Skip to main content

Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors

  • Chapter
  • First Online:
Interaction of Immune and Cancer Cells
  • 2318 Accesses

Abstract

Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example of how the three phases of cancer immunoediting functionally evolve, and how a tumor shaped by the host immune system gets a finally resistant phenotype. Elimination, equilibrium, and escape are described in this chapter in detail, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, and resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

APCs:

Antigen-presenting cells

APM:

Antigen-processing machinery

CAFs:

Cancer-associated fibroblasts

CCR7:

C–C chemokine receptor type 7

CEA:

Carcinoembryonic antigen

COX:

Cyclooxygenase

CSCs:

Cancer stem cells

CSF-1:

Colony-stimulating factor-1

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

CTLs:

Cytotoxic T lymphocytes

CXCR1:

Interleukin 8 receptor, alpha

DCs:

Dendritic cells

DTCs:

Disseminated solitary tumor cells

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial–mesenchymal transition or transformation

EOC:

Epithelial ovarian cancer

FasL:

Fas ligand

FGF:

Fibroblast growth factor

GITR:

Glucocorticoid-induced tumor necrosis factor receptor

GLI:

Glioma-associated oncogene homolog

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

Hh:

Hedgehog signaling

HIF-1α:

Hypoxia-inducible factor-1α

HLA:

Human leukocyte antigen

HPV:

Human papilloma virus

Hsp:

Heat-shock protein

IAPs:

Inhibitor of apoptosis proteins

ICAM-1:

Intercellular adhesion molecule 1

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IGF:

Insulin-like growth factor

IL:

Interleukin

ILT:

Immunoglobulin-like transcript

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinases

MAPK:

Mitogen-activated protein kinases

M-CSF:

Macrophage colony-stimulating factor

MDSCs:

Myeloid-derived suppressor cells

MMPs:

Metalloproteinases

MVD:

Microvessel density

NF-κB:

Nuclear factor-κB

NK:

Natural killer cells

NKG2D:

Activating receptor of NK cells

NKT:

Natural killer T cells

NO:

nitric oxide

PBLs:

Peripheral blood lymphocytes

PD-1:

Programmed death-1 and its ligand PD-L1 (also called B7-H1)

PDGF:

Platelet-derived growth factor

PGE2 :

Prostaglandin E2

RANTES:

Regulated on activation, normal T-cell expressed and secreted (CCL5)

RCAS1:

Receptor-binding cancer antigen expressed on SiSo cells

RNS:

Reactive nitrogen species

ROI:

Reactive oxygen intermediates

STAT:

Signal transducer and activator of transcription

TAA:

Tumor-associated antigen

TAMs:

Tumor-associated macrophages

TANs:

Tumor-associated neutrophils

TAP:

Antigen peptide transporter

TCR:

T cell receptor

TEMs:

Tie-2-expressing monocytes/macrophages

TGF-β:

Transforming growth factor-β

TILs:

Tumor-infiltrating lymphocytes

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

Tr1 cells:

Type 1 regulatory T cells

TRAIL:

TNF-related apoptosis-inducing ligand

Tregs:

T regulatory cells

TSA:

Tumor specific antigen

uPAR:

Urokinase plasminogen activator receptor

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

References

  1. Liu B, Nash J, Runowicz C, Swede H, Stevens R, Li Z (2010) Ovarian cancer immunotherapy: opportunities, progresses and challenges. J Hematol Oncol 3:7–18

    PubMed  Google Scholar 

  2. Töpfer K, Kempe S, Müller N, Schmitz M, Bachmann M, Cartellieri M et al (2011) Tumor evasion from T cell surveillance. J Biomed Biotechnol. doi:10.1155/2011/918471

    PubMed  Google Scholar 

  3. Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27

    PubMed  CAS  Google Scholar 

  4. Poggi A, Zocchi MR (2006) Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp 54:323–333

    CAS  Google Scholar 

  5. Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3–15

    PubMed  CAS  Google Scholar 

  6. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    PubMed  CAS  Google Scholar 

  7. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    PubMed  CAS  Google Scholar 

  8. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14

    PubMed  CAS  Google Scholar 

  9. Wilczyński JR, Duechler M (2010) How do tumors actively escape from host immunosurveillance? Arch Immunol Ther Exp 58:435–448

    Google Scholar 

  10. Haanen JB, Baars A, Gomez R et al (2006) Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother 55:451–458

    PubMed  CAS  Google Scholar 

  11. Ishigami S, Natsugoe S, Tokuda K et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583

    PubMed  CAS  Google Scholar 

  12. Kondo E, Koda K, Takiguchi N, Oda K, Seike K, Ishizuka M, Miyazaki M (2003) Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer. Dig Surg 20:445–451

    PubMed  Google Scholar 

  13. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    PubMed  CAS  Google Scholar 

  14. Reichert TE, Day R, Wagner EM, Whiteside TL (1998) Absent or low expression of the zeta chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res 58:5344–5347

    PubMed  CAS  Google Scholar 

  15. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543

    PubMed  CAS  Google Scholar 

  16. Strater J, Hinz U, Hasel C, Bhanot U, Mechtersheimer G, Lehnert T, Moller P (2005) Impaired CD95 expression predisposes for recurrence in curatively resected colon carcinoma. Clinical evidence for immunoselection and CD95L mediated control of minimal residual disease. Gut 54:661–665

    PubMed  CAS  Google Scholar 

  17. Yoshimoto M, Sakamoto G, Ohashi Y (1993) Time dependency of the influence of prognostic factors on relapse in breast cancer. Cancer 72:2993–3001

    PubMed  CAS  Google Scholar 

  18. Yasunaga M, Tabira Y, Nakano K, Iida S, Ichimaru N, Nagamoto N, Sakaguchi T (2000) Accelerated growth signals and low tumor-infiltrating lymphocyte levels predict poor outcome in T4 esophageal squamous cell carcinoma. Ann Thorac Surg 70:1634–1640

    PubMed  CAS  Google Scholar 

  19. Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28

    PubMed  Google Scholar 

  20. Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:272–283

    Google Scholar 

  21. Mori S, Jewett A, Murakami-Mori K, Cavalcanti M, Bonavida B (1997) The participation of the Fas-mediated cytotoxic pathway by natural killer cells is tumor-cell-dependent. Cancer Immunol Immunother 44:282–290

    PubMed  CAS  Google Scholar 

  22. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    PubMed  CAS  Google Scholar 

  23. Takeda K, Hayakawa Y, Smyth MJ et al (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7:94–100

    PubMed  CAS  Google Scholar 

  24. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T (2003) A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 63:4095–4100

    PubMed  CAS  Google Scholar 

  25. Wall L, Burke F, Barton C, Smyth J, Balkwill F (2003) IFN-gamma induces apoptosis in ovarian cancer cells in vivo and in vitro. Clin Cancer Res 9:2487–2496

    PubMed  CAS  Google Scholar 

  26. Powell JD, Horton MR (2005) Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res 31:207–218

    PubMed  CAS  Google Scholar 

  27. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    PubMed  CAS  Google Scholar 

  28. Kim R, Emi M, Tanabe K (2005) Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther 4:924–933

    PubMed  CAS  Google Scholar 

  29. Uhr JW, Pantel K (2011) Controversies in clinical cancer dormancy. Proc Natl Acad Sci USA 108:12396–12400

    PubMed  CAS  Google Scholar 

  30. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91:80–85

    PubMed  CAS  Google Scholar 

  31. Marches R, Scheuermann R, Uhr JW (2006) Cancer dormancy. From mice to man. Cell Cycle 5:1772–1778

    PubMed  CAS  Google Scholar 

  32. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    PubMed  CAS  Google Scholar 

  33. Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G et al (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–1424

    PubMed  CAS  Google Scholar 

  34. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    PubMed  CAS  Google Scholar 

  35. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C et al (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    PubMed  CAS  Google Scholar 

  36. Li Y, Laterra J (2012) Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 72:576–580

    PubMed  CAS  Google Scholar 

  37. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y et al (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 108:9951–9956

    PubMed  CAS  Google Scholar 

  38. Po A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G et al (2010) Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J 29:2646–2658

    PubMed  CAS  Google Scholar 

  39. Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G et al (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3:196–206

    PubMed  CAS  Google Scholar 

  40. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–62

    PubMed  Google Scholar 

  41. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    PubMed  CAS  Google Scholar 

  42. Barnhill RL, Piepkorn MW, Cochran AJ, Flynn E, Karaoli T, Folkman J (1998) Tumor vascularity, proliferation, and apoptosis in human melanoma micrometastases and macrometastases. Arch Dermatol 134:991–994

    PubMed  CAS  Google Scholar 

  43. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146

    PubMed  CAS  Google Scholar 

  44. Black WC, Welch HG (1993) Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328:1237–1243

    PubMed  CAS  Google Scholar 

  45. Montie JE, Wood DP Jr, Pontes JE, Boyett JM, Levin HS (1989) Adenocarcinoma of the prostate in cystoprostatectomy specimens removed for bladder cancer. Cancer 63:381–385

    PubMed  CAS  Google Scholar 

  46. Feldman AR, Kessler L, Myers MH, Naughton MD (1986) The prevalence of cancer. Estimates based on the Connecticut Tumor Registry. N Engl J Med 315:1394–1397

    PubMed  CAS  Google Scholar 

  47. Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C et al (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13:441–453

    PubMed  CAS  Google Scholar 

  48. Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA (2012) Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res 195:25–39

    PubMed  Google Scholar 

  49. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100

    PubMed  CAS  Google Scholar 

  50. Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5:1799–1807

    PubMed  CAS  Google Scholar 

  51. Laufs S, Schumacher J, Allgayer H (2006) Urokinase-receptor (u-PAR): an essential player in multiple games of cancer. A review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5:e1–e12

    Google Scholar 

  52. Páez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y et al (2012) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18:645–653

    PubMed  Google Scholar 

  53. Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46:1181–1188

    PubMed  CAS  Google Scholar 

  54. Liu B, Peng D, Lu Y, Jin W, Fan Z (2002) A novel single amino acid deletion caspase-8 mutant in cancer cells that lost proapoptotic activity. J Biol Chem 277:30159–30164

