into and within cyanelles. Mol Membr Biol 22:123–132

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Yusa F, Pompe JA, Löffelhardt W (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW (2007) Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 12:391–396

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW (2011) Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer. BMC Evol Biol 11:259

    Article  PubMed  Google Scholar 

  • Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol 39:95–105

    Article  CAS  Google Scholar 

  • Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    Article  PubMed  CAS  Google Scholar 

  • Stoebe B, Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130

    Article  PubMed  Google Scholar 

  • Thiergart T, Landan G, Schenk M, Dagan T, Martin WF (2011) An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 4:466–485

    Article  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relation-ships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  PubMed  CAS  Google Scholar 

  • Wägele H, Martin WF (2013) Endosymbioses in sacoglossan seaslugs: plastid-bearing animals that keep photosynthetic organelles without borrowing genes. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 291–324

    Google Scholar 

  • Wallin IE (1925) On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria. Am J Anat 35:131–149

    Article  Google Scholar 

  • Williams TA, Foster PG, Nye TMW, Cox CJ, Embley TM (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc B 279:4870–4879

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida KI, Bhattacharya D (2009) A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol 9:98

    Article  PubMed  Google Scholar 

  • Yoon HS, Yang EC, Qiu H, Bhattacharya D (2013) Photosynthetic Paulinella –recapitulation of primary plastid establishment. In: Löffelhardt W (ed) Endosymbiosis. Springer, New York, pp 151–166

    Google Scholar 

  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KW (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3:e1994

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Löffelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Löffelhardt, W. (2014). The Single Primary Endosymbiotic Event. In: Löffelhardt, W. (eds) Endosymbiosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1303-5_3

Download citation

Publish with us

Policies and ethics