Skip to main content

Polymorphonuclear Neutrophils and Tumors: Friend or Foe?

  • Chapter
  • First Online:
Interaction of Immune and Cancer Cells
  • 2141 Accesses

Abstract

The tumor microenvironment is a dynamic network which apart from cancer cells includes also cells of the immune system such as polymorphonuclear neutrophils. Neutrophils are implicated in the interaction with cancer cells and, due to their ability of secreting the variety of active proteins and factors, play an important role in tumor progression and/or tumor destruction. In the tumor environment, neutrophils exist as anti-tumor phenotype (N1) and pro-tumoral phenotype (N2), analogous to the polarization of tumor-associated macrophages. The N1 phenotype of neutrophils is characterized by a cytotoxic and pro-inflammatory activity, while the N2 phenotype of cells has strong immunosuppressive properties. During cancer progression and metastasis, neutrophils facilitate and intensify extravasation of tumor cells as a result of the release of neutrophil metalloproteinases and elastase, which destroy the components of extracellular matrix, thus helping tumor cells to go through the endothelial barrier. On the other hand, tumor cells have a strong impact on the functional activity of neutrophils, and by causing immune system suppression in the host organism they promote the progression of the cancer. This review summarizes the pro- and anti-tumoral activity of neutrophils as the result of their direct contact with cancer cells and the release of different active mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMs:

Basement membranes

ECM:

Extracellular matrix

G-CSF:

Granulocyte colony-stimulating factor

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

huGCP-2:

Human granulocyte chemotactic protein 2

ICAM-1:

Intracellular adhesion molecule 1

IFN:

Interferon

IL:

Interleukin

IRAK 1:

Interleukin-1 receptor-associated kinase 1

IRS-1:

Insulin receptor substrate-1

MIP-1 α:

Macrophage inflammatory protein-1 α

MMP:

Metalloproteinase

NE:

Neutrophil elastase

NK:

Natural killer

NN:

Naive neutrophils

PI3K:

Phosphatidylinositol-3 kinase

ROS:

Reactive oxygen species

TAMs:

Tumor-associated macrophages

TANs:

Tumor-associated neutrophils

TGF-β:

Transforming growth factor β

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

TRAIL:

TNF-related apoptosis-inducing ligand

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

References

  1. Klink M, Jastrzembska K, Nowak M, Bednarska K, Szpakowski M, Szyllo K, Sulowska Z (2008) Ovarian cancer cells modulate human blood neutrophils response to activation in vitro. Scand J Immunol 68:328–336

    PubMed  CAS  Google Scholar 

  2. Padmanabhan J, Gonzalez AL (2012) The effects of extracellular matrix proteins on neutrophil–endothelial interaction—a roadway to multiple therapeutic opportunities. Yale J Biol Med 85:167–185

    PubMed  CAS  Google Scholar 

  3. Houghton AM (2010) The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle 9:1732–1737

    PubMed  CAS  Google Scholar 

  4. Weber CE, Kuo PC (2011) The tumor microenvironment. Surg Oncol 21:172–177

    PubMed  Google Scholar 

  5. Poggi A, Zocchi MR (2006) Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp 54:323–333

    CAS  Google Scholar 

  6. Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 27:4709–4717

    PubMed  Google Scholar 

  7. Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Inferrera C (2002) Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15:831–837

    PubMed  Google Scholar 

  8. Zhao JJ, Pan K, Wang W, Chen JG, Wu YH, Lv L, Li JJ, Chen YB, Wang DD, Pan QZ, Li XD, Xia JC (2012) The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS One 7:e33655

    PubMed  CAS  Google Scholar 

  9. Jensen TO, Schmidt H, Møller HJ, Donskov F, Høyer M, Sjoegren P, Christensen IJ, Steiniche T (2012) Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 18:2476–2485

    Google Scholar 

  10. Reid MD, Basturk O, Thirabanjasak D, Hruban RH, Klimstra DS, Bagci P, Altinel D, Adsay V (2011) Tumor-infiltrating neutrophils in pancreatic neoplasia. Mod Pathol 24:1612–1619

    PubMed  CAS  Google Scholar 

  11. Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P (2001) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97:339–345