    PubMed  CAS  Google Scholar 

  55. Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457

    PubMed  CAS  Google Scholar 

  56. Shibue T, Weinberg RA (2009) Integrin beta1–focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106:10290–10295

    PubMed  CAS  Google Scholar 

  57. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S et al (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118:3917–3929

    PubMed  CAS  Google Scholar 

  58. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    PubMed  CAS  Google Scholar 

  59. Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Rodrigues M, Dieras V, Mignot L et al (2008) Time to metastatic relapse and breast cancer cells dissemination in bone marrow at metastatic relapse. Clin Exp Metastasis 25:871–875

    PubMed  CAS  Google Scholar 

  60. Ossowski L, Russo H, Gartner M, Wilson EL (1987) Growth of a human carcinoma (HEp3) in nude mice: rapid and efficient metastasis. J Cell Physiol 133:288–296

    PubMed  CAS  Google Scholar 

  61. Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    PubMed  Google Scholar 

  62. Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27:67–73

    PubMed  Google Scholar 

  63. Castaño Z, Tracy K, McAllister SS (2011) The tumor macroenvironment and systemic regulation of breast cancer progression. Int J Dev Biol 55:889–897

    PubMed  Google Scholar 

  64. Teng MWL, Swann JB, Koebel CM, Schreiber RD, Smyth MJ (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84:988–993

    PubMed  CAS  Google Scholar 

  65. Granziero L, Krajewski S, Farness P, Yuan L, Courtney MK, Jackson MR et al (1999) Adoptive immunotherapy prevents prostate cancer in a transgenic animal model. Eur J Immunol 29:1127–1138

    PubMed  CAS  Google Scholar 

  66. Loeser S, Loser K, Bijker MS, Rangachari M, van der Burg SH, Wada T et al (2007) Spontaneous tumor rejection by cbl-b-deficient CD8+ T cells. J Exp Med 204:879–891

    PubMed  CAS  Google Scholar 

  67. Stewart TH, Hollinshead AC, Raman S (1991) Tumor dormancy: initiation, maintenance and termination in animals and humans. Can J Surg 134:321–325

    Google Scholar 

  68. Myron Kauffman H, McBride MA, Cherikh WS, Spain PC, Marks WH, Roza AM (2002) Transplant tumor registry: donor related malignancies. Transplantation 74:358–362

    PubMed  CAS  Google Scholar 

  69. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491

    PubMed  CAS  Google Scholar 

  70. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    PubMed  CAS  Google Scholar 

  71. Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B et al (2003) Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 63:6478–6487

    PubMed  CAS  Google Scholar 

  72. Kurts C, Kosaka H, Carbone FR, Miller JFAP, Heath WR (1997) Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8 + T cells. J Exp Med 186:239–245

    PubMed  CAS  Google Scholar 

  73. Campoli M, Ferrone S (2008) Tumor escape mechanisms: potential role of soluble HLA antigens and NK cells activating ligands. Tissue Antigens 72:321–334

    PubMed  CAS  Google Scholar 

  74. Dunn GP, Oki LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    PubMed  CAS  Google Scholar 

  75. Abdel-Wahab Z, Kalady MF, Emani S, Onaitis MW, Abdel-Wahab OI, Cisco R et al (2003) Induction of anti-melanoma CTL response using DC transfected with mutated mRNA encoding full-length Melan-A/MART-1 antigen with an A27L amino acid substitution. Cell Immunol 224:86–97

    PubMed  CAS  Google Scholar 

  76. Kageshita T, Kawakami Y, Ono T (2001) Clinical significance of MART-1 and HLA-A2 expression and CD8+ T cell infiltration in melanocytic lesions in HLA-A2 phenotype patients. J Dermatol Sci 25:36–44

    PubMed  CAS  Google Scholar 

  77. Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S (1998) β2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 101:2720–2729

    PubMed  CAS  Google Scholar 

  78. Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    PubMed  CAS  Google Scholar 

  79. Seliger B (2008) Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother 57:1719–1726

    PubMed  CAS  Google Scholar 

  80. Respa A, Bukur J, Ferrone S, Pawelec G, Zhao Y, Wang E et al (2011) Association of IFN-γ signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin Cancer Res 17:2668–2678

    PubMed  CAS  Google Scholar 

  81. Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S (2010) Immune suppression in head and neck cancers: a review. Clin Dev Immunol. doi:10.1155/2010/701657

    PubMed  Google Scholar 

  82. Chang CC, Murphy SP, Ferrone S (2003) Differential in vivo and in vitro HLA-G expression in melanoma cells: potential mechanisms. Hum Immunol 64:1057–1063

    PubMed  CAS  Google Scholar 

  83. Moreau P, Mouillot G, Rousseau P, Marcou C, Dausset J, Carosella ED (2003) HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA 100:1191–1196

    PubMed  CAS  Google Scholar 

  84. Urosevic M, Dummer R (2008) Human leukocyte antigen-G and cancer immunoediting. Cancer Res 68:627–630

    PubMed  CAS  Google Scholar 

  85. Gomes AQ, Correia DV, Silva-Santos B (2007) Non-classical major histocompatibility complex proteins as determinants of tumour immunosurveillance. EMBO Rep 8:1024–1030

    PubMed  CAS  Google Scholar 

  86. Sheu JJC, Shih IM (2007) Clinical and biological significance of HLA-G expression in ovarian cancer. Semin Cancer Biol 17:436–443

    PubMed  CAS  Google Scholar 

  87. Pistoia V, Morandi F, Wang X, Ferrone S (2007) Soluble HLA-G: are they clinically relevant? Semin Cancer Biol 17:469–479

    PubMed  CAS  Google Scholar 

  88. Liang S, Zhang W, Horuzsko A (2006) Human ILT2 receptor associates with murine MHC class I molecules in vivo and impairs T cell function. Eur J Immunol 36:2457–2471

    PubMed  CAS  Google Scholar 

  89. Duechler M, Wilczyński JR (2010) Hypoxia inducible factor-1 in cancer immune suppression. Curr Immunol Rev 6:260–271

    CAS  Google Scholar 

  90. Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED et al (2007) Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol 68:277–285

    PubMed  CAS  Google Scholar 

  91. Urosevic M, Dummer R (2003) HLA-G and IL-10 expression in human cancer—different stories with the same message. Semin Cancer Biol 13:337–342

    PubMed  CAS  Google Scholar 

  92. Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu M et al (2007) HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann Oncol 18:1804–1809

    PubMed  CAS  Google Scholar 

  93. Ugurel S, Rebmann V, Ferrone S, Tilgen W, Grosse-Wilde H, Reinhold U et al (2001) Soluble human leukocyte antigen-G serum level is elevated in melanoma patients and is further increased by interferon-a immunotherapy. Cancer 92:369–376

    PubMed  CAS  Google Scholar 

  94. Lin A, Zhang X, Ruan YY, Wang Q, Zhou WJ, Yan WH (2011) HLA-F expression is a prognostic factor in patients with non-small-cell lung cancer. Lung Cancer 74:504–509

    PubMed  Google Scholar 

  95. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    PubMed  CAS  Google Scholar 

  96. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress inducible MICA. Science 285:727–729

    PubMed  CAS  Google Scholar 

  97. Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    PubMed  CAS  Google Scholar 

  98. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106:1711–1717

    PubMed  CAS  Google Scholar 

  99. Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    PubMed  CAS  Google Scholar 

  100. Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    PubMed  CAS  Google Scholar 

  101. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N et al (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–580

    PubMed  CAS  Google Scholar 

  102. McGilvray RW, Eagle RA, Watson NFS, Al-Attar A, Ball G, Jafferji I et al (2009) NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res 15:6993–7002

    PubMed  CAS  Google Scholar 

  103. Byrne SN, Halliday GM (2003) High levels of Fas ligand and MHC class II in the absence of CD80 or CD86 expression and a decreased CD4+ T cell infiltration enables murine skin tumours to progress. Cancer Immunol Immunother 52:396–402

    PubMed  CAS  Google Scholar 

  104. He C, Qiao H, Jiang H, Sun X (2011) The inhibitory role of B7-H4 in antitumor immunity: association with cancer progression and survival. Clin Dev Immunol. doi:10.1155/2011/695834

    Google Scholar 

  105. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA et al (2007) B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci USA 104:19458–19463

    PubMed  CAS  Google Scholar 

  106. Frigola X, Inman BA, Lohse CM, Krco CJ, Cheville JC, Thompson RH et al (2011) Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin Cancer Res 17:1915–1923

    PubMed  CAS  Google Scholar 

  107. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871–881

    PubMed  CAS  Google Scholar 

  108. Palucka K, Ueno H, Fay J, Banchereau J (2011) Dendritic cells and immunity against cancer. J Intern Med 269:64–73

    PubMed  CAS  Google Scholar 

  109. Zhu G, Augustine MM, Azuma T, Luo L, Yao S, Anand S et al (2009) B7-H4-deficient mice display augmented neutrophil-mediated innate immunity. Blood 113:1759–1767

    PubMed  CAS  Google Scholar 

  110. Salceda S, Tang T, Kmet M, Munteanu A, Ghosh M, Macina R et al (2005) The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp Cell Res 306:128–141

    PubMed  CAS  Google Scholar 

  111. Cheng L, Jiang J, Gao R, Wei S, Nan F, Li S et al (2009) B7-H4 expression promotes tumorigenesis in ovarian cancer. Int J Gynecol Cancer 19:1481–1486

    PubMed  Google Scholar 

  112. Tringler B, Zhuo S, Pilkington G, Torkko KC, Singh M, Lucia MS et al (2005) B7-H4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res 11:1842–1848

    PubMed  CAS  Google Scholar 

  113. Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M et al (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538

    PubMed  CAS  Google Scholar 

  114. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    PubMed  CAS  Google Scholar 

  115. Pittet MJ, Zippelius A, Valmori D, Speiser DE, Cerottini JC, Romero P (2002) Melan-A/MART-1-specific CD8 T cells: from thymus to tumor. Trends Immunol 23:325–328

    PubMed  CAS  Google Scholar 

  116. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR et al (1997) Phenotypic and functional separation of memory and effector human CD8 T cells. J Exp Med 186:1407–1418

    PubMed  CAS  Google Scholar 

  117. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U (2003) Natural T cell immunity against cancer. Clin Cancer Res 9:4296–4303

