Skip to main content

Immune Cells Within the Tumor Microenvironment

  • Chapter
  • First Online:
Interaction of Immune and Cancer Cells
  • 2227 Accesses

Abstract

A plethora of intrinsic and extrinsic factors, including communication between tumorigenic cells and infiltrating immune cells, fibroblasts, epithelial cells, vascular and lymphatic endothelial cells, cytokines and chemokines, constitute the tumor microenvironment. Although cancer cells can be immunogenic, tumor progression is associated with the evasion of immune surveillance, the promotion of tumor tolerance, and even the production of pro-tumorigenic factors by tumor-infiltrating immune cells. Here we will review the different types of immune cells within the tumors, with a focus on their fundamental role in tumor growth and immune escape, namely “cancer immunoediting.” Unraveling their roles and the molecular mechanisms of action represents today an important issue for the development of new therapeutic approaches to fighting cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

ARG1:

Arginase 1

bFGF:

Basic fibroblast growth factor

BST2:

Stromal cell antigen 2

BTLA:

B and T-cell lymphocyte attenuator

CD25:

Interleukin(IL)-2 receptor α chain

COX-2:

Cyclooxygenase-2

CSF-1:

Colony-stimulating factor 1

CTLA-4:

Cytotoxic T lymphocyte-associated antigen 4

CTLs:

Cytotoxic T lymphocytes

DCs:

Dendritic cells

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

FGF2:

Fibroblast growth factor-2

FOXP3:

Transcription factor forkhead box P3

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IGF:

Insulin-like growth factor

IL:

Interleukin

ILT7:

Immunoglobulin-like transcript 7

iNOS:

Inducible nitric oxide synthase

KLRG-1:

Killer cell lectin-like receptor subfamily G, member 1

LAG:

Lymphocyte-activation gene

M-CSF:

Macrophage colony-stimulating factor

mDCs:

Myeloid DCs

MDSCs:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

NGF:

Nerve growth factor

NK:

Natural killer cells

NKT:

Natural killer T cells

NO:

Nitric oxide

PD-1:

Programmed cell death protein 1

pDCs:

Plasmacytoid DCs

PDGF:

Platelet-derived growth factor

PD-L1:

Programmed cell death protein 1 ligand

PGE2:

Prostaglandin E2

PyMT:

Polyoma middle T

ROS:

Reactive oxygen species

SCF:

Stem cell factor

SDF1:

Stromal-cell-derived factor 1

TAMs:

Tumor-associated macrophages

TCR:

T-cell receptor

TGF-β:

Transforming growth factor-β

Tim-3:

T cell immunoglobulin and mucin-domain-containing molecule-3

TNF-α:

Tumor-necrosis factor-α

Tregs:

Regulatory T cells

TSLP:

Thymic stromal lymphopoietin

uPA:

Urokinase plasminogen activator

VEGF:

Vascular endothelial growth factor

References

  1. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901

    CAS  PubMed  Google Scholar 

  2. Spano D, Zollo M (2013) Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 29(4):381–395

    Google Scholar 

  3. Spano D, Heck C, De Antonellis P, Christofori G, Zollo M (2012) Molecular networks that regulate cancer metastasis. Semin Cancer Biol 22(3):234–249

    CAS  PubMed  Google Scholar 

  4. Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132(4):612–630

    CAS  PubMed  Google Scholar 

  5. Lapid K, D’Uva G, Ovadya Y, Itkin T, Kalinkovich A, Zollo M, Lapidot T (2013) GSK3β signaling promotes the migration and physiological motility of murine hematopoietic progenitors via cytoskeletal rearrangement. J Clin Invest 123(4):1705–1717

    CAS  PubMed  Google Scholar 

  6. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    CAS  PubMed  Google Scholar 

  7. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117(5):1137–1146

    CAS  PubMed  Google Scholar 

  8. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    CAS  PubMed  Google Scholar 

  9. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95(13):7556–7561

    CAS  PubMed  Google Scholar 

  10. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60(8):1161–1171

    CAS  PubMed  Google Scholar 

  11. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176(4):1564–1576

    PubMed  Google Scholar 

  12. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29(2):309–316

    PubMed  Google Scholar 

  13. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev 8(8):618–631

    CAS  Google Scholar 

  14. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    CAS  PubMed  Google Scholar 

  15. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506

    CAS  PubMed  Google Scholar 

  16. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    CAS  PubMed  Google Scholar 

  17. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270

    CAS  PubMed  Google Scholar 

  18. DeNardo DG, Johansson M, Coussens LM (2008) Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27(1):11–18

    CAS  PubMed  Google Scholar 

  19. Balkwill F (2004) Cancer and the chemokine network. Nat Rev 4(7):540–550

    CAS  Google Scholar 

  20. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    CAS  PubMed  Google Scholar 

  21. Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94(1):101–107

    CAS  PubMed  Google Scholar 

  22. Hotchkiss KA, Ashton AW, Klein RS, Lenzi ML, Zhu GH, Schwartz EL (2003) Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 63(2):527–533

    CAS  PubMed  Google Scholar 

  23. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev 4(1):71–78

    CAS  Google Scholar 

  24. Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25(4):677–694

    PubMed  Google Scholar 

  25. Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66(10):5242–5250

    CAS  PubMed  Google Scholar 

  26. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25(8):1543–1549

    CAS  PubMed  Google Scholar 

  27. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev 3(6):453–458

    CAS  Google Scholar 

  28. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65(12):5278–5283

    CAS  PubMed  Google Scholar 

  29. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Trumper L, Binder C (2006) Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA 103(14):5454–5459

    CAS  PubMed  Google Scholar 

  30. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184(2):702–712

    CAS  PubMed  Google Scholar 

  31. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073

    CAS  PubMed  Google Scholar 

  32. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    CAS  PubMed  Google Scholar 

  33. Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16(4):348–353

    CAS  PubMed  Google Scholar 

  34. Yang L, Moses HL (2008) Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68(22):9107–9111

    CAS  PubMed  Google Scholar 

  35. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019–10026

    CAS  PubMed  Google Scholar 

  36. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939

    CAS  PubMed  Google Scholar 

  37. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513

    CAS  PubMed  Google Scholar 

  38. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249

    CAS  PubMed  Google Scholar 

  39. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    CAS  PubMed  Google Scholar 

  40. Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6):2138–2145

    CAS  PubMed  Google Scholar 

  41. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421

    CAS  PubMed  Google Scholar 

  42. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111(1):219–228

    CAS  PubMed  Google Scholar 

  43. Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111(12):5457–5466

    CAS  PubMed  Google Scholar 

  44. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35

    CAS  PubMed  Google Scholar 

  45. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183(2):937–944

    CAS  PubMed  Google Scholar 

  46. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600

    PubMed  Google Scholar 

  47. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701

    CAS  PubMed  Google Scholar 

  48. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835

    CAS  PubMed  Google Scholar 

  49. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449

    CAS  PubMed  Google Scholar 

  50. Nizar S, Copier J, Meyer B, Bodman-Smith M, Galustian C, Kumar D, Dalgleish A (2009) T-regulatory cell modulation: the future of cancer immunotherapy? Br J Cancer 100(11):1697–1703

    CAS  PubMed  Google Scholar 

  51. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    CAS  PubMed  Google Scholar 

  52. Kadowaki N (2007) Dendritic cells: a conductor of T cell differentiation. Allergol Int 56(3):193–199

    CAS  PubMed  Google Scholar 

  53. Jego G, Pascual V, Palucka AK, Banchereau J (2005) Dendritic cells control B cell growth and differentiation. Curr Dir Autoimmun 8:124–139

    CAS  PubMed  Google Scholar 

  54. Qi H, Egen JG, Huang AY, Germain RN (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312(5780):1672–1676

    CAS  PubMed  Google Scholar 

  55. Baleeiro RB, Anselmo LB, Soares FA, Pinto CA, Ramos O, Gross JL, Haddad F, Younes RN, Tomiyoshi MY, Bergami-Santos PC, Barbuto JA (2008) High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-alpha in lung cancer. Cancer Immunol Immunother 57(9):1335–1345

    CAS  PubMed  Google Scholar 

  56. Mantovani A, Sozzani S, Locati M, Schioppa T, Saccani A, Allavena P, Sica A (2004) Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp 256:137–145, discussion 146–138, 259–169

    Google Scholar 

  57. Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25(3):333–356

    CAS  PubMed  Google Scholar 

  58. Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182(10):6207–6216

    CAS  PubMed  Google Scholar 

  59. Sprague L, Muccioli M, Pate M, Meles E, McGinty J, Nandigam H, Venkatesh AK, Gu MY, Mansfield K, Rutowski A, Omosebi O, Courreges MC, Benencia F (2011) The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells. BMC Immunol 12:35

    CAS  PubMed  Google Scholar 

  60. Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G, Lackner A, Carmeliet P, Zou W (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538