    PubMed  Google Scholar 

  12. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33:949–955

    PubMed  CAS  Google Scholar 

  13. Piccard H, Muschel RJ, Opdenakker G (2012) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 82:296–309

    PubMed  CAS  Google Scholar 

  14. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Horng W, Fridlender G, Bayuh R, Worthen GS, Albelda SM (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS One 7:e31524

    PubMed  CAS  Google Scholar 

  15. Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A, Scherag A, Hütte J, Dominas N, Lehnerdt GF, Hoffmann TK, Lang S, Brandau S (2011) Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer 129:2183–2193

    PubMed  CAS  Google Scholar 

  16. Schmidt H, Bastholt L, Geertsen P, Christensen IJ, Larsen S, Gehl J, von der Maase H (2005) Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer 93:273–278

    PubMed  CAS  Google Scholar 

  17. Schmidt H, Suciu S, Punt CJ, Gore M, Kruit W, Patel P, Lienard D, von der Maase H, Eggermont AM, Keilholz U, American Joint Committee on Cancer Stage IV Melanoma, EORTC 18951 (2007) Pretreatment levels of peripheral neutrophils and leukocytes as independent predictors of overall survival in patients with American Joint Committee on Cancer Stage IV Melanoma: results of the EORTC 18951 Biochemotherapy Trial. J Clin Oncol 25:1562–1569

    PubMed  CAS  Google Scholar 

  18. Jaganjac M, Poljak-Blazi M, Zarkovic K, Schaur RJ, Zarkovic N (2008) The involvement of granulocytes in spontaneous regression of Walker 256 carcinoma. Cancer Lett 260:180–186

    PubMed  CAS  Google Scholar 

  19. Jaganjac M, Poljak-Blazi M, Kirac I, Borovic S, Joerg Schaur R, Zarkovic N (2010) Granulocytes as effective anticancer agent in experimental solid tumor models. Immunobiology 215:1015–1020

    PubMed  CAS  Google Scholar 

  20. Zivkovic M, Poljak-Blazi M, Zarkovic K, Mihaljevic D, Schaur RJ, Zarkovic N (2007) Oxidative burst of neutrophils against melanoma B16-F10. Cancer Lett 246:100–108

    PubMed  CAS  Google Scholar 

  21. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    PubMed  CAS  Google Scholar 

  22. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    PubMed  CAS  Google Scholar 

  23. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    PubMed  CAS  Google Scholar 

  24. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    PubMed  CAS  Google Scholar 

  25. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  26. Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor. Free Radic Biol Med 29:416–424

    PubMed  CAS  Google Scholar 

  27. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    PubMed  CAS  Google Scholar 

  28. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  29. Knaapen AM, Güngör N, Schins RP, Borm PJ, Van Schooten FJ (2006) Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 21:225–236

    PubMed  CAS  Google Scholar 

  30. Zivkovic M, Poljak-Blazi M, Zarkovic K, Mihaljevic D, Schaur RJ, Zarkovic N (2007) Oxidative burst of neutrophils against melanoma B16-F10. Cancer Lett 246:100–108

    PubMed  CAS  Google Scholar 

  31. Dallegri F, Ottonello L, Ballestrero A, Dapino P, Ferrando F, Patrone F, Sacchetti C (1991) Tumor cell lysis by activated human neutrophils: analysis of neutrophil-delivered oxidative attack and role of leukocyte function-associated antigen 1. Inflammation 15:15–30

    PubMed  CAS  Google Scholar 

  32. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    PubMed  CAS  Google Scholar 

  33. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192

    PubMed  CAS  Google Scholar 

  34. Pryczynicz A, Guzińska-Ustymowicz K, Kemona A (2010) Fas/FasL expression in colorectal cancer. An immunohistochemical study. Folia Histochem Cytobiol 48:425–429

    PubMed  Google Scholar 

  35. Zhang W, Ding EX, Wang Q, Zhu DQ, He J, Li YL, Wang YH (2005) Fas ligand expression in colon cancer: a possible mechanism of tumor immune privilege. World J Gastroenterol 11:3632–3635

