Skip to main content

Tertiary Plastid Endosymbioses in Dinoflagellates

  • Chapter
  • First Online:
Endosymbiosis

Abstract

Dinoflagellates are a peculiar group of protists with a surprising and varied history of plastid acquisition. They employ a variety of trophic strategies including photoautotrophy, heterotrophy, and mixotrophy, with multiple modes of food ingestion identified. This collection of features apparently preadapted dinoflagellates for acquisition of a bewildering array of photosynthetic bodies ranging from “stolen” plastids (or kleptoplastids) through permanent endosymbionts to true plastids, acquired in various primary, secondary, and tertiary endosymbioses. In this chapter, we focus on tertiary plastid endosymbioses (that is, uptake of an alga with a complex, secondary plastid), and especially on three that show distinct levels of host–endosymbiont integration. These endosymbiotic consortia are represented by (1) cryptophyte-derived kleptoplastids in Dinophysis species, (2) diatom endosymbionts in genera known as “dinotoms” (e.g., Kryptoperidinium and Durinskia), and (3) haptophyte-derived plastids in Karenia, Karlodinium, and Takayama. We discuss details of the structures, evolutionary origins, and processes involved in these varied endosymbioses, including feeding mechanisms, endosymbiotic gene transfer, and how nucleus-encoded proteins are targeted to each of these photosynthetic entities. Available data support previous predictions that all these photosynthetic bodies evolved via replacements of the peridinin plastid found in most photosynthetic dinoflagellates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolf JE, Stoecker DK, Harding LW (2006) The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). J Plankton Res 28:737–751

    CAS  Google Scholar 

  • Agrawal S, Striepen B (2010) More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 161:672–687

    PubMed  CAS  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155:65–78

    PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Puerta MVS, Delwiche CF (2005) Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22:1772–1782

    PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Sanchez-Puerta MV, Delwiche CF (2006) Rate variation as a function of gene origin in plastid-derived genes of peridinin-containing dinoflagellates. J Mol Evol 62:42–52

    PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Adolf JE, Squier AH, Harvey HR, Place AR (2008) Characterization and quantification of karlotoxins by liquid chromatography-mass spectrometry. Harmful Algae 7:473–484

    CAS  Google Scholar 

  • Bachvaroff TR, Handy SM, Place AR, Delwiche CF (2011) Alveolate phylogeny inferred using concatenated ribosomal proteins. J Eukaryot Microbiol 58:223–233

    PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and specifity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández-Tejedor M (2006) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193

    Google Scholar 

  • Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299:861

    PubMed  CAS  Google Scholar 

  • Bernhard JM, Buck KR, Barry JP (2001) Monterey Bay cold-seep biota: assemblages, abundance, and ultrastructure of living foraminifera. Deep-Sea Res I Oceanogr Res Pap 48:2233–2249

    Google Scholar 

  • Bjørnland T, Haxo FT, Liaaen-Jensen S (2003) Carotenoids of the Florida red tide dinoflagellate: Karenia brevis. Biochem Syst Ecol 31:1147–1162

    Google Scholar 

  • Bodył A (1999) How have apicomplexan plastids evolved? A hypothesis. In: From symbiosis to eukaryotism. Proceedings of the international congress on endocytobiology, symbiosis and biomedicine, endocytobiology VII, 5–9 Apr 1998, Freiburg im Breisgau. University of Freiburg, University of Geneva, pp 327–340

    Google Scholar 

  • Bodył A, Moszczyński K (2006) Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur J Phycol 41:435–448

    Google Scholar 

  • Bodył A, Stiller JW, Mackiewicz P (2009a) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121

    PubMed  Google Scholar 

  • Bodył A, Mackiewicz P, Stiller JW (2009b) Early steps in plastid evolution: current ideas and controversies. Bioessays 31:1219–1232

    PubMed  Google Scholar 

  • Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14:156–178

    Google Scholar 

  • Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1993a) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1993b) The origin, losses and gains of chloroplasts. In: Lewin RA (ed) Origins of plastids: symbiogenesis, prochlorophytes, and the orgins of chloroplasts. Chapman and Hall, New York, pp 291–349

    Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2006) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci 273:1943–1952

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Eukaryot Microbiol 32:376–379

    Google Scholar 

  • Chesnick JM, Cox ER (1989) Fertilization and zygote development in the binucleate dinoflagellate Peridinium balticum (Pyrrhophyta). Am J Bot 76:1060–1072

    Google Scholar 

  • Chesnick JM, Morden CW, Schmieg AM (1996) Identity of the endosymbiont of Peridinium foliaceum (Pyrrhophyta): analysis of the rbcLS operon. J Phycol 32:850–857

    CAS  Google Scholar 

  • Chesnick JM, Kooistra WHCF, Wellbrock U, Medlin LK (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol 44:314–320

    PubMed  CAS  Google Scholar 

  • Correira MJ, Lee JJ (2002a) How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis 32:27–37

    Google Scholar 

  • Correira MJ, Lee JJ (2002b) Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis 32:15–26

    Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65

    PubMed  CAS  Google Scholar 

  • Dang Y, Green BR (2009) Long transcripts from dinoflagellate chloroplast minicircles suggest ‘rolling circle’ transcription. J Biol Chem 285:5196–5203