    CAS  PubMed  Google Scholar 

  61. Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1(6):510–514

    CAS  PubMed  Google Scholar 

  62. Hiltbold EM, Vlad AM, Ciborowski P, Watkins SC, Finn OJ (2000) The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 165(7):3730–3741

    CAS  PubMed  Google Scholar 

  63. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159(10):4772–4780

    CAS  PubMed  Google Scholar 

  64. Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, Marches F, Banchereau J, Palucka AK (2007) Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 204(5):1037–1047

    CAS  PubMed  Google Scholar 

  65. Cao W, Bover L, Cho M, Wen X, Hanabuchi S, Bao M, Rosen DB, Wang YH, Shaw JL, Du Q, Li C, Arai N, Yao Z, Lanier LL, Liu YJ (2009) Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206(7):1603–1614

    CAS  PubMed  Google Scholar 

  66. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R, Jagannath S, Dhodapkar MV (2006) Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 203(8):1859–1865

    CAS  PubMed  Google Scholar 

  67. Bahlis NJ, King AM, Kolonias D, Carlson LM, Liu HY, Hussein MA, Terebelo HR, Byrne GE Jr, Levine BL, Boise LH, Lee KP (2007) CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 109(11):5002–5010

    CAS  PubMed  Google Scholar 

  68. Gervois N, Guilloux Y, Diez E, Jotereau F (1996) Suboptimal activation of melanoma infiltrating lymphocytes (TIL) due to low avidity of TCR/MHC-tumor peptide interactions. J Exp Med 183(5):2403–2407

    CAS  PubMed  Google Scholar 

  69. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467–477

    CAS  PubMed  Google Scholar 

  70. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64(3):1140–1145

    CAS  PubMed  Google Scholar 

  71. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567

    CAS  PubMed  Google Scholar 

  72. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, Lackner A, Alvarez X, Ochoa A, Chen L, Zou W (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4):871–881

    CAS  PubMed  Google Scholar 

  73. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    CAS  PubMed  Google Scholar 

  74. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10(1):29–37

    CAS  PubMed  Google Scholar 

  75. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194

    CAS  PubMed  Google Scholar 

  76. Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, Liu J, Shi L, Liu C, Wang G, Zou W (2012) Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56(4):1342–1351

    CAS  PubMed  Google Scholar 

  77. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, Murphy WJ, Azuma M, Anderson AC, Kuchroo VK, Blazar BR (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117(17):4501–4510

    CAS  PubMed  Google Scholar 

  78. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V, Zarour HM (2012) CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72(4):887–896

    CAS  PubMed  Google Scholar 

  79. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927

    CAS  PubMed  Google Scholar 

  80. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125

    CAS  PubMed  Google Scholar 

  81. Effros RB (2004) Replicative senescence of CD8 T cells: potential effects on cancer immune surveillance and immunotherapy. Cancer Immunol Immunother 53(10):925–933

    PubMed  Google Scholar 

  82. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7):2711–2720

    CAS  PubMed  Google Scholar 

  83. Heffner M, Fearon DT (2007) Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc Natl Acad Sci USA 104(33):13414–13419

    CAS  PubMed  Google Scholar 

  84. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186

    CAS  PubMed  Google Scholar 

  85. Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11(4):289–295

    CAS  PubMed  Google Scholar 

  86. Thorn M, Ponten F, Bergstrom R, Sparen P, Adami HO (1994) Clinical and histopathologic predictors of survival in patients with malignant melanoma: a population-based study in Sweden. J Natl Cancer Inst 86(10):761–769

    CAS  PubMed  Google Scholar 

  87. Sakaguchi S, Setoguchi R, Yagi H, Nomura T (2006) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in self-tolerance and autoimmune disease. Curr Top Microbiol Immunol 305:51–66

    CAS  PubMed  Google Scholar 

  88. Nomura T, Sakaguchi S (2005) Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 293:287–302

    CAS  PubMed  Google Scholar 

  89. Gershenwald JE, Thompson W, Mansfield PF, Lee JE, Colome MI, Tseng CH, Lee JJ, Balch CM, Reintgen DS, Ross MI (1999) Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol 17(3):976–983

    CAS  PubMed  Google Scholar 

  90. Miyara M, Sakaguchi S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13(3):108–116

    CAS  PubMed  Google Scholar 

  91. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176(11):6752–6761

    CAS  PubMed  Google Scholar 

  92. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172(8):4676–4680

    CAS  PubMed  Google Scholar 

  93. Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101(28):10398–10403

    CAS  PubMed  Google Scholar 

  94. Schneider H, Valk E, da Rocha DS, Wei B, Rudd CE (2005) CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function. Proc Natl Acad Sci USA 102(36):12861–12866