    PubMed  CAS  Google Scholar 

  36. Peduto Eberl L, Guillou L, Saraga E, Schröter M, French LE, Tschopp J, Juillerat-Jeanneret L (1999) Fas and Fas ligand expression in tumor cells and in vascular smooth-muscle cells of colonic and renal carcinomas. Int J Cancer 81:772–778

    PubMed  CAS  Google Scholar 

  37. Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H (1997) Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA 94:6420–6425

    PubMed  CAS  Google Scholar 

  38. O’Connell J, Bennett MW, O’Sullivan GC, O’Callaghan J, Collins JK, Shanahan F (1999) Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege. Clin Diagn Lab Immunol 6:457–463

    PubMed  Google Scholar 

  39. Shimizu M, Fontana A, Takeda Y, Yoshimoto T, Tsubura A, Matsuzawa A (2001) Fas/Apo-1 (CD95)-mediated apoptosis of neutrophils with Fas ligand (CD95L)-expressing tumors is crucial for induction of inflammation by neutrophilic polymorphonuclear leukocytes associated with antitumor immunity. Cell Immunol 207:41–48

    PubMed  CAS  Google Scholar 

  40. Chen YL, Wang JY, Chen SH, Yang BC (2002) Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behaviour. Br J Cancer 87:359–365

    PubMed  CAS  Google Scholar 

  41. Dupont PJ, Warrens AN (2007) Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 120:133–139

    PubMed  CAS  Google Scholar 

  42. Ottonello L, Tortolina T, Amelotti M, Dallegri F (1999) Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J Immunol 162:3601–3606

    PubMed  CAS  Google Scholar 

  43. O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663

    Google Scholar 

  44. Audo R, Calmon-Hamaty F, Combe B, Hahne M, Morel J (2012) Dual effects of soluble FasL and membrane bound FasL on fibroblast-like synoviocytes cells from rheumatoid arthritis patients. Ann Rheum Dis 71(Suppl 1):A86

    Google Scholar 

  45. Chen YL, Chen SH, Wang JY, Yang BC (2003) Fas ligand on tumor cells mediates inactivation of neutrophils. J Immunol 171:1183–1191

    PubMed  CAS  Google Scholar 

  46. MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett 139:89–97

    PubMed  CAS  Google Scholar 

  47. Mirandola P, Ponti C, Gobbi G, Sponzilli I, Vaccarezza M, Cocco L, Zauli G, Secchiero P, Manzoli FA, Vitale M (2004) Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood 104:2418–2424

    PubMed  CAS  Google Scholar 

  48. Mariani SM, Krammer PH (1998) Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol 28:973–982

    PubMed  CAS  Google Scholar 

  49. Mariani SM, Krammer PH (1998) Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur J Immunol 28:1492–1498

    PubMed  CAS  Google Scholar 

  50. Cassatella MA (2006) On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) by human neutrophils. J Leukoc Biol 79:1140–1149

    PubMed  CAS  Google Scholar 

  51. Koga Y, Matsuzaki A, Suminoe A, Hattori H, Hara T (2004) Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Res 64:1037–1043

    PubMed  CAS  Google Scholar 

  52. Tecchio C, Huber V, Scapini P, Calzetti F, Margotto D, Todeschini G, Pilla L, Martinelli G, Pizzolo G, Rivoltini L, Cassatella MA (2004) IFNalpha-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity on leukemic cells. Blood 103:3837–3844

    PubMed  CAS  Google Scholar 

  53. Owen CA, Hu Z, Lopez-Otin C, Shapiro SD (2004) Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J Immunol 172:7791–7803

    PubMed  CAS  Google Scholar 

  54. Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257

    PubMed  CAS  Google Scholar 

  55. Gutierrez-Fernandez A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL, Jones JL, Span PN, Sweep FC, Puente XS, Lopez-Otín C (2008) Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 68:2755–2763

    PubMed  CAS  Google Scholar 

  56. Korkmaz B, Moreau T, Gauthier F (2008) Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 90:227–242

    PubMed  CAS  Google Scholar 

  57. Pham CTN (2008) Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 40:1317–1333

    PubMed  CAS  Google Scholar 

  58. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416

    PubMed  CAS  Google Scholar 

  59. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223

    PubMed  CAS  Google Scholar 

  60. Metz HE, Houghton AM (2010) Insulin receptor substrate regulation of phosphoinositide 3-kinase. Clin Cancer Res 17:206–211