    PubMed  CAS  Google Scholar 

  118. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685

    PubMed  CAS  Google Scholar 

  119. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365

    PubMed  CAS  Google Scholar 

  120. Bamias A, Koutsoukou V, Terpos E, Tsiatas ML, Liakos C, Tsitsilonis O et al (2008) Correlation of NKT-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNF alpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line platinum based chemotherapy. Gynecol Oncol 108:421–427

    PubMed  CAS  Google Scholar 

  121. Lockhart DC, Chan AK, Mak S, Joo HG, Daust HA, Carritte A et al (2001) Loss of T-cell receptor-CD3zeta and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma. Surgery 129:749–756

    PubMed  CAS  Google Scholar 

  122. Chen CK, Wu MY, Chao KH, Ho HN, Sheu BC, Huang SC (1999) T lymphocytes and cytokine production in ascitic fluid in ovarian malignancies. J Formos Med Assoc 98:24–30

    PubMed  CAS  Google Scholar 

  123. Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T (1999) A human IAP family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 264:847–854

    PubMed  CAS  Google Scholar 

  124. Santin AD, Bellone S, Ravaggi A, Roman J, Smith CV, Pecorelli S et al (2001) Increased levels of interleukin-10 and transforming growth factor-β in the plasma and ascitic fluid of patients with advanced ovarian cancer. BJOG 108:804–808

    PubMed  CAS  Google Scholar 

  125. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Roman JJ, Smith CV et al (2001) Phenotypic and functional analysis of tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from ascitic fluid and peripheral blood lymphocytes in patients with advanced ovarian cancer. Gynecol Obstet Invest 51:254–261

    PubMed  CAS  Google Scholar 

  126. Frey AB, Monu N (2006) Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J Leukoc Biol 79:652–662

    PubMed  CAS  Google Scholar 

  127. Piver MS, Mettlin CJ, Tsukada Y, Nasca P, Greenwald P, McPhee ME (1984) Familial Ovarian Cancer Registry. Obstet Gynecol 64:195–199

    PubMed  CAS  Google Scholar 

  128. Kryczek I, Wei S, Zhu G, Myers L, Mottram P, Cheng P et al (2007) Relationship between B7-H4 regulatory cells and patients outcome in human ovarian carcinoma. Cancer Res 67:8900–8905

    PubMed  CAS  Google Scholar 

  129. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G et al (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72

    PubMed  CAS  Google Scholar 

  130. Zubieta MR, Furman D, Barrio M, Bravo AI, Domenichini E, Mordoh J (2006) Galectin-3 expression correlates with apoptosis of tumor-associated lymphocytes in human melanoma biopsies. Am J Pathol 168:1666–1675

    PubMed  CAS  Google Scholar 

  131. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R

    PubMed  CAS  Google Scholar 

  132. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17:6985–6991

    PubMed  CAS  Google Scholar 

  133. Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734

    PubMed  CAS  Google Scholar 

  134. Kooi S, Freedman RS, Rodriquez-Villanueva J, Platsoucas CD (1993) Cytokine production by T-cell lines derived from tumor-infiltrating lymphocytes from patients with ovarian carcinoma: tumor-specific immune responses and inhibition of antigen-independent cytokine production by ovarian tumor cells. Lymphokine Cytokine Res 12:429–437

    PubMed  CAS  Google Scholar 

  135. Melichar B, Nash MA, Lenzi R, Platsoucas CD, Freedman RS (2000) Expression of costimulatory molecules CD80 and CD86 and their receptors CD28 and CTLA-4 on malignant ascites CD3+ tumor-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol 119:19–27

    PubMed  CAS  Google Scholar 

  136. Santin AD, Bellone S, Palmieri M, Bossini B, Cane’ S, Bignotti E et al (2004) Restoration of tumor specific human leukocyte antigens class I-restricted cytotoxicity by dendritic cell stimulation of tumor infiltrating lymphocytes in patients with advanced ovarian cancer. Int J Gynecol Cancer 14:64–75

    PubMed  CAS  Google Scholar 

  137. Freedman RS, Deavers M, Liu J, Wang E (2004) Peritoneal inflammation — a microenvironment for epithelial ovarian cancer (EOC). J Transl Med 2:23–33

    PubMed  Google Scholar 

  138. Klink M, Kielbik M, Nowak M, Bednarska K, Sulowska Z (2012) JAK3, STAT3 and CD3-zeta signaling proteins status in regard to the lymphocytes function in patients with ovarian cancer. Immunol Invest 41(4):382–398

    PubMed  CAS  Google Scholar 

  139. Klink M, Nowak M, Kielbik M, Bednarska K, Blus E, Szpakowski M et al (2012) The interaction of HspA1A with TLR2 and TLR4 in the response of neutrophils induced by ovarian cancer cells in vitro. Cell Stress Chaperones 17(6):661–674

    PubMed  CAS  Google Scholar 

  140. Wilczynski JR, Kalinka J, Radwan M (2008) The role of T-regulatory cells in pregnancy and cancer. Front Biosci 13:2275–2289

    PubMed  CAS  Google Scholar 

  141. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H et al (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122:2286–2293

    PubMed  CAS  Google Scholar 

  142. Janikashvili N, Bonnotte B, Katsanis E, Larmonier N (2011) The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol. doi:10.1155/2011/430394

    PubMed  Google Scholar 

  143. Yuan XL, Chen L, Zhang TT, Ma YH, Zhou YL, Zhao Y et al (2011) Gastric cancer cells induce human CD4+Foxp3+ regulatory T cells through the production of TGF-β1. World J Gastroenterol 17:2019–2027

    PubMed  CAS  Google Scholar 

  144. Amedei A, Della Bella C, Silvestri E, Prisco D, D’Elios MM (2012) T cells in gastric cancer: friends or foes? Clin Dev Immunol. doi:10.1155/2012/690571

    PubMed  Google Scholar 

  145. Cannon MJ, Goyne H, Stone PJB, Chiriva-Internati M (2011) Dendritic cell vaccination against ovarian cancer — tipping the Treg/Th17 balance to therapeutic advantage? Expert Opin Biol Ther 11:441–445

    PubMed  CAS  Google Scholar 

  146. Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P et al (2009) Indoleamine 2,3 dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111

    PubMed  CAS  Google Scholar 

  147. Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH et al (2009) Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 11:555–563

    Google Scholar 

  148. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y et al (2005) Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 11:6030–6039

    PubMed  CAS  Google Scholar 

  149. Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A et al (2009) Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol 115:185–192

    PubMed  CAS  Google Scholar 

  150. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  151. Hiura T, Kagamu H, Miura S, Ishida A, Tanaka H, Tanaka J et al (2005) Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J Immunol 175:5058–5066

    PubMed  CAS  Google Scholar 

  152. Nishikawa H, Kato T, Tawara I, Ikeda H, Kuribayashi K, Allen PM et al (2005) IFN-γ controls the generation/activation of CD4+CD25+ regulatory T cells in antitumor immune response. J Immunol 175:4433–4440

    PubMed  CAS  Google Scholar 

  153. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-ß-dependent manner. J Exp Med 202:1075–1085

    PubMed  CAS  Google Scholar 

  154. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    PubMed  CAS  Google Scholar 

  155. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL et al (2009) Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 69:5996–6004

    PubMed  CAS  Google Scholar 

  156. Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M et al (2007) Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10. Cancer Immunol Immunother 56:48–59

    PubMed  CAS  Google Scholar 

  157. Biragyn A, Longo DL (2012) Neoplastic “black ops”: cancer’s subversive tactics in overcoming host defenses. Semin Cancer Biol 22:50–59

    PubMed  CAS  Google Scholar 

  158. Baltz KM, Krusch M, Bringmann A, Brossart P, Mayer F, Kloss M et al (2007) Cancer immunoediting by GITR (glucocorticoid induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J 21:2442–2454

    PubMed  CAS  Google Scholar 

  159. Erdman SE, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T et al (2010) Unifying roles for regulatory T cells and inflammation in cancer. Int J Cancer 126:1651–1665

    PubMed  CAS  Google Scholar 

  160. Mhawech-Fauceglia P, Wang D, Ali L, Lele S, Huba MA, Liu S et al (2013) Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. Cancer Immun 13:1–6

    PubMed  Google Scholar 

  161. Fiore F, Nuschak B, Peola S, Mariani S, Muraro M, Foglietta M et al (2005) Exposure to myeloma cell lysates affects the immune competence of dendritic cells and favors the induction of Tr1-like regulatory T cells. Eur J Immunol 35:1155–1163

    PubMed  CAS  Google Scholar 

  162. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE et al (1997) CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742

    PubMed  CAS  Google Scholar 

  163. Loskog A, Ninalga C, Paul-Wetterberg G, de la Torre M, Malmström PU, Tötterman TH (2007) Human bladder carcinoma is dominated by T-regulatory cells and Th1 inhibitory cytokines. J Urol 177:353–358

    PubMed  Google Scholar 

  164. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    PubMed  CAS  Google Scholar 

  165. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873

    PubMed  CAS  Google Scholar 

  166. Zhang X, Huang H, Yuan J, Sun D, Hou WS, Gordon J et al (2005) CD4-8-dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J Immunol 175:2931–2937

    PubMed  CAS  Google Scholar 

  167. MacDonald TT (1998) T cell immunity to oral allergens. Curr Opin Immunol 10:620–627

    PubMed  CAS  Google Scholar 

  168. Seo N, Hayakawa S, Tokura Y (2002) Mechanisms of immune privilege for tumor cells by regulatory cytokines produced by innate and acquired immune cells. Semin Cancer Biol 12:291–300

    PubMed  CAS  Google Scholar 

  169. Castellino F, Germain RN (2006) Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 24:519–540

    PubMed  CAS  Google Scholar 

  170. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    PubMed  CAS  Google Scholar 

  171. Bi Y, Liu G, Yang R (2007) Th17 cell induction and immune regulatory effects. J Cell Physiol 211:273–278

    PubMed  CAS  Google Scholar 

  172. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641

    PubMed  CAS  Google Scholar 

  173. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA 105:15505–15510

    PubMed  CAS  Google Scholar 

  174. Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A et al (2009) The tumor-promoting actions of TNF-a involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119:3011–3023

    PubMed  CAS  Google Scholar 

  175. Numasaki M, Fukushi JI, Ono M, Narula SK, Zavodny PJ, Kudo T et al (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101:2620–2627

    PubMed  CAS  Google Scholar 

  176. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465

    PubMed  CAS  Google Scholar 

  177. Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautès-Fridman C et al (2002) Interleukin-17 inhibits tumor cell growth by means of a T-cell dependent mechanism. Blood 99:2114–2121

    PubMed  CAS  Google Scholar 

  178. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    PubMed  CAS  Google Scholar 

  179. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149

    PubMed  CAS  Google Scholar 

  180. Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348

    PubMed  CAS  Google Scholar 

  181. Molling JW, Langius JA, Langendijk JA, Leemans CR, Bontkes HJ, van der Vliet HJ et al (2007) Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25:862–868

    PubMed  Google Scholar 

  182. Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H et al (2005) Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11:7322–7327

    PubMed  CAS  Google Scholar 

  183. Subleski JJ, Hall VL, Back TC, Ortaldo JR, Wiltrout RH (2006) Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the liver. Cancer Res 66:11005–11012

    PubMed  CAS  Google Scholar 

  184. Crowe NY, Smyth MJ, Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196:119–127

    PubMed  CAS  Google Scholar 

  185. Halder RC, Aguilera C, Maricic I, Kumar V (2007) Type II NK T cell-mediated anergy induction in type I NK T cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312

    PubMed  CAS  Google Scholar 

  186. Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520

    PubMed  CAS  Google Scholar 

  187. Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985–992

    PubMed  CAS  Google Scholar 

  188. Ishikawa E, Motohashi S, Ishikawa A, Ito T, Uchida T, Kaneko T et al (2005) Dendritic cell maturation by CD11c-T cells and Valpha24+ natural killer T-cell activation by alpha-galactosylceramide. Int J Cancer 117:265–273

    PubMed  CAS  Google Scholar 

  189. van der Vliet HJ, Wang R, Yue SC, Koon HB, Balk SP, Exley MA (2008) Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J Immunol 180:7287–7293

    PubMed  Google Scholar 

  190. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD et al (2003) Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752

    PubMed  CAS  Google Scholar 

  191. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65:11743–11751

    PubMed  CAS  Google Scholar 

  192. Zusman T, Lisansky E, Arons E, Anavi R, Bonnerot C, Sautes C et al (1996) Contribution of the intracellular domain of murine Fc-gamma receptor type IIB1 to its tumor-enhancing potential. Int J Cancer 68:219–227

    PubMed  CAS  Google Scholar 

  193. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    PubMed  Google Scholar 

  194. Rowley DA, Stach RM (1998) B lymphocytes secreting IgG linked to latent transforming growth factor beta prevent primary cytolytic T lymphocyte responses. Int Immunol 10:355–363

    PubMed  CAS  Google Scholar 

  195. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305

    PubMed  CAS  Google Scholar 

  196. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    PubMed  Google Scholar 

  197. Schreiber H, Wu TH, Nachman J, Rowley DA (2000) Immunological enhancement of primary tumor development and its prevention. Semin Cancer Biol 10:351–357

    PubMed  CAS  Google Scholar 

  198. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K et al (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T regulatory cells. Cancer Res 71:3505–3515

    PubMed  CAS  Google Scholar 

  199. Sica A, Porta C, Morlacchi S, Banfi S, Strauss L, Rimoldi M et al (2012) Origin and functions of tumor-associated myeloid cells (TAMCs). Cancer Microenviron 5:133–149

    PubMed  CAS  Google Scholar 

  200. Bennaceur K, Chapman JA, Touraine JL, Portoukalian J (2009) Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta 1795:16–24

    PubMed  CAS  Google Scholar 

  201. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65

    PubMed  CAS  Google Scholar 

  202. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563

    PubMed  CAS  Google Scholar 

  203. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026

    PubMed  CAS  Google Scholar 

  204. Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K (2006) Hyporesponsiveness to natural killer T-cell ligand alpha-galactosylceramide in cancer-bearing state mediated by CD11b+ Gr-1+ cells producing nitric oxide. Cancer Res 66:11441–11446

    PubMed  CAS  Google Scholar 

  205. Rodriguez PC, Ochoa AC (2006) T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol 16:66–72

    PubMed  CAS  Google Scholar 

  206. Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55:237–245

    PubMed  Google Scholar 

  207. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    PubMed  CAS  Google Scholar 

  208. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    PubMed  CAS  Google Scholar 

  209. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressory cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    PubMed  CAS  Google Scholar 

  210. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    PubMed  CAS  Google Scholar 

  211. Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA et al (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208

    PubMed  CAS  Google Scholar 

  212. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    PubMed  CAS  Google Scholar 

  213. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    PubMed  CAS  Google Scholar 

  214. Kusmartsev S, Nagaraj S, Gabrilovich DI (2005) Tumor associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592

    PubMed  CAS  Google Scholar 

  215. Srivastava MK, Andersson Å, Zhu L, Harris-White M, Lee JM, Dubinett S et al (2012) Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy 4:291–304

    PubMed  CAS  Google Scholar 

  216. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    PubMed  CAS  Google Scholar 

  217. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    PubMed  CAS  Google Scholar 

  218. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891

    PubMed  CAS  Google Scholar 

  219. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B et al (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419

    PubMed  CAS  Google Scholar 

  220. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18

    PubMed  CAS  Google Scholar 

  221. Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 264:204–215

    Google Scholar 

  222. Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123:97–102

    PubMed  CAS  Google Scholar 

  223. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    PubMed  CAS  Google Scholar 

  224. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102

    PubMed  CAS  Google Scholar 

  225. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134

    PubMed  CAS  Google Scholar 

  226. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    PubMed  CAS  Google Scholar 

  227. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V et al (2005) SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374

    PubMed  CAS  Google Scholar 

  228. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L et al (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432–11440

    PubMed  CAS  Google Scholar 

  229. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    PubMed  CAS  Google Scholar 

  230. Mantovani A, Porta C, Rubino L, Allavena P, Sica A (2006) Tumor-associated macrophages (TAMs) as new target in anticancer therapy. Drug Discov Today Ther Strateg 3:361–366

    Google Scholar 

  231. Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52

    PubMed  CAS  Google Scholar 

  232. Talks KL, Turley H, Gatter HC, Maxwell PH, Pugh CW, Ratcliffe PJ et al (2000) The expression and distribution of the hypoxia inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421

    PubMed  CAS  Google Scholar 

  233. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    PubMed  CAS  Google Scholar 

  234. Wojtowicz-Praga S (2003) Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. Invest New Drugs 21:21–32

    PubMed  CAS  Google Scholar 

  235. Walker RA, Dearing SJ, Gallacher B (1994) Relationship of transforming growth factor beta 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma. Br J Cancer 69:1160–1165

    PubMed  CAS  Google Scholar 

  236. Sapi E (2004) The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med 229:1–11

    CAS  Google Scholar 

  237. Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B et al (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59:4681–4687

    PubMed  CAS  Google Scholar 

  238. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    PubMed  CAS  Google Scholar 

  239. Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K et al (2001) Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92:1085–1091

    PubMed  CAS  Google Scholar 

  240. Valkovic T, Lucin K, Krstulja M, Dobi-Babić R, Jonjić N (1998) Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract 194:335–340

    PubMed  CAS  Google Scholar 

  241. Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S et al (1995) The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 95:2391–2396

    PubMed  CAS  Google Scholar 

  242. Zhou C, Borillo J, Wu J, Torres L, Lou YH (2004) Ovarian expression of chemokines and their receptors. J Reprod Immunol 63:1–9

    PubMed  CAS  Google Scholar 

  243. Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167:195–205

    PubMed  CAS  Google Scholar 

  244. Gordon IO, Freedman RS (2006) Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res 12:1515–1524

    PubMed  CAS  Google Scholar 

  245. Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS (1999) Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol 163:6251–6260

    PubMed  CAS  Google Scholar 

  246. Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76:S11–S22

    PubMed  Google Scholar 

  247. Grimshaw MJ, Naylor S, Balkwill FR (2002) Endothelin-2 is a hypoxia induced autocrine survival factor for breast tumor cells. Mol Cancer Ther 1:1273–1281

    PubMed  CAS  Google Scholar 

  248. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    PubMed  CAS  Google Scholar 

  249. Kim J, Kim C, Kim TS, Bang SI, Yang Y, Park H et al (2006) IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun 344:1284–1289

    PubMed  CAS  Google Scholar 

  250. Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J et al (2006) Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophospatidic acid induces ovarian tumor metastasis in vivo. Cancer Res 66:7983–7990

    PubMed  CAS  Google Scholar 

  251. Sierra JR, Corso S, Caione L, Cepero V, Conrotto P, Cignetti A et al (2008) Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor associated macrophages. J Exp Med 205:1673–1685

    PubMed  CAS  Google Scholar 

  252. Loges S, Schmidt T, Tjwa M, van Geyte K, Lievens D, Lutgens E et al (2010) Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 115:2264–2273

    PubMed  CAS  Google Scholar 

  253. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13:135–141

    PubMed  CAS  Google Scholar 

  254. Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879–892

    PubMed  CAS  Google Scholar 

  255. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    PubMed  CAS  Google Scholar 

  256. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    PubMed  CAS  Google Scholar 

  257. Thomsen LL, Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 7:107–118

    Google Scholar 

  258. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J et al (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164:762–767

    PubMed  CAS  Google Scholar 

  259. Huang C, Li J, Ma WY (1999) NK activation is required for JB6 cell transformation induced by tumor necrosis factor-alpha but not by 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem 274:29672–29676

    PubMed  CAS  Google Scholar 

  260. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    PubMed  CAS  Google Scholar 

  261. Reiman JM, Kmieciak M, Manjili MH, Knutson KL (2007) Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol 17:275–287

    PubMed  CAS  Google Scholar 

  262. Berger-Achituv S, Brinkmann V, Abu Abed U, Kühn LI, Ben-Ezra J, Elhasid R et al (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4:1–5

    Google Scholar 

  263. Dong C, Robertson GP (2009) Immunoediting of leukocyte functions within the tumor microenvironment promotes cancer metastasis development. Biorheology 46:265–279

    PubMed  CAS  Google Scholar 

  264. Klink M, Jastrzembska K, Nowak M, Bednarska K, Szpakowski M, Szyllo K, Sulowska Z (2008) Ovarian cancer cells modulate human blood neutrophils response to activation in vitro. Scand J Immunol 68(3):328–336

    PubMed  CAS  Google Scholar 

  265. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    PubMed  Google Scholar 

  266. Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121:1969–1973

    PubMed  CAS  Google Scholar 

  267. Colonna TGM, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226

    PubMed  CAS  Google Scholar 

  268. O’Neill ASDW, Bhardwaj N (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104:2235–2246

    PubMed  Google Scholar 

  269. Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35:459–483

    PubMed  CAS  Google Scholar 

  270. Liu Y, Bi X, Xu S, Xiang J (2005) Tumor-infiltrating dendritic cell subsets of progressive or regressive tumors induce suppressive or protective immune responses. Cancer Res 65:4955–4962

    PubMed  CAS  Google Scholar 

  271. Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S et al (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426

    PubMed  CAS  Google Scholar 

  272. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346

    PubMed  CAS  Google Scholar 

  273. Boissonnas A, Licata F, Poupel L, Jacquelin S, Fetler L, Krumeich S et al (2013) Tumor-infiltrating T cells are trapped in the tumor-dendritic cell network. Neoplasia 15:85–94

    PubMed  CAS  Google Scholar 

  274. Gabrilovich DI, Ishida T, Nadaf S, Ohm J, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5:2963–2970

    PubMed  CAS  Google Scholar 

  275. Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyay D (2005) Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun 334:193–198

    PubMed  CAS  Google Scholar 

  276. Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J et al (2012) Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 209:495–506

    PubMed  CAS  Google Scholar 

  277. Fan XH, Han BH, Dong QG, Sha HF, Bao GL, Liao ML (2003) [Vascular endothelial growth factor inhibits dendritic cells from patients with non-small cell lung carcinoma]. Zhonghua Jie He He Hu Xi Za Zhi 26:539–543

    PubMed  Google Scholar 

  278. Takahashi A (2004) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53:543–550

    PubMed  CAS  Google Scholar 

  279. Huarte E, Cubillos-Ruiz JR, Nesbeth JC, Scarlett UK, Martinez DG, Buckanovich RJ et al (2008) Depletion of dendritic cells delays ovarian cancer progression by boosting anti-tumor immunity. Cancer Res 68:7684–7691

    PubMed  CAS  Google Scholar 

  280. Coukos G, Benencia F, Buckanovich RJ, Conejo-Garcia JR (2005) The role of dendritic cell precursors in tumour vasculogenesis. Br J Cancer 92:1182–1187

    PubMed  CAS  Google Scholar 

  281. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237

    PubMed  CAS  Google Scholar 

  282. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB et al (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    PubMed  CAS  Google Scholar 

  283. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    PubMed  CAS  Google Scholar 

  284. von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS et al (2006) CD25 and indoleamine 2,3-dioxygenase are upregulated by prostaglandin E2 and expressed by tumor associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237

    Google Scholar 

  285. Dercamp C, Chemin K, Caux C, Trinchieri G, Vicari AP (2005) Distinct and overlapping roles of interleukin-10 and CD25+ regulatory T cells in the inhibition of antitumor CD8 T-cell responses. Cancer Res 65:8479–8486

    PubMed  CAS  Google Scholar 

  286. Chen YQ, Shi HZ, Qin XJ, Mo WN, Liang XD, Huang ZX et al (2005) CD4+CD25+ regulatory T lymphocytes in malignant pleural effusion. Am J Respir Crit Care Med 172:1434–1439

    PubMed  Google Scholar 

  287. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J (2001) Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin Exp Immunol 126:220–229

    PubMed  CAS  Google Scholar 

  288. McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI et al (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci USA 103:1041–1046

    PubMed  CAS  Google Scholar 

  289. Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H et al (2011) Tumor infiltrating PD-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186:6905–6913

    PubMed  CAS  Google Scholar 

  290. Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P et al (2005) Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65:5020–5026

    PubMed  CAS  Google Scholar 

  291. Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A et al (2011) Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res 71:5423–5434

    PubMed  CAS  Google Scholar 

  292. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    PubMed  CAS  Google Scholar 

  293. Li WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest 115:1175–1183

    Google Scholar 

  294. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    PubMed  CAS  Google Scholar 

  295. Smyth GP, Stapleton PP, Barden CB, Mestre JR, Freeman TA, Duff MD et al (2003) Renal cell carcinoma induces prostaglandin E2 and T-helper type 2 cytokine production in peripheral blood mononuclear cells. Ann Surg Oncol 10:455–462

    PubMed  Google Scholar 

  296. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    PubMed  CAS  Google Scholar 

  297. Shan W, Yang G, Liu J (2009) The inflammatory network: bridging senescent stroma and epithelial tumorigenesis. Front Biosci 14:4044–4057

    CAS  Google Scholar 

  298. Coppe JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    PubMed  CAS  Google Scholar 

  299. Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA et al (2006) The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci USA 103:16472–16477

    PubMed  CAS  Google Scholar 

  300. Goldstein MG, Li Z (2009) Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. J Hematol Oncol 2:5–15

    PubMed  Google Scholar 

  301. Sun J, Wiklund F, Hsu FC, Bälter K, Zheng SL, Johansson JE et al (2006) Interactions of sequence variants in interleukin-1 receptor-associated kinase 4 and the toll-cell receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomarkers Prev 15:480–485

    PubMed  CAS  Google Scholar 

  302. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    PubMed  CAS  Google Scholar 

  303. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNF-α to TRAIL-mediated tumor regression. Cancer Cell 6:297–305

    PubMed  CAS  Google Scholar 

  304. Jego G, Bataille R, Geffroy-Luseau A, Descamps G, Pellat-Deceunynck C (2006) Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 20:1130–1137

    PubMed  CAS  Google Scholar 

  305. Mor G, Yin G, Chefetz I, Yang Y, Alvero A (2011) Ovarian cancer stem cells and inflammation. Cancer Biol Ther 11:708–713

    PubMed  Google Scholar 

  306. Berger R, Fiegl H, Goebel G, Obexer P, Ausserlechner M, Doppler W et al (2010) Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. Cancer Sci 101:1059–1066

    PubMed  CAS  Google Scholar 

  307. Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C et al (2002) Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 101:415–422

    PubMed  CAS  Google Scholar 

  308. Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275–290

    PubMed  CAS  Google Scholar 

  309. Mocellin S, Rossi CR, Pilati P, Nitti D (2005) Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 16:35–53

    PubMed  CAS  Google Scholar 

  310. Takeyama H, Wakamiya N, O’Hara C, Arthur K, Niloff J, Kufe D et al (1991) Tumor necrosis factor expression by human ovarian carcinoma in vivo. Cancer Res 51:4476–4480

    PubMed  CAS  Google Scholar 

  311. Daraï E, Detchev R, Hugol D, Quang NT (2003) Serum and cyst fluid levels of interleukin (IL)-6, IL-8 and tumour necrosis factor-alpha in women with endometriomas and benign and malignant cystic ovarian tumours. Hum Reprod 18:1681–1685

    PubMed  Google Scholar 

  312. Dobrzycka B, Terlikowski SJ, Garbowicz M, Niklińska W, Bernaczyk PS, Nikliński J et al (2009) Tumor necrosis factor-α and its receptors in epithelial ovarian cancer. Folia Histochem Cytobiol 47:609–613

    PubMed  Google Scholar 

  313. Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG et al (2012) A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 72:66–75

    PubMed  CAS  Google Scholar 

  314. Kim SW, Kim JS, Papadopoulos J, Choi HJ, He J, Maya M et al (2011) Consistent interactions between tumor cell IL-6 and macrophage TNF-α enhance the growth of human prostate cancer cells in the bone of nude mouse. Int Immunopharmacol 11:859–869

    Google Scholar 

  315. Tse BWC, Scott KF, Russell PJ (2012) Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer 2012:128965. doi:10.1155/2012/128965

    PubMed  Google Scholar 

  316. Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41:2502–2512

    PubMed  CAS  Google Scholar 

  317. Haura EB, Turkson J, Jove R (2005) Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol 2:315–324

    PubMed  CAS  Google Scholar 

  318. Min H, Wei-Hong Z (2009) Constitutive activation of signal transducer and activator of transcription 3 in epithelial ovarian carcinoma. J Obstet Gynaecol Res 35:918–925

    PubMed  Google Scholar 

  319. Zhang X, Liu P, Zhang B, Wang A, Yang M (2010) Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet 197:46–53

    PubMed  CAS  Google Scholar 

  320. Zhang Z, Zhou B, Zhang J, Chen Y, Lai T, Yan L et al (2010) Association of interleukin-23 receptor gene polymorphisms with risk of ovarian cancer. Cancer Genet Cytogenet 196:146–152

    PubMed  CAS  Google Scholar 

  321. Berger FG (2004) The interleukin-6 gene: a susceptibility factor that may contribute to racial and ethnic disparities in breast cancer mortality. Breast Cancer Res Treat 88:281–285

    PubMed  CAS  Google Scholar 

  322. Nash MA, Ferrandina G, Gordinier M, Loercher A, Freedman RS (1999) The role of cytokines in both the normal and malignant ovary. Endocrine Relat Cancer 6:93–107

    CAS  Google Scholar 

  323. Lane D, Matte I, Rancourt C, Piche A (2011) Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer 11:210–216

    PubMed  CAS  Google Scholar 

  324. Macciò A, Lai P, Santona MC, Pagliara L, Melis GB, Mantovani G (1998) High serum levels of soluble IL-2 receptor, cytokines, and C reactive protein correlate with impairment of T cell response in patients with advanced epithelial ovarian cancer. Gynecol Oncol 69:248–252

    PubMed  Google Scholar 

  325. Jeannin P, Duluc D, Delneste Y (2011) IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-c. Immunotherapy 3:23–26

    PubMed  CAS  Google Scholar 

  326. Schneider MR, Hoeflich A, Fischer JR, Wolf E, Sordat B, Lahm H (2000) Interleukin-6 stimulates colonogenic growth of primary and metastatic human colon carcinoma cells. Cancer Lett 151:31–38