    PubMed  Google Scholar 

  • Danne JC, Gornik SG, Waller RF (2012) An assessment of vertical inheritance versus endosymbiont transfer of nucleus-encoded genes for mitochondrial proteins following tertiary endosymbiosis in Karlodinium micrum. Protist 163:76–90

    PubMed  CAS  Google Scholar 

  • Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317

    Google Scholar 

  • de Salas MF, Bolch CJS, Botes L, Nash G, Wright SW, Hallegraeff GM (2003) Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J Phycol 39:1233–1246

    Google Scholar 

  • Delwiche CF (2007) The origin and evolution of dinoflagellates. In: Falkowski PGK, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier Academic, Beijing, pp 191–205

    Google Scholar 

  • Dodge JD (1983) Dinoflagellates: investigation and phylogenetic speculation. Br Phycol J 18:335–356

    Google Scholar 

  • Dodge JD (1984) The functional and phylogenetic significance of dinoflagellate eyespots. Biosystems 16:259–267

    CAS  Google Scholar 

  • Dodge JD, Crawford RM (1969) Observations on the fine structure of the eyespot and associated organelles in the dinoflagellate Glenodinium foliaceum. J Cell Sci 5:479–493

    PubMed  CAS  Google Scholar 

  • Dorrell RG, Howe CJ (2012) Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. Proc Natl Acad Sci USA 109:18879–18884

    PubMed  CAS  Google Scholar 

  • Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5:2079–2091

    PubMed  CAS  Google Scholar 

  • Eriksen NT, Hayes KC, Lewitus AJ (2002) Growth responses of the mixotrophic dinoflagellates, Cryptoperidiniopsis sp. and Pfiesteria piscicida, to light under prey-saturated conditions. Harmful Algae 1:191–203

    Google Scholar 

  • Escalera L, Reguera B, Takishita K, Yoshimatsu S, Koike K, Koike K (2011) Cyanobacterial endosymbionts in the benthic dinoflagellate Sinophysis canaliculata (Dinophysiales, Dinophyceae). Protist 162:304–314

    PubMed  Google Scholar 

  • Eschbach S, Speth V, Hansmann P, Sitte P (1990) Freeze-fracture study of the single membrane between host cell and endocytobiont in the dinoflagellates Glenodinium foliaceum and Peridinium balticum. J Phycol 26:324–328

    Google Scholar 

  • Espelund M, Minge MA, Gabrielsen TM, Nederbragt AJ, Shalchian-Tabrizi K, Otis C, Turmel M, Lemieux C, Jakobsen KS (2012) Genome fragmentation is not confined to the peridinin plastid in dinoflagellates. PLoS One 7:e38809

    PubMed  CAS  Google Scholar 

  • Esteban GF, Fenchel T, Finlay BJ (2010) Mixotrophy in ciliates. Protist 161:621–641

    PubMed  CAS  Google Scholar 

  • Farmer MA, Roberts KR (1990) Organelle loss in the endosymbiont of Gymnodinium acidotum (Dinophyceae). Protoplasma 153:178–185

    Google Scholar 

  • Farnelid H, Tarangkoon W, Hansen G, Hansen P, Riemann L (2010) Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Microb Ecol 61:105–117

    Google Scholar 

  • Fehling J, Stoecker D, Baldauf S (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, New York, pp 76–107

    Google Scholar 

  • Fensome R, Taylor F, Norris G, Sarjeant W, Warton D, Williams G (1993) A classification of living and fossil dinoflagellates. In: Micropaleontology, Special Publication no. 7. American Museum of Natural History, New York, pp 1–351

    Google Scholar 

  • Fields SD, Rhodes RG (1991) Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). J Phycol 27:525–529

    Google Scholar 

  • Figueroa RI, Bravo I, Fraga S, Garcés E, Llaveria G (2009) The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei. Protist 160:285–300

    PubMed  Google Scholar 

  • Foster RA, Carpenter EJ, Bergman B (2006a) Unicellular cyanobionts in open ocean dinoflagellates, radiolarians, and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase. J Phycol 42:453–463

    CAS  Google Scholar 

  • Foster RA, Collier JL, Carpenter EJ (2006b) Reverse transcription PCR amplification of cyanobacterial symbiont 16S rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells. J Phycol 42:243–250

    CAS  Google Scholar 

  • Gabrielsen TM, Minge MA, Espelund M, Tooming-Klunderud A, Patil V, Nederbragt AJ, Otis C, Turmel M, Shalchian-Tabrizi K, Lemieux C, Jakobsen KS (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:e19132

    PubMed  CAS  Google Scholar 

  • Gaines G, Taylor FJR (1985) Form and function of the dinoflagellate transverse flagellum. J Protozool 32:290–296

    Google Scholar 

  • Garate-Lizarraga I, Muneton-Gomez MD (2008) Bloom of Peridinium quinquecorne Abe, in La Ensenada de La Paz, Gulf of California (July 2003). Acta Bot Mex 83:33–47

    Google Scholar 

  • Garcia-Cuetos L, Moestrup Ø, Hansen PJ, Daugbjerg N (2010) The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae 9:25–38

    Google Scholar 

  • Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45

    PubMed  CAS  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9571

    PubMed  CAS  Google Scholar 

  • Gómez F (2012a) A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Syst Biodivers 10:267–275

    Google Scholar 

  • Gómez F (2012b) A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata). CICIMAR Oceánides 27:65–140

    Google Scholar 

  • Gómez F, López-García P, Nowaczyk A, Moreira D (2009) The crustacean parasites Ellobiopsis Caullery, 1910 and Thalassomyces Niezabitowski, 1913 form a monophyletic divergent clade within the Alveolata. Syst Parasitol 74:65–74

    PubMed  Google Scholar 

  • Gómez F, López-García P, Moreira D (2011) Molecular phylogeny of Dinophysoid dinoflagellates: the systematic position of Oxyphysis oxytoxoides and the Dinophysis hastata group (Dinophysales, Dinophyceae). J Phycol 47:393–406

    Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422

    PubMed  CAS  Google Scholar 

  • Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44

    PubMed  CAS  Google Scholar 

  • Green BJ, Fox TC, Rumpho ME (2005) Stability of isolated algal chloroplasts that participate in a unique mollusc/kleptoplast association. Symbiosis 40:31–40

    Google Scholar 

  • Groisillier A, Massana R, Valentin KU, Vaulot D, Guillou L (2006) Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquat Microb Ecol 42:277–291

    Google Scholar 

  • Grosche C, Hempel F, Bolte K, Abram L, Maier UG, Zauner S (2013) Protein import into complex plastids: current findings and perspectives. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 215–232

    Google Scholar 

  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530

    PubMed  CAS  Google Scholar 

  • Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580

    CAS  Google Scholar 

  • Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365

    PubMed  CAS  Google Scholar 

  • Gustafson DE, Stoecker DK, Johnson MD, Van Heukelem WF, Sneider K (2000) Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049–1052

    PubMed  CAS  Google Scholar 

  • Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448

    CAS  Google Scholar 

  • Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004a) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534

    PubMed  CAS  Google Scholar 

  • Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004b) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14:213–218

    PubMed  CAS  Google Scholar 

  • Hallegraeff GM, Lucas IAN (1988) The marine dinoflagellate genus Dinophysis (Dinophyceae): photosynthetic, neritic and non-photosynthetic, oceanic species. Phycologia 27:25–42

    Google Scholar 

  • Hansen PJ (2011) The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J Eukaryot Microbiol 58:203–214

    PubMed  CAS  Google Scholar 

  • Hansen PJ, Calado AJ (1999) Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J Eukaryot Microbiol 46:382–389

    Google Scholar 

  • Hansen G, Daugbjerg N, Henriksen P (2000a) Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (=Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. J Phycol 36:394–410

    Google Scholar 

  • Hansen G, Moestrup Ø, Roberts KR (2000b) Light and electron microscopical observations on the type species of Gymnodinium, G. fuscum (Dinophyceae). Phycologia 39:365–376

    Google Scholar 

  • Hansen PJ, Miranda L, Azanza R (2004) Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Mar Ecol Prog Ser 275:79–87

    CAS  Google Scholar 

  • Häuber M, Müller S, Speth V, Maier U (1994) How to evolve a complex plastid? – A hypothesis. Bot Acta 107:383–386

    Google Scholar 

  • Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Mol Microbiol 76:793–801

    PubMed  CAS  Google Scholar 

  • Hewes CD, Mitchell BG, Moisan TA, Vernet M, Reid FMH (1998) The phycobilin signatures of chloroplasts from three dinoflagellate species: a microanalytical study of Dinophysis caudata, D. fortii, and D. acuminata (Dinophysiales, Dinophyceae). J Phycol 34:945–951

    CAS  Google Scholar 

  • Hirakawa Y, Gile GH, Ota S, Keeling PJ, Ishida K-I (2010) Characterization of periplastidal compartment-targeting signals in chlorarachniophytes. Mol Biol Evol 27:1538–1545

    PubMed  CAS  Google Scholar 

  • Hirakawa Y, Burki F, Keeling PJ (2011) Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga. Mol Microbiol 80:1439–1449

    PubMed  CAS  Google Scholar 

  • Hoppenrath M, Leander BS (2010) Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. PLoS One 5:e13220

    PubMed  Google Scholar 

  • Horiguchi T (2004) Origin and evolution of dinoflagellates with a diatom endosymbiont. In: Proceedings of international symposium on “dawn of a new natural history – integration of geoscience and biodiversity studies”, neo-science of natural history: integration of geoscience and biodiversity studies, 5–6 Mar 2004, Sapporo. Hokkaido University, Hokkaido, pp 53–59

    Google Scholar 

  • Horiguchi T (2006) Algae and their chloroplasts with particular reference to the dinoflagellates. Paleontol Res 10:299–309

    Google Scholar 

  • Horiguchi T, Pienaar RN (1992) Amphidinium latum Lebour (Dinophyceae), a sand-dwelling dinoflagellate feeding on cryptomonads. Jpn J Phycol 40:353–363

    Google Scholar 

  • Horiguchi T, Pienaar RN (1994a) Ultrastructure of a new marine sand-dwelling dinoflagellate, Gymnodinium quadrilobatum sp. nov. (Dinophyceae) with special reference to its endosymbiotic alga. Eur J Phycol 29:237–245

    Google Scholar 

  • Horiguchi T, Pienaar RN (1994b) Ultrastructure and ontogeny of a new type of eyespot in dinoflagellates. Protoplasma 179:142–150

    Google Scholar 

  • Horiguchi T, Takano Y (2006) Serial replacement of a diatom endosymbiont in the marine dinoflagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). Phycol Res 54:193–200

    Google Scholar 

  • Howe CJ, Nisbet RE, Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:1035–1045

    PubMed  CAS  Google Scholar 

  • Imanian B, Keeling PJ (2007) The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evol Biol 7:172

    PubMed  Google Scholar 

  • Imanian B, Pombert JF, Keeling PJ (2010) The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One 5:e10711

    PubMed  Google Scholar 

  • Imanian B, Pombert JF, Dorrell RG, Burki F, Keeling PJ (2012) Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLoS One 7:e43763

    PubMed  CAS  Google Scholar 

  • Inaba T, Schnell DJ (2008) Protein trafficking to plastids: one theme, many variations. Biochem J 413:15–28

    PubMed  CAS  Google Scholar 

  • Inagaki Y, Roger AJ (2006) Phylogenetic estimation under codon models can be biased by codon usage heterogeneity. Mol Phylogenet Evol 40:428–434

    PubMed  CAS  Google Scholar 

  • Inagaki Y, Dacks JB, Doolittle WF, Watanabe KI, Ohama T (2000) Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis. Int J Syst Evol Microbiol 50:2075–2081

    PubMed  Google Scholar 

  • Inagaki Y, Simpson AG, Dacks JB, Roger AJ (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593

    PubMed  Google Scholar 

  • Ishida K, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99:9294–9299

    PubMed  CAS  Google Scholar 

  • Jacobson DM, Andersen RA (1994) The discovery of mixotrophy in photosynthetic species of Dinophysis (Dinophyceae): light and electron microscopical observations of food vacuoles in Dinophysis acuminata, D. norvegica and two heterotrophic dinophysoid dinoflagellates. Phycologia 33:97–110

    Google Scholar 

  • Jakobsen H, Hansen P, Larsen J (2000) Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar Ecol Prog Ser 201:121–128

    Google Scholar 

  • Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    PubMed  Google Scholar 

  • Janson S (2004) Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia. Environ Microbiol 6:1102–1106

    PubMed  CAS  Google Scholar 

  • Janson S, Granéli E (2003) Genetic analysis of the psbA gene from single cells indicates a cryptomonad origin of the plastid in Dinophysis (Dinophyceae). Phycologia 42:473–477

    Google Scholar 

  • Jeffrey SW, Vesk M (1976) Further evidence for a membrane-bound endosymbiont within the dinoflagellate Peridinium foliaceum. J Phycol 12:450–455

    Google Scholar 

  • Jensen MH, Daugbjerg N (2009) Molecular phylogeny of selected species of the order Dinophysiales (Dinophyceae) – testing the hypothesis of a dinophysioid radiation. J Phycol 45:1136–1152

    Google Scholar 

  • Jeong HJ, Du Yoo Y, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91

    CAS  Google Scholar 

  • Johnson MD (2011a) The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth Res 107:117–132

    PubMed  CAS  Google Scholar 

  • Johnson MD (2011b) Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations. J Eukaryot Microbiol 58:185–195

    PubMed  Google Scholar 

  • Johnson PW, Donaghay PL, Small EB, Sieburth JM (1995) Ultrastructure and ecology of Perispira ovum (Ciliophora: Litostomatea): an aerobic, planktonic ciliate that sequesters the chloroplasts, mitochondria, and paramylon of Euglena proxima in a micro-oxic habitat. J Eukaryot Microbiol 42:323–335

    Google Scholar 

  • Johnson MD, Tengs T, Oldach D, Stoecker DK (2006) Sequestration, performance, and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J Phycol 42:1235–1246

    CAS  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428

    PubMed  CAS  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    PubMed  CAS  Google Scholar 

  • Kempton JW, Wolny J, Tengs T, Rizzo P, Morris R, Tunnell J, Scott P, Steidinger K, Hymel SN, Lewitus AJ (2002) Kryptoperidinium foliaceum blooms in South Carolina: a multi-analytical approach to identification. Harmful Algae 1:383–392

    CAS  Google Scholar 

  • Kim E, Archibald J (2010) Plastid evolution: gene transfer and the maintenance of ‘stolen’ organelles. BMC Biol 8:73

    PubMed  Google Scholar 

  • Kim M, Nam SW, Shin W, Coats DW, Park MG (2012) Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J Phycol 48:569–579

    Google Scholar 

  • Kite GC, Dodge JD (1985) Structural organization of plastid DNA in two anomalously pigmented dinoflagellates. J Phycol 21:50–56

    Google Scholar 

  • Kite G, Dodge J (1988) Cell and chloroplast ultrastructure in Gyrodinium aureolum and Gymnodinium galatheanum. Two marine dinoflagellates containing an unusual carotenoid. Sarsia 73:131–138

    Google Scholar 

  • Kite GC, Rothschild LJ, Dodge JD (1988) Nuclear and plastid DNAs from the binucleate dinoflagellates Glenodinium (Peridinium) foliaceum and Peridinium balticum. Biosystems 21:151–163

    PubMed  CAS  Google Scholar 

  • Koike K, Takishita K (2008) Anucleated cryptophyte vestiges in the gonyaulacalean dinoflagellates Amylax buxus and Amylax triacantha (Dinophyceae). Phycol Res 56:301–311

    Google Scholar 

  • Koike K, Koike K, Takagi M, Ogata T, Ishimaru T (2000) Evidence of phagotrophy in Dinophysis fortii (Dinophysiales, Dinophyceae), a dinoflagellate that causes diarrhetic shellfish poisoning (DSP). Phycol Res 48:121–124

    Google Scholar 

  • Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M, Koike K, Ogata T (2005) A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist 156:225–237

    PubMed  CAS  Google Scholar 

  • Kreimer G (1999) Reflective properties of different eyespot types in dinoflagellates. Protist 150:311–323

    PubMed  CAS  Google Scholar 

  • Kwok AC, Wong JT (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691

    PubMed  CAS  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    PubMed  CAS  Google Scholar 

  • Larsen J (1988) An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27:366–377

    Google Scholar 

  • Laval-Peuto M, Febvre M (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichina). Biosystems 19:137–158

    PubMed  CAS  Google Scholar 

  • Leander BS, Keeling PJ (2003) Morphostasis in alveolate evolution. Trends Ecol Evol 18:395–402

    Google Scholar 

  • Lee JJ, Correia M (2005) Endosymbiotic diatoms from previously unsampled habitats. Symbiosis 38:251–260

    CAS  Google Scholar 

  • Lee JJ, Erez J, McEnery ME, Lagziel A, Xenophontos X (1986) Experiments on persistence of endosymbiotic diatoms in the larger foraminifer: Amphistegina lessonii. Symbiosis 1:211–226

    CAS  Google Scholar 

  • Lewitus AJ, Glasgow HB, Burkholder JM (1999) Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J Phycol 35:303–312

    Google Scholar 

  • Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162:551–569

    PubMed  CAS  Google Scholar 

  • Lin S, Zhang H, Spencer D, Norman J, Gray M (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739

    PubMed  CAS  Google Scholar 

  • Lin S, Zhang H, Gray MW (2008) RNA editing in dinoflagellates and its implications for the evolutionary history of the editing machinery. In: Smith H (ed) RNA and DNA editing: molecular mechanisms and their integration into biological systems. Wiley, Hoboken, NJ, pp 280–309

    Google Scholar 

  • Linares M, Carter D, Gould SB (2013) Chromera et al: Novel photosynthetic alveolates and apicomplexan relatives. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 183–196

    Google Scholar 

  • Lobban C, Schefter M, Simpson A, Pochon X, Pawlowski J, Foissner W (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 141:207–208

    Google Scholar 

  • Lobban C, Modeo L, Verni F, Rosati G (2005) Euplotes uncinatus (Ciliophora, Hypotrichia), a new species with zooxanthellae. Mar Biol 147:1055–1061

    Google Scholar 

  • Lowe CD, Keeling PJ, Martin LE, Slamovits CH, Watts PC, Montagnes DJ (2011) Who is Oxyrrhis marina? Morphological and phylogenetic studies on an unusual dinoflagellate. J Plankton Res 33:555–567

    Google Scholar 

  • Löffelhardt W (2013) The single primary endosymbiotic event leading to the Archaeplastida. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 39–52

    Google Scholar 

  • Lucas IAN (1991) Symbionts of the tropical Dinophysiales (Dinophyceae). Ophelia 33:213–224

    Google Scholar 

  • Lucas IAN, Vesk M (1990) The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 26:345–357

    Google Scholar 

  • Marasigan AN, Sato S, Fukuyo Y, Kodama M (2001) Accumulation of a high level of diarrhetic shellfish toxins in the green mussel Perna viridis during a bloom of Dinophysis caudata and Dinophysis miles in Sapian Bay, Panay Island, the Philippines. Fish Sci 67:994–996

    CAS  Google Scholar 

  • McEwan ML, Keeling PJ (2004) HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum. J Eukaryot Microbiol 51:651–659

    PubMed  CAS  Google Scholar 

  • McFadden GI (2011) The apicoplast. Protoplasma 248:641–650

    PubMed  Google Scholar 

  • Meyer-Harms B, Pollehne F (1998) Alloxanthin in Dinophysis norvegica (Dinophysiales, Dinophyceae) from the baltic sea. J Phycol 34:280–285

    CAS  Google Scholar 

  • Minge MA, Shalchian-Tabrizi K, Torresen OK, Takishita K, Probert I, Inagaki Y, Klaveness D, Jakobsen KS (2010) A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 10:191

    PubMed  Google Scholar 

  • Minnhagen S, Janson S (2006) Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiol Ecol 57:47–54

    PubMed  CAS  Google Scholar 

  • Minnhagen S, Carvalho WF, Salomon PS, Janson S (2008) Chloroplast DNA content in Dinophysis (Dinophyceae) from different cell cycle stages is consistent with kleptoplasty. Environ Microbiol 10:2411–2417

    PubMed  CAS  Google Scholar 

  • Moestrup Ø, Daugbjerg N (2007) On dinoflagellate phylogeny and classification. In: Brodie J, Lewis J (eds) Unraveling the algae: the past, present, and future of algal systematics. CRC, New York, pp 215–230

    Google Scholar 

  • Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    PubMed  CAS  Google Scholar 

  • Moreira D, López-Garcıa P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    PubMed  CAS  Google Scholar 

  • Morris RL, Fuller CB, Rizzo PJ (1993) Nuclear basic proteins from the binucleate dinoflagellate Peridinium foliaceum (Pyrrophyta). J Phycol 29:342–347

    CAS  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Nagai S, Nitshitani G, Tomaru Y, Sakiyama S (2008) Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplast. J Phycol 44:909–922

    Google Scholar 

  • Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116:2867–2874

    PubMed  CAS  Google Scholar 

  • Nielsen L, Krock B, Hansen P (2012) Effects of light and food availability on toxin production, growth and photosynthesis in Dinophysis acuminata. Mar Ecol Prog Ser 471:37–50

    Google Scholar 

  • Nishitani G, Miyamura K, Imai I (2003) Trying to cultivation of Dinophysis caudata (Dinophyceae) and the appearance of small cells. Plankton Biol Ecol 50:31–36

    Google Scholar 

  • Nishitani G, Nagai S, Sakiyama S, Kamiyama T (2008a) Successful cultivation of the toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton Benthos Res 3:78–85

    Google Scholar 

  • Nishitani G, Nagai S, Takano Y, Sakiyama S, Baba K, Kamiyama T (2008b) Growth characteristics and phylogenetic analysis of the marine dinoflagellate Dinophysis infundibulus (Dinophyceae). Aquat Microb Ecol 52:209–221

    Google Scholar 

  • Nishitani G, Nagai S, Baba K, Kiyokawa S, Kosaka Y, Miyamura K, Nishikawa T, Sakurada K, Shinada A, Kamiyama T (2010) High-level congruence of Myrionecta rubra prey and Dinophysis species plastid identities as revealed by genetic analyses of isolates from Japanese coastal waters. Appl Environ Microbiol 76:2791–2798

    PubMed  CAS  Google Scholar 

  • Nishitani G, Nagai S, Hayakawa S, Kosaka Y, Sakurada K, Kamiyama T, Gojobori T (2012) Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Appl Environ Microbiol 78:813–821

    PubMed  CAS  Google Scholar 

  • Nosenko T, Lidie KL, Van Dolah FM, Lindquist E, Cheng JF, Bhattacharya D (2006) Chimeric plastid proteome in the Florida “red tide” dinoflagellate Karenia brevis. Mol Biol Evol 23:2026–2038

    PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712

    PubMed  CAS  Google Scholar 

  • Oakley BR, Taylor FJR (1978) Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia. Biosystems 10:361–369

    PubMed  CAS  Google Scholar 

  • Orr RJS, Murray SA, Stüken A, Rhodes L, Jakobsen KS (2012) When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates. PLoS One 7:e50004

    PubMed  CAS  Google Scholar 

  • Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439

    PubMed  CAS  Google Scholar 

  • Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40

    PubMed  CAS  Google Scholar 

  • Park MG, Kim S, Kim HS, Myung G, Kang YG, Yih W (2006) First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol 45:w101–106

    Google Scholar 

  • Park MG, Park JS, Kim M, Yih W (2008) Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J Phycol 44:1154–1163

    CAS  Google Scholar 

  • Park MG, Kim M, Kim S, Yih W (2010) Does Dinophysis caudata (Dinophyceae) have permanent plastids? J Phycol 46:236–242

    CAS  Google Scholar 

  • Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 29:1048–1058

    PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024

    PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357:1373–1382

    PubMed  CAS  Google Scholar 

  • Pienaar RN, Sakai H, Horiguchi T (2007) Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa. J Plant Res 120:247–258

    PubMed  Google Scholar 

  • Pozdnyakov I, Skarlato S (2012) Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108–115

    Google Scholar 

  • Qiu D, Huang L, Liu S, Lin S (2011) Nuclear, mitochondrial and plastid gene phylogenies of Dinophysis miles (Dinophyceae): evidence of variable types of chloroplasts. PLoS One 6:e29398

    PubMed  CAS  Google Scholar 

  • Reguera B, Velo-Suárez L, Raine R, Park MG (2012) Harmful Dinophysis species: a review. Harmful Algae 14:87–106

    Google Scholar 

  • Reinbothe S, Quigley F, Springer A, Schemenewitz A, Reinbothe C (2004) The outer plastid envelope protein Oep16: role as precursor translocase in import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 101:2203–2208

    PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16

    PubMed  CAS  Google Scholar 

  • Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D (2011) The making of a photosynthetic animal. J Exp Biol 214:303–311

    PubMed  Google Scholar 

  • Saldarriaga JF, McEwan ML, Fast NM, Taylor FJ, Keeling PJ (2003) Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365

    PubMed  CAS  Google Scholar 

  • Sampayo MAM (1993) Trying to cultivate Dinophysis spp. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier Science, New York, pp 807–810

    Google Scholar 

  • Sanchez Puerta MV, Bachvaroff TR, Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12:151–156

    PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007a) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117

    PubMed  CAS  Google Scholar 

  • Sanchez-Puerta M, Bachvaroff TR, Delwiche CF (2007b) Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Biol Evol 44:885–897

    CAS  Google Scholar 

  • Schnepf E (1993) From prey via endosymbiont to plastid: comparative studies in dinoflagellates. In: Lewin R (ed) Origins of plastids. Chapman & Hall, London, pp 53–76

