Skip to main content

Multibody Dynamics Approaches to Biomechanical Applications to Human Motion Tasks

  • Conference paper
  • First Online:
  • 3947 Accesses

Abstract

Applications of multibody dynamics or control to human mobility, impact biomechanics, ergonomics or health and medical cases require that reliable models of human body, including all relevant anatomical segments and a representation of the musculoskeletal system, are developed. The system state variables are available either to a control algorithm or to appraise the internal forces or even to evaluate performance indexes associated to the particular task. Here, a biomechanical model of the human body is presented and applied to demonstrate the basic modeling requirements. A strategy for the control of the biomechanical model motion, based on a distributed hierarchical control, is proposed. The biomechanical model is used to study zero momentum maneuvers, such as those of an astronaut in space or of a high-platform diver. Recognizing that the internal driving forces in the human body result from the musculoskeletal system and not from torque actuators, a procedure to evaluate the muscle forces is presented. Muscle activation dynamics models and optimization techniques are part of the proposed methodology. A human locomotion task demonstrate the procedure and to show the relation between muscle forces and the joint torques used in the control model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambrósio J, Lopes G, Silva M (1999) Reconstruction of the spatial motion of biomechanical systems by means of computer vision and multibody dynamics. In: Kecskemethy A, Schneider M, Woernle C (eds) Advances in multibody systems and mechatronics, Technische Univ. Graz, Institute fur Mechanik und Getriebelehere, Austria, pp 407–426

    Google Scholar 

  2. Zielinska T (2004) Biological aspects of locomotion. In: Pfeiffer F, Zielinska T (eds) Walking: biological and technological aspects. Springer, Wien, pp 1–29

    Google Scholar 

  3. Silva M, Ambrósio J, Pereira M (1997) Biomechanical model with joint resistance for impact simulation. Multibody Syst Dyn 1:65–84

    Article  MATH  Google Scholar 

  4. Sandell N, Varaiya P, Athans M, Safonov M (1978) Survey of decentralized control methods for large scale systems. IEEE Trans Automat Contr 23(2):108–128

    Article  MathSciNet  MATH  Google Scholar 

  5. Tsai D, Arabyan A (1991) Decentralized and hierarchical control of articulated multibody systems. Technical Report CAEL-91-2, Computer-Aided Engineering Laboratory, Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Arizona

    Google Scholar 

  6. Russel S, Norvig P (1995) Artificial intelligence, a modern approach. Prentice Hall, Englewood-Cliffs

    Google Scholar 

  7. Garriott OK (2011) Conservation Laws in Zero G, ST0046; Opportunities in zero gravity, ST0046, Textbook Tapes, Inc. http://www.textbooktapes.com

  8. Kane TR, Headrick MR, Yatteau JD (1972) Experimental investigation of an astronaut maneuvering scheme. J Biomech 5:313–320

    Article  Google Scholar 

  9. Kane TR, Scher MP (1970) Human self-rotating by means of limb maneuvers. J Biomech 3:39–49

    Article  Google Scholar 

  10. Seireg A, Arvikar R (1989) Biomechanical analysis of the musculoskeletal structure for medicine and sports. Hemisphere, New York

    Google Scholar 

  11. Buchanan TS, Shreeve DA (1996) An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks. J Biomech Eng 118:565–574

    Article  Google Scholar 

  12. Tsirakos D, Baltzopoulos V, Bartlett R (1997) Inverse optimization: functional and physiological considerations related to the force-sharing problem. Crit Rev Biomed Eng 25(4–5):371–407

    Article  Google Scholar 

  13. Crowninshield R, Brand R (1981) Physiologically based criterion of muscle force prediction in locomotion. J Biomech 14(11):793–801

    Article  Google Scholar 

  14. Ambrósio J, Kecskeméthy A (2007) Multibody dynamics of biomechanical models for human motion via optimization. In: Orden JC et al (eds) Computational multibody dynamics. Springer, Dordrecht, pp 245–272

    Chapter  Google Scholar 

  15. Rodrigo S, Ambrósio J, Silva M, Penisi O (2008) Analysis of human gait based on multibody formulations and optimization tools. Mech Based Des Struct Mach 36(4):446–477