    PubMed  CAS  Google Scholar 

  327. Chung YC, Chang YF (2003) Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol 83:222–226

    PubMed  Google Scholar 

  328. Waldner MJ, Foersch S, Neurath MF (2012) Interleukin-6 — a key regulator of colorectal cancer development. Int J Biol Sci 8:1248–1253

    PubMed  CAS  Google Scholar 

  329. Clendenen TV, Lundin E, Zeleniuch-Jacquotte A, Koenig KL, Berrino F, Lukanova A et al (2011) Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 20:799–810

    PubMed  CAS  Google Scholar 

  330. Nowak M, Glowacka E, Szpakowski M, Szyllo K, Malinowski A, Kulig A et al (2010) Proinflammatory and immunosuppressive serum, ascites and cyst fluid cytokines in patients with early and advanced ovarian cancer and benign ovarian tumors. Neuroendocrinol Lett 31:101–109

    Google Scholar 

  331. Nowak M, Klink M, Glowacka E, Sulowska Z, Kulig A, Szpakowski M et al (2010) Production of cytokines during interaction of peripheral blood mononuclear cells with autologous ovarian cancer cells or benign ovarian tumour cells. Scand J Immunol 71:91–98

    PubMed  CAS  Google Scholar 

  332. Gorelik E, Landsittel DP, Marrangoni AM, Modugno F, Velikokhatnaya L, Winans MT et al (2005) Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:981–987

    PubMed  CAS  Google Scholar 

  333. Lo CW, Chen MW, Hsiao M, Wang S, Chen CA, Hsiao SM (2011) IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res 71:424–434

    PubMed  CAS  Google Scholar 

  334. Culig Z, Puhr M (2012) Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol 360:52–58

    PubMed  CAS  Google Scholar 

  335. Yin J, Lu K, Lin J, Wu L, Hildebrandt MA, Chang DW et al (2011) Genetic variants in TGF-β pathway are associated with ovarian cancer risk. PLoS One. doi:10.1371/journal.pone.0025559

    Google Scholar 

  336. Wang D, Kanuma T, Mizunuma H, Takama F, Ibuki Y, Wake N et al (2000) Analysis of specific gene mutations in the transforming growth factor-β signal transduction pathway in human ovarian cancer. Cancer Res 60:4507–4512

    PubMed  CAS  Google Scholar 

  337. Wang N, Zhang H, Yao Q, Wang Y, Dai S, Yang X (2012) TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer. J Exp Clin Cancer Res 31:6–12

    PubMed  Google Scholar 

  338. Jadus MR, Natividad J, Mai A, Ouyang Y, Lambrecht N, Szabo S et al (2012) Lung cancer: a classic example of tumor escape and progression while providing opportunities for immunological intervention. Clin Dev Immunol. doi:10.1155/2012/160724

    PubMed  Google Scholar 

  339. Moutsopoulos NM, Wen J, Wahl SM (2008) TGF-β and tumors—an ill-fated alliance. Curr Opin Immunol 20:234–240

    PubMed  CAS  Google Scholar 

  340. Yu P, Rowley DA, Fu YX, Schreiber H (2006) The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol 18:226–231

    PubMed  CAS  Google Scholar 

  341. Do TV, Kubba LA, Du H, Sturgis CD, Woodruff TK (2008) Transforming growth factor-β1, transforming growth factor β2, and transforming growth factor-β3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol Cancer Res 6:695–705

    PubMed  CAS  Google Scholar 

  342. Gavalas NG, Karadimou A, Dimopoulos MA, Bamias A (2010) Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clin Dev Immunol. doi:10.1155/2010/791603

    PubMed  Google Scholar 

  343. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M et al (2013) TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123:1348–1358

    PubMed  CAS  Google Scholar 

  344. Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R (2012) TGF-β-induced activation of mTOR complex 2 drives epithelial–mesenchymal transition and cell invasion. J Cell Sci 125:1259–1273

    PubMed  CAS  Google Scholar 

  345. Rabinovich A, Medina L, Piura B, Huleihel M (2010) Expression of IL-10 in human normal and cancerous ovarian tissues and cells. Eur Cytokine Netw 21:122–128

    PubMed  CAS  Google Scholar 

  346. Spaner DE (2004) Amplifying cancer vaccine responses by modifying pathogenic gene programs in tumor cells. J Leukoc Biol 76:338–351

    PubMed  CAS  Google Scholar 

  347. Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y et al (2004) Ammonium trichloro (dioxoethylene-O, O′) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin-10 autocrine loop. Cancer Res 64:1843–1852

    PubMed  CAS  Google Scholar 

  348. Mustea A, Braicu EI, Koensgen D, Yuan S, Sun PM, Stamatian F et al (2009) Monitoring of IL-10 in the serum of patients with advanced ovarian cancer: results from a prospective pilot-study. Cytokine 45:8–11

    PubMed  CAS  Google Scholar 

  349. Matte I, Lane D, Laplante C, Rancourt C, Piché A (2012) Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res 2:566–580

    PubMed  CAS  Google Scholar 

  350. Liu CZ, Zhang L, Chang XH, Cheng YX, Cheng HY, Ye X et al (2012) Overexpression and immunosuppressive functions of transforming growth factor 1, vascular endothelial growth factor and interleukin-10 in epithelial ovarian cancer. Chin J Cancer Res 24:130–137

    PubMed  CAS  Google Scholar 

  351. Wang R, Lu M, Zhang J, Chen S, Luo X, Qin Y et al (2011) Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer. J Exp Clin Cancer Res 30:62. doi:10.1186/1756-9966-30-62

    PubMed  Google Scholar 

  352. Itakura E, Huang RR, Wen DR, Paul E, Wünsch PH, Cochran AJ (2011) IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol 24:801–809

    PubMed  CAS  Google Scholar 

  353. Wang D, DuBois RN (2006) Prostaglandins and cancer. Gut 55:115–122

    PubMed  CAS  Google Scholar 

  354. Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    PubMed  CAS  Google Scholar 

  355. Rask K, Zhu Y, Wang W, Hedin L, Sundfeldt K (2006) Ovarian epithelial cancer: a role for PGE 2 -synthesis and signalling in malignant transformation and progression. Mol Cancer 5:62–74

    PubMed  Google Scholar 

  356. Roland IH, Yang WL, Yang DH, Daly MB, Ozols RF, Hamilton TC et al (2003) Loss of surface and cyst epithelial basement membranes and preneoplastic morphologic changes in prophylactic oophorectomies. Cancer 98:2607–2623

    PubMed  Google Scholar 

  357. Fujiwaki R, Kohji IK, Kanasaki H, Ozaki T, Hata K, Miyazaki K (2002) Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol 33:213–219

    PubMed  CAS  Google Scholar 

  358. Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A (2002) Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum Pathol 33:708–714

    PubMed  CAS  Google Scholar 

  359. Zhang H, Sun XF (2002) Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer. Am J Gastroenterol 97:1037–1041

    PubMed  CAS  Google Scholar 

  360. Li W, Liu ML, Cai JH, Tang YX, Zhai LY, Zhang J (2012) Effect of the combination of a cyclooxygenase-1 selective inhibitor and taxol on proliferation, apoptosis and angiogenesis of ovarian cancer in vivo. Oncol Lett 4:168–174

    PubMed  CAS  Google Scholar 

  361. Ferrandina G, Ranelletti FO, Martinelli E, Paglia A, Zannoni GF, Scambia G (2006) Cyclo-oxygenase-2 (Cox-2) expression and resistance to platinum versus platinum/paclitaxel containing chemotherapy in advanced ovarian cancer. BMC Cancer 6:182–189

    PubMed  Google Scholar 

  362. Xin B, Yokoyama Y, Shigeto T, Futagami M, Mizunuma H (2007) Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer 110:791–800

    PubMed  CAS  Google Scholar 

  363. Langowski JL, Kastelein RA, Oft M (2007) Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol 28:207–212

    PubMed  CAS  Google Scholar 

  364. Park S, Cheon S, Cho D (2007) The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol 4:329–335

    PubMed  CAS  Google Scholar 

  365. Ye ZB, Ma T, Li H, Jin XL, Xu HM (2007) Expression and significance of intratumoral interleukin-12 and interleukin-18 in human gastric carcinoma. World J Gastroenterol 13:1747–1751

    PubMed  CAS  Google Scholar 

  366. Eissa SA, Zaki SA, El-Maghraby SM, Kadry DY (2005) Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egypt Natl Cancer Inst 17:51–55

    Google Scholar 

  367. Jiang DF, Liu WL, Lu YL, Qiu ZY, He FC (2003) [Function of IL-18 in promoting metastasis of lung cancer]. Zhonghua Zhong Liu Za Zhi 25:348–352

    PubMed  CAS  Google Scholar 

  368. Carrascal MT, Mendoza L, Valcarcel M, Salado C, Egilegor E, Tellería N et al (2003) Interleukin-18 binding protein reduces B16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Res 63:491–497

    PubMed  CAS  Google Scholar 

  369. Walz A, Peveri P, Aschauer H, Baggiolini M (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149:755–761

    PubMed  CAS  Google Scholar 

  370. Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11:704–712

    PubMed  CAS  Google Scholar 

  371. Xu L, Fidler IJ (2000) Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res 12:97–106

    PubMed  CAS  Google Scholar 

  372. Xu L, Pathak PS, Fukumura D (2004) Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3′-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells. Clin Cancer Res 10:701–707

    PubMed  CAS  Google Scholar 

  373. Xue H, Liu J, Lin B, Wang Z, Sun J, Huang G (2012) A meta-analysis of interleukin-8-251 promoter polymorphism associated with gastric cancer risk. PLoS One 7:e28083

    PubMed  CAS  Google Scholar 

  374. Uslu R, Sanli UA, Dikmen Y, Karabulut B, Ozsaran A, Sezgin C et al (2005) Predictive value of serum interleukin-8 levels in ovarian cancer patients treated with paclitaxel-containing regimens. Int J Gynecol Cancer 15:240–245

    PubMed  CAS  Google Scholar 

  375. Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY et al (2008) Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 100:359–372

    PubMed  CAS  Google Scholar 

  376. Wang X, Deavers M, Patenia R, Bassett RL Jr, Mueller P, Ma Q et al (2006) Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. J Transl Med 4:30–41

    PubMed  Google Scholar 

  377. Abdollahi T, Robertson NM, Abdollahi A, Litwack G (2003) Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res 63:4521–4526

    PubMed  CAS  Google Scholar 

  378. Duan Z, Feller AJ, Penson RT, Chabner BA, Seiden MV (1999) Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel resistant phenotype. Clin Cancer Res 5:3445–3453

    PubMed  CAS  Google Scholar 

  379. Chen Y, Shi M, Yu GZ, Qin XR, Jin G, Chen P et al (2012) Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J Gastroenterol 18:1123–1129

    PubMed  CAS  Google Scholar 

  380. Kuai WX, Wang Q, Yang XZ, Zhao Y, Yu R, Tang XJ (2012) Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells. World J Gastroenterol 18:979–985

    PubMed  CAS  Google Scholar 

  381. Ning Y, Manegold PC, Kwon Hong Y, Zhang W, Pohl A, Lurje G et al (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128:2038–2049

    PubMed  CAS  Google Scholar 

  382. Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X et al (2010) CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 16:3875–3886

    PubMed  CAS  Google Scholar 

  383. Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP et al (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13:2053–2060

    PubMed  Google Scholar 

  384. Pratap A, Panakanti R, Yang N, Eason JD, Mahato RI (2010) Inhibition of endogenous hedgehog signaling protects against acute liver injury after ischemia reperfusion. Pharm Res 27:2492–2504

    PubMed  CAS  Google Scholar 

  385. Harris LG, Samant RS, Shevde LA (2011) Hedgehog signaling: networking to nurture a pro-malignant tumor microenvironment. Mol Cancer Res 9:1165–1174

    PubMed  CAS  Google Scholar 

  386. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    PubMed  CAS  Google Scholar 

  387. Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Nat Acad Sci USA 104:5895–5900

    PubMed  CAS  Google Scholar 

  388. Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA et al (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277:5548–5555

    PubMed  CAS  Google Scholar 

  389. Wang K, Pan L, Che X, Cui D, Li C (2010) Gli1 inhibition induces cell-cycle arrest and enhanced apoptosis in brain glioma cell lines. J Neurooncol 98:319–327

    PubMed  CAS  Google Scholar 

  390. Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant R et al (2009) The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 284:22888–22897

    PubMed  CAS  Google Scholar 

  391. Han ME, Lee YS, Baek SY, Kim BS, Kim JB, Oh SO (2009) Hedgehog signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. Int J Mol Sci 10:3033–3043

    PubMed  CAS  Google Scholar 

  392. Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K et al (2008) Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci USA 105:4838–4843

    PubMed  CAS  Google Scholar 

  393. Feng YZ, Shiozawa T, Miyamoto T, Kashima H, Kurai M, Suzuki A et al (2007) Overexpression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells. Clin Cancer Res 13:1389–1398

    PubMed  CAS  Google Scholar 

  394. Liao X, Siu MKY, Au CWH, Chan QK, Chan HY, Wong ES et al (2009) Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30:131–140

    PubMed  CAS  Google Scholar 

  395. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    PubMed  CAS  Google Scholar 

  396. Li X, Deng W, Lobo-Ruppert SM, Ruppert JM (2007) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26:4489–4498

    PubMed  CAS  Google Scholar 

  397. Yoo YA, Kang MH, Kim JS, Oh SC (2008) Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-{beta}-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 29:480–490

    PubMed  CAS  Google Scholar 

  398. Dunér S, Lopatko Lindman J, Ansari D, Gundewar C, Andersson R (2011) Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology 10:673–681

    Google Scholar 

  399. Kerr JF, Harmon BV (1991) Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO (eds) Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, New York, pp 5–29

    Google Scholar 

  400. Wong RSY (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87–100

    PubMed  CAS  Google Scholar 

  401. Lai HC, Sytwu HK, Sun CA, Yu MH, Yu CP, Liu HS et al (2003) Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer 103:221–225

    PubMed  CAS  Google Scholar 

  402. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D (2004) Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96:1030–1036

    PubMed  CAS  Google Scholar 

  403. Hazra A, Chamberlain RM, Grossman HB, Zhu Y, Spitz MR, Wu X (2003) Death receptor 4 and bladder cancer risk. Cancer Res 63:1157–1159

    PubMed  CAS  Google Scholar 

  404. MacPherson G, Healey CS, Teare MD, Balasubramanian SP, Reed MW, Pharoah PD et al (2004) Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 96:1866–1869

    PubMed  CAS  Google Scholar 

  405. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    PubMed  CAS  Google Scholar 

  406. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    PubMed  CAS  Google Scholar 

  407. Zhivotovsky B, Orrenius S (2006) Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 27:1939–1945

    PubMed  CAS  Google Scholar 

  408. Jager R, Herzer U, Schenkel J, Weiher H (1997) Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates cmyc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15:1787–1795

    PubMed  CAS  Google Scholar 

  409. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445

    PubMed  CAS  Google Scholar 

  410. Fulda S, Meyer E, Debatin KM (2000) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–2294

    Google Scholar 

  411. O’Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DC et al (2001) Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ 8:486–494

    PubMed  Google Scholar 

  412. Lee HW, Lee SS, Lee SJ, Um HD (2003) Bcl-w is expressed in a majority of infiltrative gastric adenocarcinomas and suppresses the cancer cell death by blocking stress-activated protein kinase/c-Jun NH2-terminal kinase activation. Cancer Res 63:1093–1100

    PubMed  CAS  Google Scholar 

  413. Miquel C, Borrini F, Grandjouan S, Aupérin A, Viguier J, Velasco V et al (2005) Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol 23:562–570

    Google Scholar 

  414. Minn AJ, Rudin CM, Boise LH, Thompson CB (1995) Expression of Bcl-XL can confer a multidrug resistance phenotype. Blood 86:1903–1910

    PubMed  CAS  Google Scholar 

  415. Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR (2007) Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 120:2344–2352

    PubMed  CAS  Google Scholar 

  416. Krepela E, Dankova P, Moravcikova E, Krepelova A, Prochazka J, Cermak J et al (2009) Increased expression of inhibitor of apoptosis proteins, Survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol 35:1449–1462

    PubMed  CAS  Google Scholar 

  417. Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC (1998) Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351:882–883

    PubMed  CAS  Google Scholar 

  418. Lane DP (1992) p53, guardian of the genome. Nature 358:15–16

    PubMed  CAS  Google Scholar 

  419. Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA et al (2011) p53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 11:203. doi:10.1186/1471-2407-11-203

    PubMed  CAS  Google Scholar 

  420. Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K (2007) Cancer derived p53 mutants suppress p53-target gene expression—potential mechanism for gain of function of mutant p53. Nucleic Acids Res 35:2093–2104

    PubMed  CAS  Google Scholar 

  421. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P (1997) A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186:785–793

    PubMed  CAS  Google Scholar 

  422. Takita J, Yang HW, Chen YY, Hanada R, Yamamoto K, Teitz T et al (2001) Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. Oncogene 20:4424–4432

    PubMed  CAS  Google Scholar 

  423. Catchpoole DR, Lock RB (2001) The potential tumour suppressor role for caspase-9 (CASP9) in the childhood malignancy, neuroblastoma. Eur J Cancer 37:2217–2221

    PubMed  CAS  Google Scholar 

  424. Jee CD, Lee HS, Bae SI, Yang HK, Lee YM, Rho MS et al (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol 26:1265–1271

    PubMed  CAS  Google Scholar 

  425. Mouawad R, Antoine EC, Gil-Delgado M, Khayat D, Soubrane C (2002) Serum caspase-1 levels in metastatic melanoma patients: relationship with tumour burden and non-response to biochemotherapy. Melanoma Res 12:343–348

    PubMed  CAS  Google Scholar 

  426. Shen XG, Wang C, Li Y, Wang L, Zhou B, Xu B et al (2010) Downregulation of caspase-9 is a frequent event in patients with stage II colorectal cancer and correlates with poor clinical outcome. Colorectal Dis 12:1213–1218

    PubMed  Google Scholar 

  427. Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM et al (2002) Downregulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21:8843–8851

    PubMed  CAS  Google Scholar 

  428. Joseph B, Ekedahl J, Sirzen F, Lewensohn R, Zhivotovsky B (1999) Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma. Biochem Biophys Res Commun 262:381–387

    PubMed  CAS  Google Scholar 

  429. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877

    PubMed  CAS  Google Scholar 

  430. Volm M, Koomagi R (2000) Prognostic relevance of c-Myc and caspase-3 for patients with non-small cell lung cancer. Oncol Rep 7:95–98

    PubMed  CAS  Google Scholar 

  431. Koomagi R, Volm M (2000) Relationship between the expression of caspase-3 and the clinical outcome of patients with non-small cell lung cancer. Anticancer Res 20:493–496

    PubMed  CAS  Google Scholar 

  432. Grigoriev MY, Pozharissky KM, Hanson KP, Imyanitov EN, Zhivotovsky B (2002) Expression of caspase-3 and -7 does not correlate with the extent of apoptosis in primary breast carcinomas. Cell Cycle 1:337–342

    PubMed  CAS  Google Scholar 

  433. Woenckhaus C, Giebel J, Failing K, Fenic I, Dittberner T, Poetsch M (2003) Expression of AP-2alpha, c-kit, and cleaved caspase-6 and -3 in naevi and malignant melanomas of the skin. A possible role for caspases in melanoma progression? J Pathol 201:278–287

    PubMed  CAS  Google Scholar 

  434. Peli J, Schröter M, Rudaz C, Hahne M, Meyer C, Reichmann E et al (1999) Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 18:1824–1831

    PubMed  CAS  Google Scholar 

  435. Volkmann M, Schiff JH, Hajjar Y, Otto G, Stilgenbauer F, Fiehn W et al (2001) Loss of CD95 expression is linked to most but not all p53 mutants in European hepatocellular carcinoma. J Mol Med 79:594–600

    PubMed  CAS  Google Scholar 

  436. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    PubMed  CAS  Google Scholar 

  437. Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–920

    PubMed  CAS  Google Scholar 

  438. Shin MS, Kim HS, Lee SH, Lee JW, Song YH, Kim YS et al (2002) Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 21:4129–4136