    Google Scholar 

  • Schnepf E (2004) Protoctists and microalgae: antagonistic and mutualistic associations and the symbiosis of plastids. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany, vol 65. Springer, Heidelberg, pp 3–51

    Google Scholar 

  • Schnepf E, Elbrächter M (1988) Cryptophycean-like double-membrane-bound chloroplast in the dinoflagellate, Dynophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Bot Acta 101:196–203

    Google Scholar 

  • Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny – a review. Grana 38:81–97

    Google Scholar 

  • Schnepf E, Winter S, Mollenhauer D (1989) Gymnodinium aeruginosum (Dinophyta): a blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Plant Syst Evol 164:75–91

    Google Scholar 

  • Schweikert M, Elbrächter M (2004) First ultrastructural investigations of the consortium between a phototrophic eukaryotic endocytobiont and Podolampas bipes (Dinophyceae). Phycologia 43:614–623

    Google Scholar 

  • Shalchian-Tabrizi K, Skanseng M, Ronquist F, Klaveness D, Bachvaroff TR, Delwiche CF, Botnen A, Tengs T, Jakobsen KS (2006) Heterotachy processes in rhodophyte-derived secondhand plastid genes: implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol 23:1504–1515

    PubMed  CAS  Google Scholar 

  • Skovgaard A (1998) Role of chloroplast retention in a marine dinoflagellate. Aquat Microb Ecol 15:293–301

    Google Scholar 

  • Skovgaard A (2000) A phagotrophically derivable growth factor in the plastidic dinoflagellate Gyrodinium resplendens (Dinophyceae). J Phycol 36:1069–1078

    Google Scholar 

  • Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306

    PubMed  CAS  Google Scholar 

  • Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118:1651–1661

    PubMed  Google Scholar 

  • Sommer MS, Schleiff E (2013) Evolution of the protein translocon at the envelopes of chloroplasts. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 81–110

    Google Scholar 

  • Steidinger KA, Truby EW, Dawes CJ (1978) Ultrastructure of the red tide dinoflagellate Gymnodinium breve. I. General description. J Phycol 14:72–79

    Google Scholar 

  • Steidinger KA, Landsberg JH, Truby EW, Roberts BS (1998) First report of Gymnodinium pulchellum (Dinophyceae) in North America and associated fish kills in the Indian River, Florida. J Phycol 34:431–437

    Google Scholar 

  • Stiller W, Reel D, Johnson J (2002) The case for a single plastid origin revisited: convergent evolution in organellar gene content. J Phycol 38:34–34

    Google Scholar 

  • Stoebe B, Maier U-G (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130

    PubMed  Google Scholar 

  • Stoecker DK (1999) Mixotrophy among dinoflagellates. J Eukaryot Microbiol 46:397–401

    Google Scholar 

  • Stoecker DK, Silver MW (1990) Replacement and aging of chloroplasts in Strombidium capitatum (Ciliophora: Oligotrichida). Mar Biol 107:491–502

    Google Scholar 

  • Stoecker DK, Silver MW, Michaels AE, Davis LH (1988) Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Mar Biol 99:415–423

    Google Scholar 

  • Stoecker DK, Johnson MD, de Vargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310

    Google Scholar 

  • Sulli C, Fang Z, Muchhal U, Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274:457–463

    PubMed  CAS  Google Scholar 

  • Sweeney BM (1978) Ultrastructure of Noctiluca miliaris (Pyrrophyta) with green flagellate symbionts. J Phycol 14:116–120

    Google Scholar 

  • Takano Y, Hansen G, Fujita D, Horiguchi T (2008) Serial replacement of diatom endosymbionts in two freshwater dinoflagellates, Peridiniopsis spp. (Peridiniales, Dinophyceae). Phycologia 47:41–53

    CAS  Google Scholar 

  • Takishita K, Koike K, Maruyama T, Ogata T (2002) Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist 153:293–302

    PubMed  CAS  Google Scholar 

  • Takishita K, Ishida K-I, Maruyama T (2004) Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist 155:447–458

    PubMed  CAS  Google Scholar 

  • Tamura M, Shimada S, Horiguchi T (2005) Galeidiniium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. J Phycol 41:658–671

    CAS  Google Scholar 

  • Tanaka T, Fukuda Y, Yoshino T, Maeda Y, Muto M, Matsumoto M, Mayama S, Matsunaga T (2011) High-throughput pyrosequencing of the chloroplast genome of a highly neutral-lipid-producing marine pennate diatom, Fistulifera sp. strain JPCC DA0580. Photosynth Res 109:223–229

    PubMed  CAS  Google Scholar 

  • Tanifuji G, Archibald JM (2013) Nucleomorph comparative genomics. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 197–214

    Google Scholar 

  • Tarangkoon W, Hansen G, Hansen PJ (2007) Dinoflagellate⁄cyanobacteria consortia in the tropical Indian Ocean and the north west Australian Sea. J Phycol 43:38

    Google Scholar 

  • Taylor FJR (1976) Dinoflagellates from the International Indian Ocean expedition. A report on material collected by the R.V. “Anton Bruun” 1963–1964. Bibliotheca Bot 132:1–234

    Google Scholar 

  • Taylor FJRM (2004) Illumination or confusion? Dinoflagellate molecular phylogenetic data viewed from a primarily morphological standpoint. Phycol Res 52:308–324