    PubMed  Google Scholar 

  61. Paez JG, Sellers WR (2003) PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 115:145–167

    PubMed  CAS  Google Scholar 

  62. Sun Z, Yang P (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol 5:182–190

    PubMed  CAS  Google Scholar 

  63. Sato T, Takahashi S, Mizumoto T, Harao M, Akizuki M, Takasugi M, Fukutomi T, Yamashita J (2006) Neutrophil elastase and cancer. Surg Oncol 15:217–222

    PubMed  Google Scholar 

  64. Gaida MM, Steffen TG, Günther F, Tschaharganeh DF, Felix K, Bergmann F, Schirmacher P, Hänsch GM (2012) Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastase-mediated degradation of E-cadherin in pancreatic tumors. Eur J Immunol. doi:10.1002/eji.201242628

    PubMed  Google Scholar 

  65. Chua F, Laurent GJ (2006) Neutrophil elastase: mediator of extracellular matrix destruction and accumulation. Proc Am Thorac Soc 3:424–427

    PubMed  CAS  Google Scholar 

  66. Cai TQ, Wright SD (1996) Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1, alpha M beta 2) and modulates polymorphonuclear leukocyte adhesion. J Exp Med 184:1213–1223

    PubMed  CAS  Google Scholar 

  67. Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ES (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50:87–100

    PubMed  CAS  Google Scholar 

  68. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  69. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391

    PubMed  CAS  Google Scholar 

  70. Faurschou M, Borregaard N (2001) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    Google Scholar 

  71. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12498

    PubMed  CAS  Google Scholar 

  72. Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179:1455–1470

    PubMed  CAS  Google Scholar 

  73. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA 2007(104):20262–20267

    Google Scholar 

  74. Ardi VC, Van den Steen PE, Opdenakker G, Schweighofer B, Deryugina EI, Quigley JP (2009) Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/ FGFR-2 pathway. J Biol Chem 284:25854–25866

    PubMed  CAS  Google Scholar 

  75. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S, Proost P, Van Damme J (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69:851–859

    PubMed  CAS  Google Scholar 

  76. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375–536

    PubMed  Google Scholar 

  77. Bausch D, Pausch T, Krauss T, Hopt UT, Fernandez-del-Castillo C, Warshaw AL, Thayer SP, Keck T (2011) Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis 14:235–243

    PubMed  CAS  Google Scholar 

  78. Madsen CD, Sahai E (2010) Cancer dissemination — lessons from leukocytes. Dev Cell 19:13–26

    PubMed  CAS  Google Scholar 

  79. Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–C822

    PubMed  CAS  Google Scholar 

  80. Slattery MJ, Dong C (2003) Neutrophils influence melanoma adhesion and migration under flow conditions. Int J Cancer 106:713–722

    PubMed  CAS  Google Scholar 

  81. Dong C, Slattery MJ, Liang S, Peng HH (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2:145–159

    PubMed  Google Scholar 

  82. Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, Ferri LE (2012) Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res 72:3919–3927

    PubMed  CAS  Google Scholar 

  83. Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 10:282–292

    Google Scholar 

  84. Liang S, Fu C, Wagner D, Guo H, Zhan D, Dong C, Long M (2008) Two-dimensional kinetics of beta 2-integrin and ICAM-1 bindings between neutrophils and melanoma cells in a shear flow. Am J Physiol Cell Physiol 294:C743–C753

    PubMed  CAS  Google Scholar 

  85. Fu C, Tong C, Wang M, Gao Y, Zhang Y, Lu S, Liang S, Dong C, Long M (2011) Determining beta2-integrin and intercellular adhesion molecule 1 binding kinetics in tumor cell adhesion to leukocytes and endothelial cells by a gas-driven micropipette assay. J Biol Chem 286:34777–34787

    PubMed  CAS  Google Scholar 

  86. Wedepohl S, Beceren-Braun F, Riese S, Buscher K, Enders S, Bernhard B, Kilian K, Blanchard V, Dernedde J, Tauber R (2012) L-Selectin — a dynamic regulator of leukocyte migration. Eur J Cell Biol 91:257–264

    PubMed  CAS  Google Scholar 

  87. Patel KD, Cuvelier SL, Wiehler S (2002) Selectins: critical mediators of leukocyte recruitment. Semin Immunol 14:73–81

    PubMed  CAS  Google Scholar 

  88. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    PubMed  CAS  Google Scholar 

  89. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70:6071–6082

    PubMed  CAS  Google Scholar 

  90. Peng HH, Liang S, Henderson AJ, Dong C (2007) Regulation of interleukin-8 expression in melanoma-stimulated neutrophil inflammatory response. Exp Cell Res 313(551–55):9

    Google Scholar 

  91. Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV, Deutscher SL, Pienta KJ, Quinn TP (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 63:3805–3811

    PubMed  CAS  Google Scholar 

  92. Glinskii OV, Huxley VH, Glinsky GV, Pienta KJ, Raz A, Glinsky VV (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7:522–527

    PubMed  CAS  Google Scholar 

  93. Criscuoli ML, Nguyen M, Eliceiri BP (2005) Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105:1508–1514

    PubMed  CAS  Google Scholar 

  94. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P, Monnot C, Germain S (2006) Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA 103:18721–18726

    PubMed  CAS  Google Scholar 

  95. Hor WS, Huang WL, Lin YS, Yang BC (2003) Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. J Leukoc Biol 73:363–368

    PubMed  CAS  Google Scholar 

  96. Klink M, Nowak M, Kielbik M, Bednarska K, Blus E, Szpakowski M, Szyllo K, Sulowska Z (2012) The interaction of HspA1A with TLR2 and TLR4 in the response of neutrophils induced by ovarian cancer cells in vitro. Cell Stress Chaperones 17:661–674

    PubMed  CAS  Google Scholar 

  97. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  98. Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:370–3710

    Google Scholar 

  99. Theriault JR, Mambula SS, Sawamura TM, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960

    PubMed  CAS  Google Scholar 

  100. Asea A (2008) Heat shock proteins and Toll-like receptors. Handb Exp Pharmacol 183:111–117

    PubMed  CAS  Google Scholar 

  101. Caruso RA, Muda AO, Bersiga A, Rigoli L, Inferrera C (2002) Morphological evidence of neutrophil–tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas. Ultrastruct Pathol 26:315–321

    PubMed  CAS  Google Scholar 

  102. Fais S (2007) Cannibalism: a way to feed on metastatic tumors. Cancer Lett 258:155–164

    PubMed  CAS  Google Scholar 

  103. Singhal N, Handa U, Bansal C, Mohan H (2011) Neutrophil phagocytosis by tumor cells—a cytological study. Diagn Cytopathol 39:553–555

    PubMed  Google Scholar 

  104. Caruso RA, Fedele F, Finocchiaro G, Arena G, Venuti A (2012) Neutrophil–tumor cell phagocytosis (cannibalism) in human tumors: an update and literature review. Exp Oncol 34:306–311

    PubMed  CAS  Google Scholar 

  105. Matarrese P, Ciarlo L, Tinari A, Piacentini M, Malorni W (2008) Xeno-cannibalism as an exacerbation of self-cannibalism: a possible fruitful survival strategy for cancer cells. Curr Pharm Des 14:245–252

    PubMed  CAS  Google Scholar 

  106. Blaheta RA, Powerski M, Hudak L, Juengel E, Jonas D, von Knethen A, Doerr HW, Cinatl J (2009) Tumour–endothelium crosstalk blocks recruitment of neutrophils to endothelial cells. A novel mechanism of endothelial cell anergy. Neoplasia 11:1054–1063

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These research were supported in part by Grant NN 407095840 from National Science Center of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Klink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Klink, M., Sulowska, Z. (2014). Polymorphonuclear Neutrophils and Tumors: Friend or Foe?. In: Klink, M. (eds) Interaction of Immune and Cancer Cells. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1300-4_7

Download citation

Publish with us

Policies and ethics