    PubMed  CAS  Google Scholar 

  439. Fulda S, Los M, Friesen C, Debatin KM (1998) Chemosensitivity of solid tumour cells in vitro is related to activation of the CD95 system. Int J Cancer 76:105–114

    PubMed  CAS  Google Scholar 

  440. Reesink-Peters N, Hougardy BM, van den Heuvel FA, Ten Hoor KA, Hollema H, Boezen HM et al (2005) Death receptors and ligands in cervical carcinogenesis: an immunohistochemical study. Gynaecol Oncol 96:705–713

    CAS  Google Scholar 

  441. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840

    PubMed  CAS  Google Scholar 

  442. Kim R, Emi M, Tanabe K, Uchida Y, Toge T (2004) The role of Fas ligand and transforming growth factor β in tumor progression. Cancer 100:2281–2291

    PubMed  CAS  Google Scholar 

  443. Ryan AE, Shanahan F, O’Connel J, Houston AM (2005) Addressing the “Fas counterattack” controversy: blocking Fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res 65:9817–9823

    PubMed  CAS  Google Scholar 

  444. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL bearing microvesicles. J Exp Med 195:1303–1316

    PubMed  CAS  Google Scholar 

  445. Dworacki G, Meidenbauer N, Kuss I, Kuss I, Hoffmann TK, Gooding W et al (2001) Decreased zeta chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patients with melanoma. Clin Cancer Res 7(3 Suppl):947s–957s

    PubMed  CAS  Google Scholar 

  446. Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553–2562

    PubMed  Google Scholar 

  447. Hahne M, Rimoldi D, Schröter M, Romero P, Schreier M, French LE et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366

    PubMed  CAS  Google Scholar 

  448. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    PubMed  CAS  Google Scholar 

  449. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E et al (2006) Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 66:3629–3638

    PubMed  CAS  Google Scholar 

  450. Arai H, Gordon D, Nabel EG, Nabel GJ (1997) Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci USA 94:13862–13867

    PubMed  CAS  Google Scholar 

  451. Chappell DB, Zaks TZ, Rosenberg SA, Restifo NP (1999) Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res 59:59–62

    PubMed  CAS  Google Scholar 

  452. Medema JP, de Jong J, Peltenburg LTC, Verdegaal EM, Gorter A, Bres SA et al (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 98:11515–11520

    PubMed  CAS  Google Scholar 

  453. van Houdt IS, Oudejans JJ, van den Eertwegh AJM, Baars A, Vos W, Bladergroen BA et al (2005) Expression of the apoptosis inhibitor protease inhibitor 9 predicts clinical outcome in vaccinated patients with stage III and IV melanoma. Clin Cancer Res 11:6400–6407

    PubMed  Google Scholar 

  454. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    PubMed  CAS  Google Scholar 

  455. Chemnitz JM, Eggle D, Driesen J, Classen S, Riley JL, Debey-Pascher S et al (2007) RNA fingerprints provide direct evidence for the inhibitory role of TGFbeta and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood 110:3226–3233

    PubMed  CAS  Google Scholar 

  456. Xiao G, Deng A, Liu H, Ge G, Liu X (2012) Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc Natl Acad Sci USA 109:15419–15424

    PubMed  CAS  Google Scholar 

  457. D’Souza-Schorey C, Clancy JW (2012) Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299

    PubMed  Google Scholar 

  458. Östman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth — bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    PubMed  Google Scholar 

  459. Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39

    PubMed  CAS  Google Scholar 

  460. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  461. Östman A, Heldin CH (2007) PDGF receptors as targets in tumor treatment. Adv Cancer Res 97:247–274

    PubMed  Google Scholar 

  462. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    PubMed  CAS  Google Scholar 

  463. Augsten M, Hägglöf C, Olsson E, Stolz C, Tsagozis P, Levchenko T et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multimodal stimulator of prostate tumor growth. Proc Natl Acad Sci USA 106:3414–3419

    PubMed  CAS  Google Scholar 

  464. Ferrara N (2010) Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 21:21–26

    PubMed  CAS  Google Scholar 

  465. Kammertoens T, Schüler T, Blankenstein T (2005) Immunotherapy: target the stroma to hit the tumor. Trends Mol Med 11:225–231

    PubMed  CAS  Google Scholar 

  466. Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H (2008) Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 99:539–542

    PubMed  CAS  Google Scholar 

  467. Saikali Z, Setya H, Singh G, Persad S (2008) Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells. Cancer Cell Int 8:10. doi:10.1186/1475-2867-8-10

    PubMed  Google Scholar 

  468. Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD et al (2001) Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61:8135–8142

    PubMed  CAS  Google Scholar 

  469. Macintosh CA, Stower M, Reid N, Maitland NJ (1998) Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res 58:23–28

    PubMed  CAS  Google Scholar 

  470. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R et al (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    PubMed  CAS  Google Scholar 

  471. Aoki H, Ohnishi H, Hama K, Shinozaki S, Kita H, Yamamoto H et al (2006) Existence of autocrine loop between interleukin-6 and transforming growth factor-beta1 in activated rat pancreatic stellate cells. J Cell Biochem 99:221–228

    PubMed  CAS  Google Scholar 

  472. Bates RC, Mercurio AM (2005) The epithelial–mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4:365–370

    PubMed  CAS  Google Scholar 

  473. Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Hofler H (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54:3845–3852

    PubMed  CAS  Google Scholar 

  474. Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153:333–339

    PubMed  CAS  Google Scholar 

  475. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al (2001) Transforming growth factor-b1 mediates epithelial to mesenchymal transdifferentiation through a Rho-A-dependent mechanism. Mol Biol Cell 12:27–36

    PubMed  CAS  Google Scholar 

  476. Fujimoto K, Sheng H, Shao J, Beauchamp RD (2001) Transforming growth factor-b1 promotes invasiveness after cellular transformation with activated ras in intestinal epithelial cells. Exp Cell Res 266:239–249

    PubMed  CAS  Google Scholar 

  477. Busk M, Pytela R, Sheppard D (1992) Characterization of the integrin avb6 as a fibronectin-binding protein. J Biol Chem 267:5790–5796

    PubMed  CAS  Google Scholar 

  478. Kemperman H, Driessens MH, LaRiviere G, Meijne AM, Roos E (1995) Adhesion mechanisms in liver metastasis formation. Cancer Surv 24:67–79

    PubMed  CAS  Google Scholar 

  479. Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P et al (2003) Flt-1-dependent survival characterizes the epithelial–mesenchymal transition of colonic organoids. Curr Biol 13:1721–1727

    PubMed  CAS  Google Scholar 

  480. Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V et al (2009) Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res 15:6820–6829

    PubMed  CAS  Google Scholar 

  481. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15:195–206

    PubMed  CAS  Google Scholar 

  482. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    PubMed  CAS  Google Scholar 

  483. Dainiak N, Sorba S (1991) Intracellular regulation of the production and release of human erythroid-directed lymphokines. J Clin Invest 87:213–220

    PubMed  CAS  Google Scholar 

  484. Giusti I, D’Ascenzo S, Dolo D (2013) Microvesicles as potential ovarian cancer biomarkers. Biomed Res Int. doi:10.1155/2013/703048

    PubMed  Google Scholar 

  485. Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    PubMed  CAS  Google Scholar 

  486. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    PubMed  CAS  Google Scholar 

  487. Poste G, Nicolson GL (1980) Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA 77:399–403

    PubMed  CAS  Google Scholar 

  488. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    PubMed  CAS  Google Scholar 

  489. Ginestra A, Miceli D, Dolo V, Romano FM, Vittorelli ML (1999) Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res 19:3439–3445

    PubMed  CAS  Google Scholar 

  490. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64:7045–7049

    PubMed  CAS  Google Scholar 

  491. Castellana D, Zobairi F, Martinez MC, Panaro MA, Mitolo V, Freyssinet JM et al (2009) Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res 69:785–793

    PubMed  CAS  Google Scholar 

  492. Wysoczynski M, Ratajczak MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 125:1595–1603

    PubMed  CAS  Google Scholar 

  493. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298

    PubMed  CAS  Google Scholar 

  494. Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    PubMed  CAS  Google Scholar 

  495. Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR (2003) Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 63:4331–4337

    PubMed  CAS  Google Scholar 

  496. Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W et al (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604

    PubMed  CAS  Google Scholar 

  497. Zhang HG, Zhuang X, Sun D, Liu Y, Xiang X, Grizzle WE (2012) Exosomes and immune surveillance of neoplastic lesions: a review. Biotech Histochem 87:161–168

    PubMed  CAS  Google Scholar 

  498. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174

    PubMed  CAS  Google Scholar 

  499. Yu X, Riley T, Levine AJ (2009) The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J 276:2201–2212

    PubMed  CAS  Google Scholar 

  500. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    PubMed  CAS  Google Scholar 

  501. Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108–118

    PubMed  CAS  Google Scholar 

  502. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y et al (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385

    PubMed  CAS  Google Scholar 

  503. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL et al (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 35:169–173

    PubMed  CAS  Google Scholar 

  504. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633

    PubMed  CAS  Google Scholar 

  505. Whiteside TL, Mandapathil M, Szczepanski M, Szajnik M (2011) Mechanisms of tumor escape from the immune system: adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull Cancer 98:E25–E31

    PubMed  Google Scholar 

  506. Bamias A, Tsiatas ML, Kafantari E, Liakou C, Rodolakis A, Voulgaris Z et al (2007) Significant differences of lymphocytes isolated fromascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3+CD56+ cells with platinum resistance. Gynecol Oncol 106:75–81

    PubMed  CAS  Google Scholar 

  507. Bates RC, Mercurio AM (2003) Tumor necrosis factor-a stimulates the epithelial to mesenchymal transition of human colonic organoids. Mol Biol Cell 14:1790–1800

    PubMed  CAS  Google Scholar 

  508. Cho D, Song H, Kim YM, Houh D, Hur DY, Park H et al (2000) Endogenous interleukin-18 modulates immune escape of murine melanoma cells by regulating the expression of Fas ligand and reactive oxygen intermediates. Cancer Res 60:2703–2709

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek R. Wilczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Wilczynski, J.R., Nowak, M. (2014). Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. In: Klink, M. (eds) Interaction of Immune and Cancer Cells. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1300-4_8

Download citation

Publish with us

Policies and ethics