    CAS  Google Scholar 

  • Taylor FJR, Hoppenrath M, Saldarriaga JF (2007) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418

    Google Scholar 

  • Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19' hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729

    PubMed  CAS  Google Scholar 

  • Tippit DH, Pickett-Heaps JD (1976) Apparent amitosis in the binucleate dinoflagellate Peridinium balticum. J Cell Sci 21:273–289

    PubMed  CAS  Google Scholar 

  • Tomas RN, Cox ER (1973) Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure. J Phycol 9:304–323

    Google Scholar 

  • van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977

    PubMed  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    PubMed  CAS  Google Scholar 

  • Vesk M, Dibbayawan TP, Vesk PA (1996) Immunogold localization of phycoerythrin in chloroplasts of Dinophysis acuminata and D. fortii (Dinophysiales, Dinophyta). Phycologia 35:234–238

    Google Scholar 

  • Wägele H, Martin WF (2013) Endosymbioses in sacoglossan seaslugs: plastid-bearing animals that keep photosynthetic organelles without borrowing genes. In: Löffelhardt W (ed) Endosymbiosis. Springer, Wien New York, pp 291–324

    Google Scholar 

  • Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245

    PubMed  CAS  Google Scholar 

  • Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6:349–371

    PubMed  Google Scholar 

  • Wang Y, Morse D (2006) The plastid-encoded psbA gene in the dinoflagellate Gonyaulax is not encoded on a minicircle. Gene 371:206–210

    PubMed  CAS  Google Scholar 

  • Wang Y, Joly S, Morse D (2008) Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes. J Mol Evol 66:175–184

    PubMed  CAS  Google Scholar 

  • Watkins SM, Reich A, Fleming LE, Hammond R (2008) Neurotoxic shellfish poisoning. Mar Drugs 6:431–455

    PubMed  CAS  Google Scholar 

  • Whitney SM, Shaw DC, Yellowlees D (1995) Evidence that some dinoflagellates contain a ribulose-1, 5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Proc Biol Sci 259:271–275

    PubMed  CAS  Google Scholar 

  • Wilcox LW, Wedemayer GJ (1984) Gymnodinium acidotum Nygaard (Pyrrophyta), a dinoflagellate with an endosymbiotic cryptomonad. J Phycol 20:236–242

    Google Scholar 

  • Wilcox LW, Wedemayer GJ (1985) Dinoflagellate with blue-green chloroplasts derived from an endosymbiotic eukaryote. Science 227:192–194

    PubMed  CAS  Google Scholar 

  • Wisecaver J, Hackett J (2010) Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics 11:366

    PubMed  Google Scholar 

  • Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev Microbiol 65:369–387

    PubMed  CAS  Google Scholar 

  • Withers NW, Cox ER, Tomas R, Haxo FT (1977) Pigments of the dinoflagellate Peridinium balticum and its photosynthetic endosymbiont. J Phycol 13:354–358

    CAS  Google Scholar 

  • Yamaguchi H, Nakayama T, Kai A, Inouye I (2011) Taxonomy and phylogeny of a new kleptoplastidal dinoflagellate, Gymnodinium myriopyrenoides sp. nov. (Gymnodiniales, Dinophyceae), and its cryptophyte symbiont. Protist 162:650–667

    PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729

    PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL, Bhattacharya D (2005) Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22:1299–1308

    PubMed  CAS  Google Scholar 

  • Zapata M, Jeffrey S, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102

    CAS  Google Scholar 

  • Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier UG (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett 577:535–538

    PubMed  CAS  Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40

    PubMed  CAS  Google Scholar 

  • Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007a) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623

    PubMed  CAS  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S (2007b) A three-gene dinoflagellate phylogeny suggests monophyly of prorocentrales and a basal position for Amphidinium and Heterocapsa. J Mol Evol 65:463–474

    PubMed  CAS  Google Scholar 

  • Zhang H, Bhattacharya D, Maranda L, Lin S (2008) Mitochondrial cob and cox1 genes and editing of the corresponding mRNAs in Dinophysis acuminata from Narragansett Bay, with special reference to the phylogenetic position of the genus Dinophysis. Appl Environ Microbiol 74:1546–1554

    PubMed  CAS  Google Scholar 

  • Zhang Q, Liu G, Hu Z (2011) Morphological differences and molecular phylogeny of freshwater blooming species, Peridiniopsis spp. (Dinophyceae) from China. Eur J Protistol 47:149–160

    PubMed  Google Scholar 

  • Zhou C, Fernandez N, Chen H, You Y, Yan X (2011) Toxicological studies of Karlodinium micrum (Dinophyceae) isolated from East China Sea. Toxicon 57:9–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. P.J. Hansen for helpful comments. We also would like to thank Prof. W. Löffelhardt for inviting us to write this chapter and for his patience during its preparation. This work was supported by grant UMO-2011/01/N/NZ8/00150 to P. Gagat and P. Mackiewicz and Wrocław University grant 1069/S/KBEE/2012 to A. Bodył.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Mackiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Gagat, P., Bodył, A., Mackiewicz, P., Stiller, J.W. (2014). Tertiary Plastid Endosymbioses in Dinoflagellates. In: Löffelhardt, W. (eds) Endosymbiosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1303-5_13

Download citation

Publish with us

Policies and ethics