    CAS  PubMed  Google Scholar 

  95. Kryczek I, Wei S, Zou L, Zhu G, Mottram P, Xu H, Chen L, Zou W (2006) Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 177(1):40–44

    CAS  PubMed  Google Scholar 

  96. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF, Blessing M (2004) Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 173(11):6526–6531

    CAS  PubMed  Google Scholar 

  97. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601

    CAS  PubMed  Google Scholar 

  98. Mougiakakos D, Johansson CC, Jitschin R, Bottcher M, Kiessling R (2011) Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood 117(3):857–861

    CAS  PubMed  Google Scholar 

  99. Mougiakakos D, Johansson CC, Kiessling R (2009) Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113(15):3542–3545

    CAS  PubMed  Google Scholar 

  100. Weller K, Foitzik K, Paus R, Syska W, Maurer M (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20(13):2366–2368

    CAS  PubMed  Google Scholar 

  101. Williams CM, Galli SJ (2000) The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 105(5):847–859

    CAS  PubMed  Google Scholar 

  102. Benoist C, Mathis D (2002) Mast cells in autoimmune disease. Nature 420(6917):875–878

    CAS  PubMed  Google Scholar 

  103. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279

    CAS  PubMed  Google Scholar 

  104. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    CAS  PubMed  Google Scholar 

  105. Datta YH, Romano M, Jacobson BC, Golan DE, Serhan CN, Ewenstein BM (1995) Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells. Circulation 92(11):3304–3311

    CAS  PubMed  Google Scholar 

  106. Boyce JA (2007) Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev 217:168–185

    CAS  PubMed  Google Scholar 

  107. Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269(1):1–6

    CAS  PubMed  Google Scholar 

  108. Mekori YA, Metcalfe DD (1999) Mast cell–T cell interactions. J Allergy Clin Immunol 104(3 Pt 1):517–523

    CAS  PubMed  Google Scholar 

  109. Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim SJ, Fu XY, Deng C, Letterio JJ (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441(7096):1015–1019

    CAS  PubMed  Google Scholar 

  110. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452

    CAS  PubMed  Google Scholar 

  111. Conti P, Castellani ML, Kempuraj D, Salini V, Vecchiet J, Tete S, Mastrangelo F, Perrella A, De Lutiis MA, Tagen M, Theoharides TC (2007) Role of mast cells in tumor growth. Ann Clin Lab Sci 37(4):315–322

    CAS  PubMed  Google Scholar 

  112. Groot Kormelink T, Abudukelimu A, Redegeld FA (2009) Mast cells as target in cancer therapy. Curr Pharm Des 15(16):1868–1878

    CAS  PubMed  Google Scholar 

  113. Joseph IB, Isaacs JT (1998) Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst 90(21):1648–1653

    CAS  PubMed  Google Scholar 

  114. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR (2003) A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 63(23):8360–8365

    CAS  PubMed  Google Scholar 

  115. Tadmor T, Attias D, Polliack A (2011) Myeloid-derived suppressor cells—their role in haemato-oncological malignancies and other cancers and possible implications for therapy. Br J Haematol 153(5):557–567

    CAS  PubMed  Google Scholar 

  116. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev 12(4):265–277

    CAS  Google Scholar 

  117. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev 12(4):278–287

    CAS  Google Scholar 

  118. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev 12(4):237–251

    CAS  Google Scholar 

  119. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev 12(4):252–264

    CAS  Google Scholar 

  120. Spano D, Marshall JC, Marino N, De Martino D, Romano A, Scoppettuolo MN, Bello AM, Di Dato V, Navas L, De Vita G, Medaglia C, Steeg PS, Zollo M (2013) Dipyridamole prevents triple-negative breast-cancer progression. Clin Exp Metastasis 30(1):47–68

    CAS  PubMed  Google Scholar 

  121. Zollo M, Di Dato V, Spano D, De Martino D, Liguori L, Marino N, Vastolo V, Navas L, Garrone B, Mangano G, Biondi G, Guglielmotti A (2012) Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 29(6):585–601

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Zollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Spano, D., Zollo, M. (2014). Immune Cells Within the Tumor Microenvironment. In: Klink, M. (eds) Interaction of Immune and Cancer Cells. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1300-4_1

Download citation

Publish with us

Policies and ethics