    Article  Google Scholar 

  16. Nikravesh P (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood-Cliffs

    Google Scholar 

  17. Silva M, Ambrósio J (2002) Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst Dyn 8:219–239

    Article  MATH  Google Scholar 

  18. Ambrósio J, Silva M (2007) Methodologies for forward and inverse dynamic analysis of the biomechanics of human motion. In: Gonzalez Y, Cerrolaza M (eds) Bioengineering modeling and computer simulation. CIMNE, Barcelona, pp 13–33

    Google Scholar 

  19. Ambrósio J (2009) Human spatial attitude control by means of zero momentum turns. Int J Comput Vis Biomech 2(2):171–176

    Google Scholar 

  20. Kuo B (1995) Automatic control systems. Prentice Hall, Englewood-Cliffs

    Google Scholar 

  21. Silva M, Gonçalves J (1995) APOLLO, 3D dynamic analysis of mechanisms. IDMEC, Instituto Superior Técnico, Portugal

    Google Scholar 

  22. Winter DA (1990) Biomechanics and motor control of human movement. John Wiley & Sons, New York

    Google Scholar 

  23. Silva M, Ambrósio J (2003) Solution of the redundant muscle forces in human locomotion with multibody dynamics and optimization tools. Mech Based Des Struct Mech 31(3):381–411

    Article  Google Scholar 

  24. Ambrósio J, Silva M (2005) A biomechanical multibody model with a detailed locomotion muscle apparatus. In: Ambrósio J (ed) Advances in computational multibody systems. Springer, Dordrecht, pp 155–184

    Chapter  Google Scholar 

  25. Yamaguchi G (2001) Dynamic modeling of musculoskeletal motion. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

  26. Garner BA, Pandy MG (2001) Musculoskeletal model of the upper limb based on the visible human male dataset. Comput Methods Biomech Biomed Eng 4(2):93–126

    Article  Google Scholar 

  27. Quental C, Folgado J, Ambrósio J, Monteiro J (2012) Dynamic analysis of a multibody system of the upper limb. Multibody Syst Dyn, 28(1-2):83–108. DOI 10.1007/s11044-011-9297-0

  28. Zajac F (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

  29. Winters J (1995) Concepts in neuromuscular modelling. In: Allard P, Stokes I, Blanchi JP (eds) Three-dimensional analysis of human movement. Human Kinetics, Champaign

    Google Scholar 

  30. Strobach D, Kecskeméthy A, Steinwender G, Zwick B (2005) A simplified approach for rough identification of muscle activation profiles via optimization and smooth profile patches. In: Goicolea J et al (eds) Proceedings of multibody dynamics 2005, ECCOMAS thematic conference, Madrid, Spain, 21–24 June 2005, pp 1–17

    Google Scholar 

  31. Tsirakos D, Baltzopoulos V, Bartlett R (1997) Inverse optimization: functional and physiological considerations related to the force-sharing problem. Crit Rev Biomed Eng 25(4–5):371–407

    Article  Google Scholar 

  32. Umberger BR, Gerritsen KGM, Martin PE (2003) A model of human muscle energy expenditure. Comput Methods Biomech Biomech Eng 6(2):99–111

    Article  Google Scholar 

  33. Schiehlen W, Ackerman M (2005) Estimation of metabolical costs for human locomotion. In: Proceedings of ASME international design engineering technical conferences and computers and information in engineering conference 2005, Technical Paper DETC2005-842229, Long Beach, CA, 24–28 Sep 2005

    Google Scholar 

  34. Czaplicki A, Silva M, Ambrósio J, Jesus O, Abrantes J (2006) Estimation of the muscle force distribution in ballistic motion based on multibody methodology. Comput Methods Biomech Biomech Eng 9(1):45–54

    Article  Google Scholar 

  35. Czaplicki A, Silva M, Ambrósio J (2004) Biomechanical modelling for whole body motion using natural coordinates. J Theor Appl Mech 42(4):927–944

    Google Scholar 

  36. Vanderplaats G (1999) DOT – Design Optimization Tools – Users Manual – Version 5.0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. C. Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Ambrosio, J.A.C. (2013). Multibody Dynamics Approaches to Biomechanical Applications to Human Motion Tasks. In: Gattringer, H., Gerstmayr, J. (eds) Multibody System Dynamics, Robotics and Control. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1289-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1289-2_16

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1288-5

  • Online ISBN: 978-3-7091-1289-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics