Skip to main content

Abstract

In this chapter we cross-check current concepts by making use of all the available information starting from accidental brain lesions to brain imaging studies, from animals to humans, and from normal manifestations to abnormal forms of aggression. The analysis focuses on four brain regions, namely the prefrontal cortex, amygdala, hypothalamus, and periaqueductal gray. While the number of brain regions involved in aggression is considerably larger, current views suggest that these four have critical roles and can be considered focal points of aggression control. The ultimate aim is to map the possibility of building a comprehensive neural theory of aggression control and of identifying brain alterations that result in dysfunctional aggression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    No data in cats are available, because all models of abnormal aggression utilize rodents.

  2. 2.

    C-Fos belongs to a class of genes that are summarized under the generic term “immediate early genes.” Such genes are rapidly activated in neurons that are particularly active (e.g., are activated by a behavioral test). Their end product (e.g., the c-Fos protein) can be labeled immunohistochemically and can serve to identify neurons that were active during the behavioral test. This is the basis of identifying neuronal activation patterns associated with behaviors.

  3. 3.

    Unfortunately, a similar table cannot be compiled for the lateral hypothalamus because of the paucity of data.

  4. 4.

    Lesions were observed in the basal ganglia, corpus callosum, occipital lobe, operculum, orbitofrontal gyrus, parietal lobe, rectal gyrus (part of the orbitofrontal area), temporal lobe, thalamus, as well as prefrontal white matter that likely included the projections of the orbitofrontal area.

  5. 5.

    This active involvement may be direct (stimulatory) or indirect (manifested by the “inhibition of inhibition”) as proposed by Potegal (2012). The latter hypothesis, however, does not annul the “active” and execution-bound nature of the involvement.

  6. 6.

    This was a “regular” resident-intruder test performed in female hamsters; no maternal aggression involved.

  7. 7.

    The “catFISH” technology exploits the spatiotemporal features of C-Fos expression. When two tests are performed in succession with an appropriate delay (e.g., 1 h), and brains are sampled shortly after the second test, the localization of the c-Fos signal differentiates neurons activated by the first test (signal localized to the nucleus) from those activated by the second test (signal dispersed within the cytoplasm).

  8. 8.

    The model was described in Chap. 1.

  9. 9.

    Unlike with other structures, the periaqueductal gray will be abbreviated because of the length of the phrase and because the abbreviation PAG is widely used.

  10. 10.

    The cat was used as an example, because fight cannot be easily evoked from the PAG of the rat, while data in humans are sparse as shown below.

  11. 11.

    This model was described in Chap. 1.

References

  • Abler B, Walter H, Erk S (2005) Neural correlates of frustration. Neuroreport 16:669–672

    PubMed  Google Scholar 

  • Adams DB (1968) Cells related to fighting behavior recorded from midbrain central gray neuropil of cat. Science 159:894–896

    PubMed  CAS  Google Scholar 

  • Adams DB (2006) Brain mechanisms of aggressive behavior: an updated review. Neurosci Biobehav Rev 30:304–318

    PubMed  Google Scholar 

  • Adams DB, Boudreau W, Cowan CW, Kokonowski C, Oberteuffer K, Yohay K (1993) Offense produced by chemical stimulation of the anterior hypothalamus of the rat. Physiol Behav 53:1127–1132

    PubMed  CAS  Google Scholar 

  • Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, Matsuda T (2013) Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 38(8):1535–1547

    PubMed  CAS  Google Scholar 

  • Albers HE, Dean A, Karom MC, Smith D, Huhman KL (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Res 1073–1074:425–430

    PubMed  Google Scholar 

  • Albert DJ, Walsh ML (1984) Neural systems and the inhibitory modulation of agonistic behavior: a comparison of mammalian species. Neurosci Biobehav Rev 8:5–24

    PubMed  CAS  Google Scholar 

  • Ambar G, Chiavegatto S (2009) Anabolic-androgenic steroid treatment induces behavioral disinhibition and downregulation of serotonin receptor messenger RNA in the prefrontal cortex and amygdala of male mice. Genes Brain Behav 8:161–173

    PubMed  CAS  Google Scholar 

  • Amen DG, Stubblefield M, Carmicheal B, Thisted R (1996) Brain SPECT findings and aggressiveness. Ann Clin Psychiatry 8:129–137

    PubMed  CAS  Google Scholar 

  • Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol 210:343–352

    PubMed  CAS  Google Scholar 

  • Anderson DJ (2012) Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry 71:1081–1089

    PubMed Central  PubMed  Google Scholar 

  • Anderson NE, Kiehl KA (2012) The psychopath magnetized: insights from brain imaging. Trends Cogn Sci 16:52–60

    PubMed  Google Scholar 

  • Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR (1999) Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci 2:1032–1037

    PubMed  CAS  Google Scholar 

  • Ansah TA, Wade LH, Shockley DC (1996) Changes in locomotor activity, core temperature, and heart rate in response to repeated cocaine administration. Physiol Behav 60:1261–1267

    PubMed  CAS  Google Scholar 

  • Antonucci AS, Gansler DA, Tan S, Bhadelia R, Patz S, Fulwiler C (2006) Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Res 147:213–220

    PubMed  Google Scholar 

  • Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10:659–669

    PubMed Central  PubMed  CAS  Google Scholar 

  • Balasubramaniam V, Kanaka TS (1975) Amygdalotomy and hypothalamotomy – a comparative study. Confin Neurol 37:195–201

    PubMed  CAS  Google Scholar 

  • Bandler RJ Jr (1970) Cholinergic synapses in the lateral hypothalamus for the control of predatory aggression in the rat. Brain Res 20:409–424

    PubMed  Google Scholar 

  • Bandler RJ (1977) Predatory behavior in the cat elicited by lower brain stem and hypothalamic stimulation: a comparison. Brain Behav Evol 14:440–460

    PubMed  CAS  Google Scholar 

  • Bandler R (1982) Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cats. Neurosci Lett 30:183–188

    PubMed  CAS  Google Scholar 

  • Bandler R, Depaulis A (1991) Midbrain periaqueductal gray control of defensive behavior in the cat and the rat. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization. Plenum, New York, NY

    Google Scholar 

  • Bandler RJ Jr, Flynn JP (1974) Neural pathways from thalamus associated with regulation of aggressive behavior. Science 183:96–99

    PubMed  Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389

    PubMed  CAS  Google Scholar 

  • Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53:95–104

    PubMed  CAS  Google Scholar 

  • Barkataki I, Kumari V, Das M, Taylor P, Sharma T (2006) Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behav Brain Res 169:239–247

    PubMed  Google Scholar 

  • Barrash J, Tranel D, Anderson SW (2000) Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev Neuropsychol 18:355–381

    PubMed  CAS  Google Scholar 

  • Barrash J, Asp E, Markon K, Manzel K, Anderson SW, Tranel D (2011) Dimensions of personality disturbance after focal brain damage: investigation with the Iowa Scales of Personality Change. J Clin Exp Neuropsychol 33:833–852

    PubMed Central  PubMed  Google Scholar 

  • Bauman MD, Toscano JE, Mason WA, Lavenex P, Amaral DG (2006) The expression of social dominance following neonatal lesions of the amygdala or hippocampus in rhesus monkeys (Macaca mulatta). Behav Neurosci 120:749–760

    PubMed  CAS  Google Scholar 

  • Bear DM, Fulop M (1987) The neurology of emotion. Arch Neurol Psychiatry 42:979–1000

    Google Scholar 

  • Beaver JD, Lawrence AD, Passamonti L, Calder AJ (2008) Appetitive motivation predicts the neural response to facial signals of aggression. J Neurosci 28:2719–2725

    PubMed  CAS  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605

    PubMed  CAS  Google Scholar 

  • Beiderbeck DI, Reber SO, Havasi A, Bredewold R, Veenema AH, Neumann ID (2012) High and abnormal forms of aggression in rats with extremes in trait anxiety – involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology 37:1969–1980

    PubMed  CAS  Google Scholar 

  • Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59:1425–1427

    PubMed  CAS  Google Scholar 

  • Bellani M, Baiano M, Brambilla P (2011) Brain anatomy of major depression II. Focus on amygdala. Epidemiol Psychiatr Sci 20:33–36

    PubMed  CAS  Google Scholar 

  • Bennazzous A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16

    Google Scholar 

  • Bergvall AH, Wessely H, Forsman A, Hansen S (2001) A deficit in attentional set-shifting of violent offenders. Psychol Med 31:1095–1105

    PubMed  CAS  Google Scholar 

  • Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127:1108–1126

    PubMed  CAS  Google Scholar 

  • Berlin HA, Rolls ET, Iversen SD (2005) Borderline personality disorder, impulsivity, and the orbitofrontal cortex. Am J Psychiatry 162:2360–2373

    PubMed  Google Scholar 

  • Berridge KC, Valenstein ES (1991) What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behav Neurosci 105:3–14

    PubMed  CAS  Google Scholar 

  • Bertsch K, Grothe M, Prehn K, Vohs K, Berger C, Hauenstein K, Keiper P, Domes G, Teipel S, Herpertz SC (2013) Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci 263:593–606

    PubMed  Google Scholar 

  • Best M, Williams JM, Coccaro EF (2002) Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci U S A 99:8448–8453

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bhatt S, Siegel A (2006) Potentiating role of interleukin 2 (IL-2) receptors in the midbrain periaqueductal gray (PAG) upon defensive rage behavior in the cat: role of neurokinin NK(1) receptors. Behav Brain Res 167:251–260

    PubMed  CAS  Google Scholar 

  • Bhatt S, Zalcman S, Hassanain M, Siegel A (2005) Cytokine modulation of defensive rage behavior in the cat: role of GABAA and interleukin-2 receptors in the medial hypothalamus. Neuroscience 133:17–28

    PubMed  CAS  Google Scholar 

  • Bhatt S, Bhatt R, Zalcman SS, Siegel A (2008) Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat. Brain Behav Immun 22:224–233

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bibancos T, Jardim DL, Aneas I, Chiavegatto S (2007) Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav 6:529–539

    PubMed  CAS  Google Scholar 

  • Bie B, Brown DL, Naguib M (2011) Synaptic plasticity and pain aversion. Eur J Pharmacol 667:26–31

    PubMed  CAS  Google Scholar 

  • Birbaumer N, Veit R, Lotze M, Erb M, Hermann C, Grodd W, Flor H (2005) Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry 62:799–805

    PubMed  Google Scholar 

  • Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC (2005) Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 133:873–892

    PubMed  CAS  Google Scholar 

  • Blair RJ (2010a) Neuroimaging of psychopathy and antisocial behavior: a targeted review. Curr Psychiatry Rep 12:76–82

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blair RJ (2010b) Psychopathy, frustration, and reactive aggression: the role of ventromedial prefrontal cortex. Br J Psychol 101:383–399

    PubMed  CAS  Google Scholar 

  • Blair RJR (2012) Considering anger from a cognitive neuroscience perspective. Wiley Interdiscip Rev Cogn Sci 3:65–74

    PubMed Central  PubMed  Google Scholar 

  • Blair RJ, Cipolotti L (2000) Impaired social response reversal. A case of ‘acquired sociopathy’. Brain 123:1122–1141

    PubMed  Google Scholar 

  • Blair RJ, Morris JS, Frith CD, Perrett DI, Dolan RJ (1999) Dissociable neural responses to facial expressions of sadness and anger. Brain 122:883–893

    PubMed  Google Scholar 

  • Blanchard DC, Takahashi SN (1988) No change in intermale aggression after amygdala lesions which reduce freezing. Physiol Behav 42:613–616

    PubMed  CAS  Google Scholar 

  • Bliss-Moreau E, Moadab G, Bauman MD, Amaral DG (2013) The impact of early amygdala damage on juvenile rhesus macaque social behavior. J Cogn Neurosci 25:2124–2140

    PubMed  Google Scholar 

  • Blumer D, Benson DF (1975) Personality changes with frontal and temporal lobe lesions. In: Benson DF, Blumer D (eds) Psychiatric aspects of neurological disease. Grune & Stratton, New York, NY, pp 151–169

    Google Scholar 

  • Boccardi M, Frisoni GB, Hare RD, Cavedo E, Najt P, Pievani M, Rasser PE, Laakso MP, Aronen HJ, Repo-Tiihonen E, Vaurio O, Thompson PM, Tiihonen J (2011) Cortex and amygdala morphology in psychopathy. Psychiatry Res 193:85–92

    PubMed  Google Scholar 

  • Boes AD, Tranel D, Anderson SW, Nopoulos P (2008) Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behav Neurosci 122:677–684

    PubMed Central  PubMed  Google Scholar 

  • Booij L, Tremblay RE, Leyton M, Séguin JR, Vitaro F, Gravel P, Perreau-Linck E, Lévesque ML, Durand F, Diksic M, Turecki G, Benkelfat C (2010) Brain serotonin synthesis in adult males characterized by physical aggression during childhood: a 21-year longitudinal study. PLoS One 5:e11255

    PubMed Central  PubMed  Google Scholar 

  • Brambilla P, Soloff PH, Sala M, Nicoletti MA, Keshavan MS, Soares JC (2004) Anatomical MRI study of borderline personality disorder patients. Psychiatry Res 131:125–133

    PubMed  Google Scholar 

  • Brutus M, Siegel A (1989) Effects of the opiate antagonist naloxone upon hypothalamically elicited affective defense behavior in the cat. Behav Brain Res 33:23–32

    PubMed  CAS  Google Scholar 

  • Brutus M, Shaikh MB, Edinger H, Siegel A (1986) Effects of experimental temporal lobe seizures upon hypothalamically elicited aggressive behavior in the cat. Brain Res 366:53–63

    PubMed  CAS  Google Scholar 

  • Bunck M, Czibere L, Horvath C, Graf C, Frank E, Kessler MS, Murgatroyd C, Müller-Myhsok B, Gonik M, Weber P, Pütz B, Muigg P, Panhuysen M, Singewald N, Bettecken T, Deussing JM, Holsboer F, Spengler D, Landgraf R (2009) A hypomorphic vasopressin allele prevents anxiety-related behavior. PLoS One 4:e5129

    PubMed Central  PubMed  Google Scholar 

  • Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2013) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp 34:3247–3266

    PubMed  Google Scholar 

  • Caffrey MK, Nephew BC, Febo M (2010) Central vasopressin V1a receptors modulate neural processing in mothers facing intruder threat to pups. Neuropharmacology 58:107–116

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cambon K, Dos-Santos Coura R, Groc L, Carbon A, Weissmann D, Changeux JP, Pujol JF, Granon S (2010) Aggressive behavior during social interaction in mice is controlled by the modulation of tyrosine hydroxylase expression in the prefrontal cortex. Neuroscience 171:840–851

    PubMed  CAS  Google Scholar 

  • Canteras NS, Mota-Ortiz SR, Motta SC (2012) What ethologically based models have taught us about the neural systems underlying fear and anxiety. Braz J Med Biol Res 45:321–327

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caramaschi D, de Boer SF, de Vries H, Koolhaas JM (2008a) Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav Brain Res 189:263–272

    PubMed  CAS  Google Scholar 

  • Caramaschi D, de Boer SF, Koolhaas JM (2008b) Is hyper-aggressiveness associated with physiological hypoarousal? A comparative study on mouse lines selected for high and low aggressiveness. Physiol Behav 95:591–598

    PubMed  CAS  Google Scholar 

  • Carrasco JL, Tajima-Pozo K, Díaz-Marsá M, Casado A, López-Ibor JJ, Arrazola J, Yus M (2012) Microstructural white matter damage at orbitofrontal areas in borderline personality disorder. J Affect Disord 139:149–153

    PubMed  Google Scholar 

  • Carré JM, Murphy KR, Hariri AR (2013) What lies beneath the face of aggression? Soc Cogn Affect Neurosci 8:224–229

    PubMed Central  PubMed  Google Scholar 

  • Carrillo M, Ricci LA, Melloni RH Jr (2009) Adolescent anabolic androgenic steroids reorganize the glutamatergic neural circuitry in the hypothalamus. Brain Res 1249:118–127

    PubMed  CAS  Google Scholar 

  • Carrillo M, Ricci LA, Melloni RH (2011) Developmental and withdrawal effects of adolescent AAS exposure on the glutamatergic system in hamsters. Behav Neurosci 125:452–464

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carrive P, Morgan MM (2012) Periaqueductal gray. In: Paxinos G, Mai JK (eds) The human nervous system. Academic, London

    Google Scholar 

  • Carvalho FS, Beblo T, Schlosser N, Terfehr K, Otte C, Löwe B, Wolf OT, Spitzer C, Driessen M, Wingenfeld K (2012) Associations of childhood trauma with hypothalamic-pituitary-adrenal function in borderline personality disorder and major depression. Psychoneuroendocrinology 37(10):1659–1668

    Google Scholar 

  • Cassell MD, Wright DJ (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17:321–333

    PubMed  CAS  Google Scholar 

  • Cheng SY, Taravosh-Lahn K, Delville Y (2008) Neural circuitry of play fighting in golden hamsters. Neuroscience 156:247–256

    PubMed  CAS  Google Scholar 

  • Cheu JW, Siegel A (1998) GABA receptor mediated suppression of defensive rage behavior elicited from the medial hypothalamus of the cat: role of the lateral hypothalamus. Brain Res 783:293–304

    PubMed  CAS  Google Scholar 

  • Chiavegatto S, Quadros IM, Ambar G, Miczek KA (2010) Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice. Genes Brain Behav 9:110–119

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chitanondh H (1966) Stereotaxic amygdalotomy in the treatment of olfactory seizures and psychiatric disorders with olfactory hallucination. Confin Neurol 27:181–196

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Doobay VM, Liu Y (2012) Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. J Neurosci 32:10915–10924

    PubMed  CAS  Google Scholar 

  • Clinton SM, Kerman IA, Orr HR, Bedrosian TA, Abraham AD, Simpson DN, Watson SJ, Akil H (2011) Pattern of forebrain activation in high novelty-seeking rats following aggressive encounter. Brain Res 1422:20–31

    PubMed Central  PubMed  CAS  Google Scholar 

  • Coccaro EF, Beresford B, Minar P, Kaskow J, Geracioti T (2007a) CSF testosterone: relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder. J Psychiatr Res 41:488–492

    PubMed  Google Scholar 

  • Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007b) Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62:168–178

    PubMed  Google Scholar 

  • Coker-Appiah DS, White SF, Clanton R, Yang J, Martin A, Blair RJ (2013) Looming animate and inanimate threats: the response of the amygdala and periaqueductal gray. Soc Neurosci 8:621–630

    PubMed  Google Scholar 

  • Comoli E, Ribeiro-Barbosa ER, Canteras NS (2003) Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res 138:17–28

    PubMed  CAS  Google Scholar 

  • Cox CL, Gotimer K, Roy AK, Castellanos FX, Milham MP, Kelly C (2010) Your resting brain CAREs about your risky behavior. PLoS One 5:e12296

    PubMed Central  PubMed  Google Scholar 

  • Critchley HD, Simmons A, Daly EM, Russell A, van Amelsvoort T, Robertson DM, Glover A, Murphy DG (2000) Prefrontal and medial temporal correlates of repetitive violence to self and others. Biol Psychiatry 47:928–934

    PubMed  CAS  Google Scholar 

  • Crowe SL, Blair RJ (2008) The development of antisocial behavior: what can we learn from functional neuroimaging studies? Dev Psychopathol 20:1145–1159

    PubMed  CAS  Google Scholar 

  • Cummings JL (1995) Anatomic and behavioral aspects of frontal-subcortical circuits. Ann NY Acad Sci 769:1–13

    PubMed  CAS  Google Scholar 

  • Cunningham RL, Claiborne BJ, McGinnis MY (2007) Pubertal exposure to anabolic androgenic steroids increases spine densities on neurons in the limbic system of male rats. Neuroscience 150:609–615

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dalley JW, Theobald DE, Pereira EA, Li PM, Robbins TW (2002) Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl) 164:329–340

    CAS  Google Scholar 

  • Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, Hichwa RD (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3:1049–1056

    PubMed  CAS  Google Scholar 

  • Datiche F, Cattarelli M (1996) Reciprocal and topographic connections between the piriform and prefrontal cortices in the rat: a tracing study using the B subunit of the cholera toxin. Brain Res Bull 41:391–398

    PubMed  CAS  Google Scholar 

  • Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation – a possible prelude to violence. Science 289:591–594

    PubMed  CAS  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    PubMed  CAS  Google Scholar 

  • Day-Wilson KM, Jones DN, Southam E, Cilia J, Totterdell S (2006) Medial prefrontal cortex volume loss in rats with isolation rearing-induced deficits in prepulse inhibition of acoustic startle. Neuroscience 141:1113–1121

    PubMed  CAS  Google Scholar 

  • de Almeida RM, Giovenardi M, da Silva SP, de Oliveira VP, Stein DJ (2005) Maternal aggression in Wistar rats: effect of 5-HT2A/2C receptor agonist and antagonist microinjected into the dorsal periaqueductal gray matter and medial septum. Braz J Med Biol Res 38:597–602

    PubMed  Google Scholar 

  • de Almeida AN, Fonoff ET, Ballester G, Teixeira MJ, Marino R Jr (2008) Stereotactic disconnection of hypothalamic hamartoma to control seizure and behavior disturbance: case report and literature review. Neurosurg Rev 31:343–349

    PubMed  Google Scholar 

  • de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    PubMed  Google Scholar 

  • De Brito SA, Mechelli A, Wilke M, Laurens KR, Jones AP, Barker GJ, Hodgins S, Viding E (2009) Size matters: increased grey matter in boys with conduct problems and callous-unemotional traits. Brain 132:843–852

    PubMed  Google Scholar 

  • de Bruin JP, van Oyen HG, Van de Poll N (1983) Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behav Brain Res 10:209–232

    PubMed  Google Scholar 

  • de Oliveira-Souza R, Hare RD, Bramati IE, Garrido GJ, Azevedo Ignácio F, Tovar-Moll F, Moll J (2008) Psychopathy as a disorder of the moral brain: fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. Neuroimage 40:1202–1213

    PubMed  Google Scholar 

  • Decety J, Porges EC (2011) Imagining being the agent of actions that carry different moral consequences: an fMRI study. Neuropsychologia 49:2994–3001

    PubMed  Google Scholar 

  • Deckel AW, Hesselbrock V, Bauer L (1996) Antisocial personality disorder, childhood delinquency, and frontal brain functioning: EEG and neuropsychological findings. J Clin Psychol 52:639–650

    PubMed  CAS  Google Scholar 

  • DeLeon KR, Grimes JM, Melloni RH Jr (2002) Repeated anabolic–androgenic steroid treatment during adolescence increases vasopressin V(1A) receptor binding in Syrian hamsters: correlation with offensive aggression. Horm Behav 42:182–191

    PubMed  CAS  Google Scholar 

  • Delgado-Martínez AD, Vives F (1993) Effects of medial prefrontal cortex stimulation on the spontaneous activity of the ventral pallidal neurons in the rat. Can J Physiol Pharmacol 71:343–347

    PubMed  Google Scholar 

  • Dell’Osso B, Berlin HA, Serati M, Altamura AC (2010) Neuropsychobiological aspects, comorbidity patterns and dimensional models in borderline personality disorder. Neuropsychobiology 61:169–179

    PubMed  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav 60:25–29

    PubMed  CAS  Google Scholar 

  • Delville Y, Melloni RH Jr, Ferris CF (1998) Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters. J Neurosci 18:2667–2672

    PubMed  CAS  Google Scholar 

  • Delville Y, De Vries GJ, Ferris CF (2000) Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol 55:53–76

    PubMed  CAS  Google Scholar 

  • Demski LS (1973) Feeding and aggressive behavior evoked by hypothalamic stimulation in a cichlid fish. Comp Biochem Physiol A Comp Physiol 44:685–692

    PubMed  CAS  Google Scholar 

  • Descarries L, Lemay B, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21:807–824

    PubMed  CAS  Google Scholar 

  • DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR (2010) Testing predictions from personality neuroscience. Brain structure and the big five. Psychol Sci 21:820–828

    PubMed Central  PubMed  Google Scholar 

  • Dieckmann G, Schneider-Jonietz B, Schneider H (1988) Psychiatric and neuropsychological findings after stereotactic hypothalamotomy, in cases of extreme sexual aggressivity. Acta Neurochir Suppl 44:163–166

    PubMed  CAS  Google Scholar 

  • Dinn WM, Harris CL (2000) Neurocognitive function in antisocial personality disorder. Psychiatry Res 97:173–190

    PubMed  CAS  Google Scholar 

  • Dolan M, Park I (2002) The neuropsychology of antisocial personality disorder. Psychol Med 32:417–427

    PubMed  Google Scholar 

  • Donegan NH, Sanislow CA, Blumberg HP, Fulbright RK, Lacadie C, Skudlarski P, Gore JC, Olson IR, McGlashan TH, Wexler BE (2003) Amygdala hyperreactivity in borderline personality disorder: implications for emotional dysregulation. Biol Psychiatry 54:1284–1293

    PubMed  Google Scholar 

  • Dougherty DD, Shin LM, Alpert NM, Pitman RK, Orr SP, Lasko M, Macklin ML, Fischman AJ, Rauch SL (1999) Anger in healthy men: a PET study using script-driven imagery. Biol Psychiatry 46:466–472

    PubMed  CAS  Google Scholar 

  • Dowson J, Bazanis E, Rogers R, Prevost A, Taylor P, Meux C, Staley C, Nevison-Andrews D, Taylor C, Robbins T, Sahakian B (2004) Impulsivity in patients with borderline personality disorder. Compr Psychiatry 45:29–36

    PubMed  Google Scholar 

  • Dube MG, Kalra SP, Kalra PS (1999) Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res 842:473–477

    PubMed  CAS  Google Scholar 

  • Ducharme S, Hudziak JJ, Botteron KN, Ganjavi H, Lepage C, Collins DL, Albaugh MD, Evans AC, Karama S, Brain Development Cooperative Group (2011) Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children. Biol Psychiatry 70:283–290

    PubMed Central  PubMed  Google Scholar 

  • Duncan GE, Johnson KB, Breese GR (1993) Topographic patterns of brain activity in response to swim stress: assessment by 2-deoxyglucose uptake and expression of Fos-like immunoreactivity. J Neurosci 13:3932–3943

    PubMed  CAS  Google Scholar 

  • Duncan GE, Inada K, Farrington JS, Koller BH, Moy SS (2009) Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress. Brain Res 1265:186–195

    PubMed Central  PubMed  CAS  Google Scholar 

  • Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, Amaral DG (2001) The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav Neurosci 115:515–544

    PubMed  CAS  Google Scholar 

  • Ermer E, Cope LM, Nyalakanti PK, Calhoun VD, Kiehl KA (2012) Aberrant paralimbic gray matter in criminal psychopathy. J Abnorm Psychol 121:649–658

    PubMed  Google Scholar 

  • Ermer E, Cope LM, Nyalakanti PK, Calhoun VD, Kiehl KA (2013) Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. J Am Acad Child Adolesc Psychiatry 52:94–103

    PubMed Central  PubMed  Google Scholar 

  • Fabiansson EC, Denson TF, Moulds ML, Grisham JR, Schira MM (2012) Don’t look back in anger: neural correlates of reappraisal, analytical rumination, and angry rumination during recall of an anger-inducing autobiographical memory. Neuroimage 59:2974–2981

    PubMed  Google Scholar 

  • Fahim C, He Y, Yoon U, Chen J, Evans A, Pérusse D (2011) Neuroanatomy of childhood disruptive behavior disorders. Aggress Behav 37:326–337

    PubMed  Google Scholar 

  • Fairchild G, Hagan CC, Walsh ND, Passamonti L, Calder AJ, Goodyer IM (2013) Brain structure abnormalities in adolescent girls with conduct disorder. J Child Psychol Psychiatry 54:86–95

    PubMed Central  PubMed  Google Scholar 

  • Faria MA (2013) Violence, mental illness, and the brain – a brief history of psychosurgery: Part 3 – from deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans. Surg Neurol Int 4:91

    PubMed Central  PubMed  Google Scholar 

  • Ferris CF, Delville Y (1994) Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology 19:593–601

    PubMed  CAS  Google Scholar 

  • Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44:235–239

    PubMed  CAS  Google Scholar 

  • Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340

    PubMed  CAS  Google Scholar 

  • Ferris CF, Messenger T, Sullivan R (2005) Behavioral and neuroendocrine consequences of social subjugation across adolescence and adulthood. Front Zool 2:7

    PubMed Central  PubMed  Google Scholar 

  • Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111

    PubMed Central  PubMed  Google Scholar 

  • Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35:591–604

    PubMed Central  PubMed  Google Scholar 

  • Fischer SG, Ricci LA, Melloni RH Jr (2007) Repeated anabolic/androgenic steroid exposure during adolescence alters phosphate-activated glutaminase and glutamate receptor 1 (GluR1) subunit immunoreactivity in Hamster brain: correlation with offensive aggression. Behav Brain Res 180:77–85

    PubMed Central  PubMed  CAS  Google Scholar 

  • Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2001) Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 432:307–328

    PubMed  CAS  Google Scholar 

  • Fokidis HB, Prior NH, Soma KK (2013) Fasting increases aggression and differentially modulates local and systemic steroid levels in male zebra finches. Endocrinology 154:4328–4339

    PubMed  CAS  Google Scholar 

  • Fountas KN, Smith JR (2007) Historical evolution of stereotactic amygdalotomy for the management of severe aggression. J Neurosurg 106:710–713

    PubMed  Google Scholar 

  • Frankle WG, Lombardo I, New AS, Goodman M, Talbot PS, Huang Y, Hwang DR, Slifstein M, Curry S, Abi-Dargham A, Laruelle M, Siever LJ (2005) Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatry 162:915–923

    PubMed  Google Scholar 

  • Franzini A, Messina G, Cordella R, Marras C, Broggi G (2010) Deep brain stimulation of the posteromedial hypothalamus: indications, long-term results, and neurophysiological considerations. Neurosurg Focus 29:E13

    PubMed  Google Scholar 

  • Fuchs SA, Edinger HM, Siegel A (1985) The organization of the hypothalamic pathways mediating affective defense behavior in the cat. Brain Res 330:77–92

    PubMed  CAS  Google Scholar 

  • Fulwiler CE, King JA, Zhang N (2012) Amygdala-orbitofrontal resting-state functional connectivity is associated with trait anger. Neuroreport 23:606–610

    PubMed  Google Scholar 

  • Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P (2009) Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 34:418–432

    PubMed Central  PubMed  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71

    PubMed  CAS  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor and limbic centres. J Comp Neurol 492:145–177

    PubMed  Google Scholar 

  • Gammie SC, Nelson RJ (2001) cFOS and pCREB activation and maternal aggression in mice. Brain Res 898:232–241

    PubMed  CAS  Google Scholar 

  • Gammie SC, Stevenson SA (2006) Effects of daily and acute restraint stress during lactation on maternal aggression and behavior in mice. Stress 9:171–180

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gammie SC, Hasen NS, Stevenson SA, Bale TL, D’Anna KL (2005) Elevated stress sensitivity in corticotropin-releasing factor receptor 2 deficient mice decreases maternal, but not intermale aggression. Behav Brain Res 160:169–177

    PubMed  CAS  Google Scholar 

  • Gansler DA, Lee AK, Emerton BC, D’Amato C, Bhadelia R, Jerram M, Fulwiler C (2011) Prefrontal regional correlates of self-control in male psychiatric patients: impulsivity facets and aggression. Psychiatry Res 191:16–23

    PubMed  Google Scholar 

  • George DT, Rawlings RR, Williams WA, Phillips MJ, Fong G, Kerich M, Momenan R, Umhau JC, Hommer D (2004) A select group of perpetrators of domestic violence: evidence of decreased metabolism in the right hypothalamus and reduced relationships between cortical/subcortical brain structures in position emission tomography. Psychiatry Res 130:11–25

    PubMed  Google Scholar 

  • Gilpin NW, Roberto M (2012) Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neurosci Biobehav Rev 36:873–888

    PubMed Central  PubMed  CAS  Google Scholar 

  • Glenn AL, Raine A, Schug RA (2009) The neural correlates of moral decision-making in psychopathy. Mol Psychiatry 14:5–6

    PubMed  CAS  Google Scholar 

  • Gobrogge KL, Liu Y, Jia X, Wang Z (2007) Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. J Comp Neurol 502:1109–1122

    PubMed  Google Scholar 

  • Gobrogge KL, Liu Y, Young LJ, Wang Z (2009) Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proc Natl Acad Sci U S A 106:19144–19149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goethals I, Audenaert K, Jacobs F, Van den Eynde F, Bernagie K, Kolindou A, Vervaet M, Dierckx R, Van Heeringen C (2005) Brain perfusion SPECT in impulsivity-related personality disorders. Behav Brain Res 157:187–192

    PubMed  Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 351:1445–1453

    PubMed  CAS  Google Scholar 

  • Goltz F (1892) Der Hund ohne Grosshirn. Siebente Abhandlung über die Verrichtungen des Grosshirns. Arch f d ges Physiol 51:570–614, Cited based on Fountas and Smith, 2007

    Google Scholar 

  • Gopal A, Clark E, Allgair A, D’Amato C, Furman M, Gansler DA, Fulwiler C (2013) Dorsal/ventral parcellation of the amygdala: relevance to impulsivity and aggression. Psychiatry Res 211:24–30

    PubMed  Google Scholar 

  • Goyer PF, Andreason PJ, Semple WE, Clayton AH, King AC, Compton-Toth BA, Schulz SC, Cohen RM (1994) Positron-emission tomography and personality disorders. Neuropsychopharmacology 10:21–28

    PubMed  CAS  Google Scholar 

  • Gratton A, Wise RA (1988) Comparisons of refractory periods for medial forebrain bundle fibers subserving stimulation-induced feeding and brain stimulation reward: a psychophysical study. Brain Res 438:256–263

    PubMed  CAS  Google Scholar 

  • Greenberg N, Scott M, Crews D (1984) Role of the amygdala in the reproductive and aggressive behavior of the lizard, Anolis carolinensis. Physiol Behav 32:147–151

    PubMed  CAS  Google Scholar 

  • Gregg TR, Siegel A (2001) Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 25:91–140

    PubMed  CAS  Google Scholar 

  • Gregg TR, Siegel A (2003) Differential effects of NK1 receptors in the midbrain periaqueductal gray upon defensive rage and predatory attack in the cat. Brain Res 994:55–66

    PubMed  CAS  Google Scholar 

  • Gregory S, Ffytche D, Simmons A, Kumari V, Howard M, Hodgins S, Blackwood N (2012) The antisocial brain: psychopathy matters. Arch Gen Psychiatry 69:962–972

    PubMed  Google Scholar 

  • Grimes JM, Melloni RH Jr (2002) Serotonin modulates offensive attack in adolescent anabolic steroid-treated hamsters. Pharmacol Biochem Behav 73:713–721

    PubMed  CAS  Google Scholar 

  • Grimes JM, Melloni RH Jr (2005) Serotonin-1B receptor activity and expression modulate the aggression-stimulating effects of adolescent anabolic steroid exposure in hamsters. Behav Neurosci 119:1184–1194

    PubMed  CAS  Google Scholar 

  • Grimes JM, Melloni RH Jr (2006) Prolonged alterations in the serotonin neural system following the cessation of adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behav Neurosci 120:1242–1251

    PubMed  CAS  Google Scholar 

  • Grimes JM, Ricci LA, Melloni RH Jr (2003) Glutamic acid decarboxylase (GAD65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters. Horm Behav 44:271–280

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    PubMed  CAS  Google Scholar 

  • Guzman-Ramos K, Bermudez-Rattoni F (2012) Interplay of amygdala and insular cortex during and after associative taste aversion memory formation. Rev Neurosci 23:463–471

    PubMed  Google Scholar 

  • Halasz J, Liposits Z, Kruk MR, Haller J (2002a) Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: involvement of fear- and stress-related structures. Eur J Neurosci 15:561–569

    PubMed  Google Scholar 

  • Halasz J, Liposits Z, Meelis W, Kruk MR, Haller J (2002b) Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport 13:1267–1270

    PubMed  Google Scholar 

  • Halász J, Tóth M, Kalló I, Liposits Z, Haller J (2006) The activation of prefrontal cortical neurons in aggression – a double labeling study. Behav Brain Res 175:166–175

    PubMed  Google Scholar 

  • Halasz J, Toth M, Mikics E, Hrabovszky E, Barsy B, Barsvari B, Haller J (2008) The effect of neurokinin1 receptor blockade on territorial aggression and in a model of violent aggression. Biol Psychiatry 63:271–278

    PubMed  CAS  Google Scholar 

  • Halasz J, Zelena D, Toth M, Tulogdi A, Mikics E, Haller J (2009) Substance P neurotransmission and violent aggression: the role of tachykinin NK(1) receptors in the hypothalamic attack area. Eur J Pharmacol 611:35–43

    PubMed  CAS  Google Scholar 

  • Halgren E (1982) Mental phenomena induced by stimulation in the limbic system. Hum Neurobiol 1:251–260

    PubMed  CAS  Google Scholar 

  • Hallberg M, Johansson P, Kindlundh AM, Nyberg F (2000) Anabolic-androgenic steroids affect the content of substance P and substance P(1–7) in the rat brain. Peptides 21:845–852

    PubMed  CAS  Google Scholar 

  • Haller J, Abrahám I, Zelena D, Juhász G, Makara GB, Kruk MR (1998a) Aggressive experience affects the sensitivity of neurons towards pharmacological treatment in the hypothalamic attack area. Behav Pharmacol 9:469–475

    PubMed  CAS  Google Scholar 

  • Haller J, Halasz J, Makara GB, Kruk MR (1998b) Acute effects of glucocorticoids: behavioral and pharmacological perspectives. Neurosci Biobehav Rev 23:337–344

    PubMed  CAS  Google Scholar 

  • Haller J, Millar S, Kruk MR (1998c) Mineralocorticoid receptor blockade inhibits aggressive behaviour in male rats. Stress 2:201–207

    PubMed  CAS  Google Scholar 

  • Haller J, van de Schraaf J, Kruk MR (2001) Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for “pathological” aggression? J Neuroendocrinol 13:102–107

    PubMed  CAS  Google Scholar 

  • Haller J, Halász J, Mikics E, Kruk MR (2004) Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. J Neuroendocrinol 16:550–557

    PubMed  CAS  Google Scholar 

  • Haller J, Mikics E, Halász J, Tóth M (2005a) Mechanisms differentiating normal from abnormal aggression: glucocorticoids and serotonin. Eur J Pharmacol 526:89–100

    PubMed  CAS  Google Scholar 

  • Haller J, Toth M, Halasz J (2005b) The activation of raphe serotonergic neurons in normal and hypoarousal-driven aggression: a double labeling study in rats. Behav Brain Res 161:88–94

    PubMed  CAS  Google Scholar 

  • Haller J, Toth M, Halasz J, De Boer SF (2006) Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88:173–182

    PubMed  CAS  Google Scholar 

  • Haller J, Horváth Z, Bakos N (2007) The effect of buspirone on normal and hypoarousal-driven abnormal aggression in rats. Prog Neuropsychopharmacol Biol Psychiatry 31:27–31

    PubMed  CAS  Google Scholar 

  • Han Y, Shaikh MB, Siegel A (1996) Medial amygdaloid suppression of predatory attack behavior in the cat: I. Role of a substance P pathway from the medial amygdala to the medial hypothalamus. Brain Res 716:59–71

    PubMed  CAS  Google Scholar 

  • Harrison RJ, Connor DF, Nowak C, Nash K, Melloni RH Jr (2000) Chronic anabolic–androgenic steroid treatment during adolescence increases anterior hypothalamic vasopressin and aggression in intact hamsters. Psychoneuroendocrinology 25:317–338

    PubMed  CAS  Google Scholar 

  • Hasen NS, Gammie SC (2005) Differential fos activation in virgin and lactating mice in response to an intruder. Physiol Behav 84:681–695

    PubMed  CAS  Google Scholar 

  • Hasen NS, Gammie SC (2006) Maternal aggression: new insights from Egr-1. Brain Res 1108:147–156

    PubMed  CAS  Google Scholar 

  • Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hassanain M, Bhatt S, Siegel A (2003) Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors. Brain Res 981:201–209

    PubMed  CAS  Google Scholar 

  • Hassanain M, Bhatt S, Zalcman S, Siegel A (2005) Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat. Brain Res 1048:1–11

    PubMed  CAS  Google Scholar 

  • Hayden-Hixson DM, Ferris CF (1991a) Cortisol exerts site-, context- and dose-dependent effects on agonistic responding in hamsters. J Neuroendocrinol 3:613–622

    PubMed  CAS  Google Scholar 

  • Hayden-Hixson DM, Ferris CF (1991b) Steroid specific regulation of agonistic responding in the anterior hypothalamus of male hamsters. Physiol Behav 50:793–799

    PubMed  CAS  Google Scholar 

  • Hazlett EA, New AS, Newmark R, Haznedar MM, Lo JN, Speiser LJ, Chen AD, Mitropoulou V, Minzenberg M, Siever LJ, Buchsbaum MS (2005) Reduced anterior and posterior cingulate gray matter in borderline personality disorder. Biol Psychiatry 58:614–623

    PubMed  Google Scholar 

  • Heekeren HR, Wartenburger I, Schmidt H, Schwintowski HP, Villringer A (2003) An fMRI study of simple ethical decision-making. Neuroreport 14:1215–1219

    PubMed  Google Scholar 

  • Heimburger RF, Whitlock CC, Kalsbeck JE (1966) Stereotaxic amygdalotomy for epilepsy with aggressive behavior. JAMA 198:741–745

    PubMed  CAS  Google Scholar 

  • Heimer L, de Olmos JS, Alheid GF, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer RC (1999) The human basal forebrain, Part II. The primate nervous system, Part III. Elsevier, pp 57–226

    Google Scholar 

  • Hermans EJ, Ramsey NF, van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry 63:263–270

    PubMed  CAS  Google Scholar 

  • Hernando V, Pastor J, Pedrosa M, Peña E, Sola RG (2008) Low-frequency bilateral hypothalamic stimulation for treatment of drug-resistant aggressiveness in a young man with mental retardation. Stereotact Funct Neurosurg 86:219–223

    PubMed  Google Scholar 

  • Herpertz SC, Dietrich TM, Wenning B, Krings T, Erberich SG, Willmes K, Thron A, Sass H (2001) Evidence of abnormal amygdala functioning in borderline personality disorder: a functional MRI study. Biol Psychiatry 50:292–298

    PubMed  CAS  Google Scholar 

  • Herpertz SC, Huebner T, Marx I, Vloet TD, Fink GR, Stoecker T, Shah NJ, Konrad K, Herpertz-Dahlmann B (2008) Emotional processing in male adolescents with childhood-onset conduct disorder. J Child Psychol Psychiatry 49:781–791

    PubMed  Google Scholar 

  • Hirono N, Mega MS, Dinov ID, Mishkin F, Cummings JL (2000) Left frontotemporal hypoperfusion is associated with aggression in patients with dementia. Arch Neurol 57:861–866

    PubMed  CAS  Google Scholar 

  • Hitchcock E, Cairns V (1973) Amygdalotomy. Postgrad Med J 49:894–904

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hood TW, Siegfried J, Wieser HG (1983) The role of stereotactic amygdalotomy in the treatment of temporal lobe epilepsy associated with behavioral disorders. Appl Neurophysiol 46:19–25

    PubMed  CAS  Google Scholar 

  • Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801

    PubMed  Google Scholar 

  • Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242

    PubMed  CAS  Google Scholar 

  • Hrabovszky E, Halász J, Meelis W, Kruk MR, Liposits Z, Haller J (2005) Neurochemical characterization of hypothalamic neurons involved in attack behavior: glutamatergic dominance and co-expression of thyrotropin-releasing hormone in a subset of glutamatergic neurons. Neuroscience 133:657–666

    PubMed  CAS  Google Scholar 

  • Izquierdo A (2005) Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J Neurosci 25:8534–8542

    PubMed  CAS  Google Scholar 

  • Jackson D, Burns R, Trksak G, Simeone B, DeLeon KR, Connor DF, Harrison RJ, Melloni RH Jr (2005) Anterior hypothalamic vasopressin modulates the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters. Neuroscience 133:635–646

    PubMed  CAS  Google Scholar 

  • Johansson P, Hallberg M, Kindlundh A, Nyberg F (2000) The effect on opioid peptides in the rat brain, after chronic treatment with the anabolic androgenic steroid, nandrolone decanoate. Brain Res Bull 51:413–418

    PubMed  CAS  Google Scholar 

  • Jones AP, Laurens KR, Herba CM, Barker GJ, Viding E (2009) Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. Am J Psychiatry 166:95–102

    PubMed  Google Scholar 

  • Joppa MA, Meisel RL, Garber MA (1995) Fos expression in female hamster brain following sexual and aggressive behaviors. Neuroscience 68:783–792

    PubMed  CAS  Google Scholar 

  • Juengling FD, Schmahl C, Hesslinger B, Ebert D, Bremner JD, Gostomzyk J, Bohus M, Lieb K (2003) Positron emission tomography in female patients with borderline personality disorder. J Psychiatr Res 37:109–115

    PubMed  CAS  Google Scholar 

  • Juhász C, Behen ME, Muzik O, Chugani DC, Chugani HT (2001) Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia 42:991–1001

    PubMed  Google Scholar 

  • Kalnin AJ, Edwards CR, Wang Y, Kronenberger WG, Hummer TA, Mosier KM, Dunn DW, Mathews VP (2011) The interacting role of media violence exposure and aggressive-disruptive behavior in adolescent brain activation during an emotional Stroop task. Psychiatry Res 192:12–19

    PubMed  Google Scholar 

  • Kamigaki T, Fukushima T, Tamura K, Miyashita Y (2012) Neurodynamics of cognitive set shifting in monkey frontal cortex and its causal impact on behavioral flexibility. J Cogn Neurosci 24:2171–2185

    PubMed  Google Scholar 

  • Karli PM, Vergnes M, Eclancher F, Schmitt P, Chawerand IP (1972) Role of amygdala in the control of mouse-killing behavior in the rat. Adv Behav Biol 2:533–580

    Google Scholar 

  • Kessler MS, Murgatroyd C, Bunck M, Czibere L, Frank E, Jacob W, Horvath C, Muigg P, Holsboer F, Singewald N, Spengler D, Landgraf R (2007) Diabetes insipidus and, partially, low anxiety-related behaviour are linked to a SNP-associated vasopressin deficit in LAB mice. Eur J Neurosci 26:2857–2864

    PubMed  Google Scholar 

  • Keune PM, van der Heiden L, Várkuti B, Konicar L, Veit R, Birbaumer N (2012) Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neurosci Lett 515:191–195

    PubMed  CAS  Google Scholar 

  • Kiehl KA, Smith AM, Hare RD, Mendrek A, Forster BB, Brink J, Liddle PF (2001) Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol Psychiatry 50:677–684

    PubMed  CAS  Google Scholar 

  • Kim U, Lee T (2012) Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur J Neurosci 35:1253–1269

    PubMed  Google Scholar 

  • Kim C, Jeon D, Kim YH, Lee CJ, Kim H, Shin HS (2009) Deletion of N-type Ca(2+) channel Ca(v)2.2 results in hyperaggressive behaviors in mice. J Biol Chem 284:2738–2745

    PubMed  CAS  Google Scholar 

  • Kimbrell TA, George MS, Parekh PI, Ketter TA, Podell DM, Danielson AL, Repella JD, Benson BE, Willis MW, Herscovitch P, Post RM (1999) Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biol Psychiatry 46:454–465

    PubMed  CAS  Google Scholar 

  • King JA, Blair RJ, Mitchell DG, Dolan RJ, Burgess N (2006) Doing the right thing: a common neural circuit for appropriate violent or compassionate behavior. Neuroimage 30:1069–1076

    PubMed  Google Scholar 

  • Kling A, Lancaster J, Benitone J (1970) Amygdalectomy in the free-ranging vervet (Cercopithecus aethiops). J Psychiatr Res 7:191–199

    PubMed  CAS  Google Scholar 

  • Klüver H, Bucy PC (1938) An analysis of certain effects of bilateral temporal lobectomy in the Rhesus monkey, with special reference to psychic blindness. J Psychol 5:33–34, Cited based on Fountas and Smith, 2007

    Google Scholar 

  • Knyshevski I, Connor DF, Harrison RJ, Ricci LA, Melloni RH Jr (2005) Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters. Behav Brain Res 159:277–286

    PubMed  CAS  Google Scholar 

  • Koch W, Schaaff N, Pöpperl G, Mulert C, Juckel G, Reicherzer M, Ehmer-von Geiso C, Möller HJ, Hegerl U, Tatsch K, Pogarell O (2007) [I-123] ADAM and SPECT in patients with borderline personality disorder and healthy control subjects. J Psychiatry Neurosci 32:234–240

    PubMed Central  PubMed  Google Scholar 

  • Koenigsberg HW, Siever LJ, Lee H, Pizzarello S, New AS, Goodman M, Cheng H, Flory J, Prohovnik I (2009) Neural correlates of emotion processing in borderline personality disorder. Psychiatry Res 172:192–199

    PubMed  Google Scholar 

  • Kolb B (1974) Social behavior of rats with chronic prefrontal lesions. J Comp Physiol Psychol 87:466–474

    PubMed  CAS  Google Scholar 

  • Kollack-Walker S, Newman SW (1995) Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience 66:721–736

    PubMed  CAS  Google Scholar 

  • Kollias SS, Alkadhi H, Jaermann T, Crelier G, Hepp-Reymond MC (2001) Identification of multiple nonprimary motor cortical areas with simple movements. Brain Res Brain Res Rev 36:185–195

    PubMed  CAS  Google Scholar 

  • Konoshenko MY, Timoshenko TV, Plyusnina IZ (2013) c-Fos activation and intermale aggression in rats selected for behavior toward humans. Behav Brain Res 237:103–106

    PubMed  CAS  Google Scholar 

  • Koob GF (2003) Neuroadaptive mechanisms of addiction: studies on the extended amygdala. Eur Neuropsychopharmacol 13:442–452

    PubMed  CAS  Google Scholar 

  • Koolhaas JM (1978) Hypothalamically induced intraspecific aggressive behaviour in the rat. Exp Brain Res 32:365–375

    PubMed  CAS  Google Scholar 

  • Kruk MR (1991) Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci Biobehav Rev 15:527–538

    PubMed  CAS  Google Scholar 

  • Kruk MR, van der Poel AM, de Vos-Frerichs TP (1979) The induction of aggressive behaviour by electrical stimulation in the hypothalamus of male rats. Behaviour 70:292–322

    PubMed  CAS  Google Scholar 

  • Kruk MR, Westphal KG, Van Erp AM, van Asperen J, Cave BJ, Slater E, de Koning J, Haller J (1998) The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev 23:163–177

    PubMed  CAS  Google Scholar 

  • Kuhlmann A, Bertsch K, Schmidinger I, Thomann P, Herpertz S (2013) Morphometric differences in central stress-regulating structures between women with and without borderline personality disorder. J Psychiat Neurosci 38:129–137

    Google Scholar 

  • Laakso MP, Gunning-Dixon F, Vaurio O, Repo-Tiihonen E, Soininen H, Tiihonen J (2002) Prefrontal volumes in habitually violent subjects with antisocial personality disorder and type 2 alcoholism. Psychiatry Res 114:95–102

    PubMed  Google Scholar 

  • Laitinen LV (2001) Psychosurgery. Stereotact Funct Neurosurg 76:239–242

    PubMed  CAS  Google Scholar 

  • Lammers JH, Kruk MR, Meelis W, van der Poel AM (1988) Hypothalamic substrates for brain stimulation-induced attack, teeth-chattering and social grooming in the rat. Brain Res 449:311–327

    PubMed  CAS  Google Scholar 

  • Lanteaume L, Khalfa S, Régis J, Marquis P, Chauvel P, Bartolomei F (2007) Emotion induction after direct intracerebral stimulations of human amygdala. Cereb Cortex 17:1307–1313

    PubMed  Google Scholar 

  • Lapierre D, Braun CM, Hodgins S (1995) Ventral frontal deficits in psychopathy: neuropsychological test findings. Neuropsychologia 33:139–151

    PubMed  CAS  Google Scholar 

  • LeDoux J (2007) The amygdala. Curr Biol 17:R868–R874

    PubMed  CAS  Google Scholar 

  • Lee G, Gammie SC (2007) GABA enhancement of maternal defense in mice: possible neural correlates. Pharmacol Biochem Behav 86:176–187

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee G, Gammie SC (2010) GABAA receptor signaling in caudal periaqueductal gray regulates maternal aggression and maternal care in mice. Behav Brain Res 213:230–237

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee TM, Chan SC, Raine A (2008) Strong limbic and weak frontal activation to aggressive stimuli in spouse abusers. Mol Psychiatry 13:655–656

    PubMed  CAS  Google Scholar 

  • Levinson DM, Reeves DL, Buchanan DR (1980) Reductions in aggression and dominance status in guinea pigs following bilateral lesions in the basolateral amygdala or lateral septum. Physiol Behav 25:963–971

    PubMed  CAS  Google Scholar 

  • Li CS, Kosten TR, Sinha R (2006) Antisocial personality and stress-induced brain activation in cocaine-dependent patients. Neuroreport 17:243–247

    PubMed  Google Scholar 

  • Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lipp HP (1978) Aggression and flight behaviour of the marmoset monkey Callithrix jacchus: an ethogram for brain stimulation studies. Brain Behav Evol 15:241–259

    PubMed  CAS  Google Scholar 

  • López HS, Carrer HF (1985) Further studies on peripeduncular-hypothalamic pathways involved in sexual behavior in the female rat. Exp Neurol 88:241–252

    PubMed  Google Scholar 

  • Lopez NL, Vazquez DM, Olson SL (2004) An integrative approach to the neurophysiological substrates of social withdrawal and aggression. Dev Psychopathol 16:69–93

    PubMed  Google Scholar 

  • Lotze M, Veit R, Anders S, Birbaumer N (2007) Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: an interactive fMRI study. Neuroimage 34:470–478

    PubMed  CAS  Google Scholar 

  • Luria AR (1980) Higher Cortical Functions in Man. Basic Books, New York, NY

    Google Scholar 

  • Lyons-Ruth K, Choi-Kain L, Pechtel P, Bertha E, Gunderson J (2011) Perceived parental protection and cortisol responses among young females with borderline personality disorder and controls. Psychiatry Res 189:426–432

    PubMed  CAS  Google Scholar 

  • Machado CJ, Bachevalier J (2006) The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav Neurosci 120:761–786

    PubMed  Google Scholar 

  • Maeda H, Maki S (1986) Dopaminergic facilitation of recovery from amygdaloid lesions which affect hypothalamic defensive attack in cats. Brain Res 363:135–140

    PubMed  CAS  Google Scholar 

  • Mai JK, Assheuer J, Paxinos G (1998) Atlas of the human brain. Academic, San Diego, CA

    Google Scholar 

  • Mailly P, Aliane V, Groenewegen HJ, Haber SN, Deniau JM (2013) The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33:5718–5727

    PubMed  CAS  Google Scholar 

  • Marciello M, Sinnamon HM (1990) Locomotor stepping initiated by glutamate injections into the hypothalamus of the anesthetized rat. Behav Neurosci 104:980–990

    PubMed  CAS  Google Scholar 

  • Márquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, Magistretti PJ, Trono D, Sandi C (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 3:e216

    PubMed Central  PubMed  Google Scholar 

  • Marsh AA, Finger EC, Mitchell DG, Reid ME, Sims C, Kosson DS, Towbin KE, Leibenluft E, Pine DS, Blair RJ (2008) Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am J Psychiatry 165:712–720

    PubMed  Google Scholar 

  • Martin JR (1976) Motivated behaviors elicited from hypothalamus, midbrain, and pons of the guinea pig (Cavia porcellus). J Comp Physiol Psychol 90:1011–1034

    PubMed  CAS  Google Scholar 

  • Mathiak K, Weber R (2006) Toward brain correlates of natural behavior: fMRI during violent video games. Hum Brain Mapp 27:948–956

    PubMed  Google Scholar 

  • Matsuo K, Nicoletti M, Nemoto K, Hatch JP, Peluso MA, Nery FG, Soares JC (2009) A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 30:1188–1195

    PubMed  Google Scholar 

  • Max JE, Levin HS, Schachar RJ, Landis J, Saunders AE, Ewing-Cobbs L, Chapman SB, Dennis M (2006) Predictors of personality change due to traumatic brain injury in children and adolescents six to twenty-four months after injury. J Neuropsychiatry Clin Neurosci 18:21–32

    PubMed  Google Scholar 

  • Mcdonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75

    PubMed  CAS  Google Scholar 

  • McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M (1999) Cortical afferents to the extended amygdala. Ann NY Acad Sci 877:309–338

    PubMed  CAS  Google Scholar 

  • McGregor A, Herbert J (1992) Differential effects of excitotoxic basolateral and corticomedial lesions of the amygdala on the behavioural and endocrine responses to either sexual or aggression-promoting stimuli in the male rat. Brain Res 574:9–20

    PubMed  CAS  Google Scholar 

  • Mehta PH, Beer J (2010) Neural mechanisms of the testosterone-aggression relation: the role of orbitofrontal cortex. J Cogn Neurosci 22:2357–2368

    PubMed  Google Scholar 

  • Meletti S, Tassi L, Mai R, Fini N, Tassinari CA, Russo GL (2006) Emotions induced by intracerebral electrical stimulation of the temporal lobe. Epilepsia 47(Suppl 5):47–51

    PubMed  Google Scholar 

  • Meloni EG, Reedy CL, Cohen BM, Carlezon WA Jr (2008) Activation of raphe efferents to the medial prefrontal cortex by corticotropin-releasing factor: correlation with anxiety-like behavior. Biol Psychiatry 63:832–839

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mempel E, Witkiewicz B, Stadnicki R, Luczywek E, Kucinski L, Pawlowski G et al (1980) The effect of medial amygdalotomy and anterior hippocampotomy on behavior and seizures in epileptic patients. Acta Neurochir Suppl 30:161–167

    PubMed  CAS  Google Scholar 

  • Meunier M, Bachevalier J, Murray EA, Málková L, Mishkin M (1999) Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur J Neurosci 11:4403–4418

    PubMed  CAS  Google Scholar 

  • Meyer JH, Wilson AA, Rusjan P, Clark M, Houle S, Woodside S, Arrowood J, Martin K, Colleton M (2008) Serotonin2A receptor binding potential in people with aggressive and violent behaviour. J Psychiatry Neurosci 33:499–508

    PubMed Central  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci U S A 103:6269–6274

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miczek KA, Brykczynski T, Grossman SP (1974) Differential effects of lesions in the amygdala, periamygdaloid cortex, and stria terminalis on aggressive behaviors in rats. J Comp Physiol Psychol 87:760–771

    PubMed  CAS  Google Scholar 

  • Minzenberg MJ, Fan J, New AS, Tang CY, Siever LJ (2007) Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study. Psychiatry Res 155:231–243

    PubMed Central  PubMed  Google Scholar 

  • Moldow RL, Fischman AJ (1987) Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Peptides 8:819–822

    PubMed  CAS  Google Scholar 

  • Montag C, Weber B, Trautner P, Newport B, Markett S, Walter NT, Felten A, Reuter M (2012) Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli? Biol Psychol 89:107–111

    PubMed  Google Scholar 

  • Mos J, Kruk MR, Van der Poel AM, Meelis W (1982) Aggressive behavior induced by electrical stimulation in the midbrain central gray of male rats. Aggress Behav 8:261–284

    Google Scholar 

  • Mos J, Lammers JHCM, Van der Poel AM, Bermond B, Meelis W, Kruk MR (1983) Effects of midbrain central gray lesions on spontaneous and electrically induced aggression in the rat. Aggress Behav 9:133–155

    Google Scholar 

  • Mpakopoulou M, Gatos H, Brotis A, Paterakis KN, Fountas KN (2008) Stereotactic amygdalotomy in the management of severe aggressive behavioral disorders. Neurosurg Focus 25:E6

    PubMed  Google Scholar 

  • Müller JL, Sommer M, Wagner V, Lange K, Taschler H, Röder CH, Schuierer G, Klein HE, Hajak G (2003) Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biol Psychiatry 54:152–162

    PubMed  Google Scholar 

  • Narabayashi H, Uno M (1966) Long range results of stereotaxic amygdalotomy for behavior disorders. Confin Neurol 27:168–171

    PubMed  CAS  Google Scholar 

  • Narabayashi H, Nagao T, Saito Y, Yoshida M, Nagahata M (1963) Stereotaxic amygdalotomy for behavior disorders. Arch Neurol 9:1–16, Cited based on Fountas and Smith, 2007

    PubMed  CAS  Google Scholar 

  • Natarajan D, de Boer SF, Koolhaas JM (2009a) Lack of differential serotonin biosynthesis capacity in genetically selected low and high aggressive mice. Physiol Behav 98:411–415

    PubMed  CAS  Google Scholar 

  • Natarajan D, de Vries H, de Boer SF, Koolhaas JM (2009b) Violent phenotype in SAL mice is inflexible and fixed in adulthood. Aggress Behav 35:430–436

    PubMed  Google Scholar 

  • Natarajan D, de Vries H, Saaltink DJ, de Boer SF, Koolhaas JM (2009c) Delineation of violence from functional aggression in mice: an ethological approach. Behav Genet 39:73–90

    PubMed  Google Scholar 

  • Nelson RJ, Chiavegatto S (2001) Molecular basis of aggression. Trends Neurosci 24:713–719

    PubMed  CAS  Google Scholar 

  • Nephew BC, Caffrey MK, Felix-Ortiz AC, Ferris CF, Febo M (2009) Blood oxygen level-dependent signal responses in corticolimbic ‘emotions’ circuitry of lactating rats facing intruder threat to pups. Eur J Neurosci 30:934–945

    PubMed Central  PubMed  Google Scholar 

  • Neumann ID (2001) Alterations in behavioral and neuroendocrine stress coping strategies in pregnant, parturient and lactating rats. Prog Brain Res 133:143–152

    PubMed  CAS  Google Scholar 

  • Neumann ID, Veenema AH, Beiderbeck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4:12

    PubMed Central  PubMed  Google Scholar 

  • New AS, Hazlett EA, Buchsbaum MS, Goodman M, Reynolds D, Mitropoulou V, Sprung L, Shaw RB Jr, Koenigsberg H, Platholi J, Silverman J, Siever LJ (2002) Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Arch Gen Psychiatry 59:621–629

    PubMed  CAS  Google Scholar 

  • New AS, Hazlett EA, Buchsbaum MS, Goodman M, Mitelman SA, Newmark R, Trisdorfer R, Haznedar MM, Koenigsberg HW, Flory J, Siever LJ (2007) Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology 32:1629–1640

    PubMed  CAS  Google Scholar 

  • New AS, Hazlett EA, Newmark RE, Zhang J, Triebwasser J, Meyerson D, Lazarus S, Trisdorfer R, Goldstein KE, Goodman M, Koenigsberg HW, Flory JD, Siever LJ, Buchsbaum MS (2009) Laboratory induced aggression: a positron emission tomography study of aggressive individuals with borderline personality disorder. Biol Psychiatry 66:1107–1114

    PubMed Central  PubMed  Google Scholar 

  • Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann NY Acad Sci 877:242–257

    PubMed  CAS  Google Scholar 

  • Niedermeyer E (1998) Frontal lobe functions and dysfunctions. Clin Electroencephalogr 29:79–90

    PubMed  CAS  Google Scholar 

  • Oakes ME, Coover GD (1997) Effects of small amygdala lesions on fear, but not aggression, in the rat. Physiol Behav 61:45–55

    PubMed  CAS  Google Scholar 

  • Oquendo MA, Russo SA, Underwood MD, Kassir SA, Ellis SP, Mann JJ, Arango V (2006) Higher postmortem prefrontal 5-HT2A receptor binding correlates with lifetime aggression in suicide. Biol Psychiatry 59:235–243

    PubMed  CAS  Google Scholar 

  • Osumi T, Nakao T, Kasuya Y, Shinoda J, Yamada J, Ohira H (2012) Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population. J Affect Disord 142:331–338

    PubMed  Google Scholar 

  • Paine TA, Asinof SK, Diehl GW, Frackman A, Leffler J (2013) Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration. Behav Brain Res 243:247–254

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pan Y, Xu L, Young KA, Wang Z, Zhang Z (2010) Agonistic encounters and brain activation in dominant and subordinate male greater long-tailed hamsters. Horm Behav 58:478–484

    PubMed Central  PubMed  Google Scholar 

  • Panksepp J (2011) The basic emotional circuits of mammalian brains: do animals have affective lives? Neurosci Biobehav Rev 35:1791–1804

    PubMed  Google Scholar 

  • Pardini DA, Phillips M (2010) Neural responses to emotional and neutral facial expressions in chronically violent men. J Psychiatry Neurosci 35:390–398

    PubMed Central  PubMed  Google Scholar 

  • Pardini M, Krueger F, Hodgkinson C, Raymont V, Ferrier C, Goldman D, Strenziok M, Guida S, Grafman J (2011) Prefrontal cortex lesions and MAO-A modulate aggression in penetrating traumatic brain injury. Neurology 76:1038–1045

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723

    PubMed Central  PubMed  CAS  Google Scholar 

  • Parmigiani S, Brain PF, Mainardi D, Brunoni V (1988) Different patterns of biting attack employed by lactating female mice (Musdomesticus) in encounters with male and female conspecific intruders. J Comp Psychol 102:287–293

    PubMed  CAS  Google Scholar 

  • Parsey RV, Oquendo MA, Simpson NR, Ogden RT, Van Heertum R, Arango V, Mann JJ (2002) Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res 954:173–182

    PubMed  CAS  Google Scholar 

  • Passamonti L, Fera F, Magariello A, Cerasa A, Gioia MC, Muglia M, Nicoletti G, Gallo O, Provinciali L, Quattrone A (2006) Monoamine oxidase-a genetic variations influence brain activity associated with inhibitory control: new insight into the neural correlates of impulsivity. Biol Psychiatry 59:334–340

    PubMed  CAS  Google Scholar 

  • Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, Calder AJ, Robbins TW (2012) Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 71:36–43

    PubMed Central  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic

    Google Scholar 

  • Payer DE, Lieberman MD, London ED (2011) Neural correlates of affect processing and aggression in methamphetamine dependence. Arch Gen Psychiatry 68:271–282

    PubMed Central  PubMed  Google Scholar 

  • Payer DE, Nurmi EL, Wilson SA, McCracken JT, London ED (2012) Effects of methamphetamine abuse and serotonin transporter gene variants on aggression and emotion-processing neurocircuitry. Transl Psychiatry 2:e80

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pedrosa-Sanchez M, Sola RG (2003) Modern day psychosurgery: a new approach to neurosurgery in psychiatric disease. Rev Neurol 36:887–897

    PubMed  CAS  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360:781–795

    PubMed Central  PubMed  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672

    PubMed  CAS  Google Scholar 

  • Potegal M (2012) Temporal and frontal lobe initiation and regulation of the top-down escalation of anger and aggression. Behav Brain Res 231:386–395

    PubMed  Google Scholar 

  • Potegal M, Ferris CF, Hebert M, Meyerhoff J, Skaredoff L (1996a) Attack priming in female Syrian golden hamsters is associated with a c-fos-coupled process within the corticomedial amygdala. Neuroscience 75:869–880

    PubMed  CAS  Google Scholar 

  • Potegal M, Hebert M, DeCoster M, Meyerhoff JL (1996b) Brief, high-frequency stimulation of the corticomedial amygdala induces a delayed and prolonged increase of aggressiveness in male Syrian golden hamsters. Behav Neurosci 110:401–412

    PubMed  CAS  Google Scholar 

  • Pott CB, Kramer SZ, Siegel A (1987) Central gray modulation of affective defense is differentially sensitive to naloxone. Physiol Behav 40:207–213

    PubMed  CAS  Google Scholar 

  • Potts GF, George MR, Martin LE, Barratt ES (2006) Reduced punishment sensitivity in neural systems of behavior monitoring in impulsive individuals. Neurosci Lett 397:130–134

    PubMed  CAS  Google Scholar 

  • Prinssen EP, Nicolas LB, Klein S, Grundschober C, Lopez-Lopez C, Kessler MS, Bruns A, von Kienlin M, Wettstein JG, Moreau JL, Risterucci C (2012) Imaging trait anxiety in high anxiety F344 rats: focus on the dorsomedial prefrontal cortex. Eur Neuropsychopharmacol 22:441–451

    PubMed  CAS  Google Scholar 

  • Putkonen PT (1966) Attack elicited by forebrain and hypothalamic stimulation in the chicken. Experientia 22:405–407

    PubMed  CAS  Google Scholar 

  • Raine A, Yang Y (2006) Neural foundations to moral reasoning and antisocial behavior. Soc Cogn Affect Neurosci 1:203–213

    PubMed Central  PubMed  Google Scholar 

  • Raine A, Buchsbaum MS, Stanley J (1992) Selective reductions in prefrontal glucose metabolism in murderers assessed with positron emission tomography. Psychophysiology 29(suppl 4A):58

    Google Scholar 

  • Raine A, Buchsbaum MS, Stanley J, Lottenberg S, Abel L, Stoddard J (1994) Selective reductions in prefrontal glucose metabolism in murderers. Biol Psychiat 36:365–373

    PubMed  CAS  Google Scholar 

  • Raine A, Buchsbaum M, LaCasse L (1997) Brain abnormalities in murderers indicated by positron emission tomography. Biol Psychiatry 42:495–508

    PubMed  CAS  Google Scholar 

  • Raine A, Lencz T, Bihrle S, LaCasse L, Colletti P (2000) Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry 57:119–127, discussion 128–129

    PubMed  CAS  Google Scholar 

  • Raine A, Yang Y, Narr KL, Toga AW (2011) Sex differences in orbitofrontal gray as a partial explanation for sex differences in antisocial personality. Mol Psychiatry 16:227–236

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ramamurthi B (1988) Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochir Suppl 44:152–157

    PubMed  CAS  Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    PubMed  Google Scholar 

  • Rasia-Filho AA, Londero RG, Achaval M (2000) Functional activities of the amygdala: an overview. J Psychiatry Neurosci 25:14–23

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ray JP, Price JL (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323:167–197

    PubMed  CAS  Google Scholar 

  • Rejeski WJ, Gregg E, Kaplan JR, Manuck SB (1990) Anabolic-androgenic steroids: effects on social behavior and baseline heart rate. Health Psychol 9:774–791

    PubMed  CAS  Google Scholar 

  • Ricci LA, Grimes JM, Knyshevski I, Melloni RH Jr (2005) Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD65) immunoreactivity in hamster brain: correlation with offensive aggression. Brain Res 1035:131–138

    PubMed  CAS  Google Scholar 

  • Ricci LA, Rasakham K, Grimes JM, Melloni RH Jr (2006) Serotonin-1A receptor activity and expression modulate adolescent anabolic/androgenic steroid-induced aggression in hamsters. Pharmacol Biochem Behav 85:1–11

    PubMed  CAS  Google Scholar 

  • Ricci LA, Grimes JM, Melloni RH Jr (2007) Lasting changes in neuronal activation patterns in select forebrain regions of aggressive, adolescent anabolic/androgenic steroid-treated hamsters. Behav Brain Res 176:344–352

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ricci LA, Schwartzer JJ, Melloni RH Jr (2009) Alterations in the anterior hypothalamic dopamine system in aggressive adolescent AAS-treated hamsters. Horm Behav 55:348–355

    PubMed  CAS  Google Scholar 

  • Rilling JK, Winslow JT, Kilts CD (2004) The neural correlates of mate competition in dominant male rhesus macaques. Biol Psychiatry 56:364–375

    PubMed  Google Scholar 

  • Rilling JK, Glenn AL, Jairam MR, Pagnoni G, Goldsmith DR, Elfenbein HA, Lilienfeld SO (2007) Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biol Psychiatry 61:1260–1271

    PubMed  Google Scholar 

  • Roberts WW, Steinberg ML, Means LW (1967) Hypothalamic mechanisms for sexual, aggressive, and other motivational behaviors in the opossium, Didelphis virginiana. J Comp Physiol Psychol 64:1–15

    PubMed  CAS  Google Scholar 

  • Roeling TAP, Veening JG, Kruk MR, Nieuwenhuys R (1990) Grooming behaviour elicited by kainic acid evoked cell body stimulation in the hypothalamus of the rat. Neurosci Res Commun 6:111–118

    CAS  Google Scholar 

  • Roeling TA, Kruk MR, Schuurmans R, Veening JG (1993) Behavioural responses of bicucculline methiodide injections into the ventral hypothalamus of freely moving, socially interacting rats. Brain Res 615:121–127

    PubMed  CAS  Google Scholar 

  • Roeling TA, Veening JG, Kruk MR, Peters JP, Vermelis ME, Nieuwenhuys R (1994) Efferent connections of the hypothalamic “aggression area” in the rat. Neuroscience 59:1001–1024

    PubMed  CAS  Google Scholar 

  • Romaniuk A (1965) Representation of aggression and flight reactions in the hypothalamus of the cat. Acta Biol Exp 25:177–186

    CAS  Google Scholar 

  • Rosell DR, Thompson JL, Slifstein M, Xu X, Frankle WG, New AS, Goodman M, Weinstein SR, Laruelle M, Abi-Dargham A, Siever LJ (2010) Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry 67:1154–1162

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rouwette T, Vanelderen P, Roubos EW, Kozicz T, Vissers K (2012) The amygdala, a relay station for switching on and off pain. Eur J Pain 16:782–792

    PubMed  CAS  Google Scholar 

  • Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45:614–626

    PubMed Central  PubMed  Google Scholar 

  • Rudebeck PH, Walton ME, Millette BH, Shirley E, Rushworth MF, Bannerman DM (2007) Distinct contributions of frontal areas to emotion and social behaviour in the rat. Eur J Neurosci 26:2315–2326

    PubMed Central  PubMed  Google Scholar 

  • Rüsch N, van Elst LT, Ludaescher P, Wilke M, Huppertz HJ, Thiel T, Schmahl C, Bohus M, Lieb K, Hesslinger B, Hennig J, Ebert D (2003) A voxel-based morphometric MRI study in female patients with borderline personality disorder. Neuroimage 20:385–392

    PubMed  Google Scholar 

  • Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417

    PubMed  CAS  Google Scholar 

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 2:41

    PubMed Central  PubMed  Google Scholar 

  • Sala M, Caverzasi E, Lazzaretti M, Morandotti N, De Vidovich G, Marraffini E, Gambini F, Isola M, De Bona M, Rambaldelli G, d’Allio G, Barale F, Zappoli F, Brambilla P (2011) Dorsolateral prefrontal cortex and hippocampus sustain impulsivity and aggressiveness in borderline personality disorder. J Affect Disord 131:417–421

    PubMed  CAS  Google Scholar 

  • Sano K, Mayanagi Y, Sekino H, Ogashiwa M, Ishijima B (1970) Results of stimulation and destruction of the posterior hypothalamus in man. J Neurosurg 33:689–707

    PubMed  CAS  Google Scholar 

  • Sarazin M, Michon A, Pillon B, Samson Y, Canuto A, Gold G, Bouras C, Dubois B, Giannakopoulos P (2003) Metabolic correlates of behavioral and affective disturbances in frontal lobe pathologies. J Neurol 250:827–833

    PubMed  Google Scholar 

  • Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi JK, Buhle JT, Wald LL, Barrett LF (2013) Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci U S A 110:17101–17106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schiffer B, Müller BW, Scherbaum N, Hodgins S, Forsting M, Wiltfang J, Gizewski ER, Leygraf N (2011) Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch Gen Psychiatry 68:1039–1049

    PubMed  Google Scholar 

  • Schneider F, Habel U, Kessler C, Posse S, Grodd W, Müller-Gärtner HW (2000) Functional imaging of conditioned aversive emotional responses in antisocial personality disorder. Neuropsychobiology 42:192–201

    PubMed  CAS  Google Scholar 

  • Schubert MI, Porkess MV, Dashdorj N, Fone KC, Auer DP (2009) Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159:21–30

    PubMed  CAS  Google Scholar 

  • Schwartzer JJ, Ricci LA, Melloni RH Jr (2009) Interactions between the dopaminergic and GABAergic neural systems in the lateral anterior hypothalamus of aggressive AAS- treated hamsters. Behav Brain Res 203:15–22

    PubMed  CAS  Google Scholar 

  • Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y, Tsuchiya KJ, Tsukada H, Iyo M, Mori N (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100

    PubMed  CAS  Google Scholar 

  • Sellitto M, Ciaramelli E, di Pellegrino G (2011) The neurobiology of intertemporal choice: insight from imaging and lesion studies. Rev Neurosci 22:565–574

    PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    PubMed  CAS  Google Scholar 

  • Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12:154–167

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shaikh MB, Brutus M, Siegel HE, Siegel A (1984) Differential control of aggression by the midbrain. Exp Neurol 83:436–442

    PubMed  CAS  Google Scholar 

  • Shaikh MB, Barrett JA, Siegel A (1987) The pathways mediating affective defense and quiet biting attack behavior from the midbrain central gray of the cat: an autoradiographic study. Brain Res 437:9–25

    PubMed  CAS  Google Scholar 

  • Shaikh MB, Lu CL, Siegel A (1991) An enkephalinergic mechanism involved in amygdaloid suppression of affective defence behavior elicited from the midbrain periaqueductal gray in the cat. Brain Res 559:109–117

    PubMed  CAS  Google Scholar 

  • Shaikh MB, Steinberg A, Siegel A (1993) Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res 625:283–294

    PubMed  CAS  Google Scholar 

  • Shamay-Tsoory SG, Harari H, Aharon-Peretz J (2010) Levkovitz Y The role of the orbitofrontal cortex in affective theory of mind deficits in criminal offenders with psychopathic tendencies. Cortex 46:668–677

    PubMed  Google Scholar 

  • Shehzad Z, DeYoung CG, Kang Y, Grigorenko EL, Gray JR (2012) Interaction of COMT val158met and externalizing behavior: relation to prefrontal brain activity and behavioral performance. Neuroimage 60:2158–2168

    PubMed  CAS  Google Scholar 

  • Sheng T, Gheytanchi A, Aziz-Zadeh L (2010) Default network deactivations are correlated with psychopathic personality traits. PLoS One 5:e12611

    PubMed Central  PubMed  Google Scholar 

  • Shibata H, Naito J (2008) Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat. J Comp Neurol 506:30–45

    PubMed  Google Scholar 

  • Shigematsu N, Fukuda T, Yamamoto T, Nishioku T, Yamaguchi T, Himeno M, Nakayama KI, Tsukuba T, Kadowaki T, Okamoto K, Higuchi S, Yamamoto K (2008) Association of cathepsin E deficiency with the increased territorial aggressive response of mice. J Neurochem 105:1394–1404

    PubMed  CAS  Google Scholar 

  • Siegel A, Pott CB (1988) Neural substrates of aggression and flight in the cat. Prog Neurobiol 31:261–283

    PubMed  CAS  Google Scholar 

  • Siegel A, Brutus M (1990) Neural substrates of aggression and rage in the cat. In: Epstein AN, Morrison AR (eds) Progress in psychobiology and physiological psychology. Academic, San Diego, CA, pp 135–233

    Google Scholar 

  • Siegel A, Schubert KL, Shaikh MB (1997) Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobehav Rev 21:733–742

    PubMed  CAS  Google Scholar 

  • Siegel A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of brainstimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389

    PubMed  CAS  Google Scholar 

  • Siegel A, Bhatt S, Bhatt R, Zalcman SS (2007) The neurobiological bases for development of pharmacological treatments of aggressive disorders. Curr Neuropharmacol 5:135–147

    PubMed Central  PubMed  CAS  Google Scholar 

  • Siegrist J, Menrath I, Stöcker T, Klein M, Kellermann T, Shah NJ, Zilles K, Schneider F (2005) Differential brain activation according to chronic social reward frustration. Neuroreport 16:1899–1903

    PubMed  Google Scholar 

  • Siever LJ, Buchsbaum MS, New AS, Spiegel-Cohen J, Wei T, Hazlett EA, Sevin E, Nunn M, Mitropoulou V (1999) d,l-fenfluramine response in impulsive personality disorder assessed with [18F]fluorodeoxyglucose positron emission tomography. Neuropsychopharmacology 20:413–423

    PubMed  CAS  Google Scholar 

  • Sigurdsson T, Doyère V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52:215–227

    PubMed  CAS  Google Scholar 

  • Sinnamon HM (1990) Locomotor stepping elicited by electrical stimulation of the hypothalamus persists after lesion of descending fibers of passage. Physiol Behav 8:261–266

    Google Scholar 

  • Small IF, Heimburger RF, Small JG, Milstein V, Moore DF (1977) Follow-up of stereotaxic amygdalotomy for seizure and behavior disorders. Biol Psychiatry 12:401–411

    PubMed  CAS  Google Scholar 

  • Smith DA, Flynn JP (1980) Afferent projections to affective attack sites in cat hypothalamus. Brain Res 194:41–51

    PubMed  CAS  Google Scholar 

  • Smith DE, King MB, Hoebel BG (1970) Lateral hypothalamic control of killing: evidence for a cholinoceptive mechanism. Science 167:900–901

    PubMed  CAS  Google Scholar 

  • Soloff PH, Meltzer CC, Becker C, Greer PJ, Kelly TM, Constantine D (2003) Impulsivity and prefrontal hypometabolism in borderline personality disorder. Psychiatry Res 123:153–163

    PubMed  CAS  Google Scholar 

  • Soloff PH, Meltzer CC, Becker C, Greer PJ, Constantine D (2005) Gender differences in a fenfluramine-activated FDG PET study of borderline personality disorder. Psychiatry Res 138:183–195

    PubMed  Google Scholar 

  • Soloff P, Nutche J, Goradia D, Diwadkar V (2008) Structural brain abnormalities in borderline personality disorder: a voxel-based morphometry study. Psychiatry Res 164:223–236

    PubMed Central  PubMed  Google Scholar 

  • Sonnen AEH, Manen JV, van Dijk B (1976) Results of amygdalotomy and fornicotomy in temporal lobe epilepsy and behavior disorders. Acta Neurochir Suppl 23:215–219

    Google Scholar 

  • Spitzer M, Fischbacher U, Herrnberger B, Grön G, Fehr E (2007) The neural signature of social norm compliance. Neuron 56:185–196

    PubMed  CAS  Google Scholar 

  • Stefani MR, Groth K, Moghaddam B (2003) Glutamate receptors in the rat medial prefrontal cortex regulate set-shifting ability. Behav Neurosci 117:728–737

    PubMed  CAS  Google Scholar 

  • Sterzer P, Stadler C, Krebs A, Kleinschmidt A, Poustka F (2005) Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biol Psychiatry 57:7–15

    PubMed  Google Scholar 

  • Sterzer P, Stadler C, Poustka F, Kleinschmidt A (2007) A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. Neuroimage 37:335–342

    PubMed  Google Scholar 

  • Stivers JA, Skirboll LR, Long R, Crawley JN (1988) Anatomical analysis of frontal cortex sites at which carbachol induces motor seizures in the rat. Pharmacol Biochem Behav 30:129–136

    PubMed  CAS  Google Scholar 

  • Strenziok M, Krueger F, Heinecke A, Lenroot RK, Knutson KM, van der Meer E, Grafman J (2011) Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging. Soc Cogn Affect Neurosci 6:2–11

    PubMed Central  PubMed  Google Scholar 

  • Subramanian HH, Holstege G (2010) Periaqueductal gray control of breathing. Adv Exp Med Biol 669:353–358

    PubMed  Google Scholar 

  • Sugerman RA, Demski LS (1978) Agonistic behavior elicited by electrical stimulation of the brain in Western collared lizards, Crotaphytus collaris. Brain Behav Evol 15:446–469

    PubMed  CAS  Google Scholar 

  • Sugiura M, Wakusawa K, Sekiguchi A, Sassa Y, Jeong H, Horie K, Sato S, Kawashima R (2009) Extraction of situational meaning by integrating multiple meanings in a complex environment: a functional MRI study. Hum Brain Mapp 30:2676–2688

    PubMed  Google Scholar 

  • Takahashi LK, Gladstone CD (1988) Medial amygdaloid lesions and the regulation of sociosexual behavioral patterns across the estrous cycle in female golden hamsters. Behav Neurosci 102:268–275

    PubMed  CAS  Google Scholar 

  • Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53:647–654

    PubMed  Google Scholar 

  • Terzian H, Ore GD (1955) Syndrome of Klüver and Bucy; reproduced in man by bilateral removal of the temporal lobes. Neurology 5:373–380, Cited based on Fountas and Smith, 2007

    PubMed  CAS  Google Scholar 

  • Tiihonen J, Rossi R, Laakso MP, Hodgins S, Testa C, Perez J, Repo-Tiihonen E, Vaurio O, Soininen H, Aronen HJ, Könönen M, Thompson PM, Frisoni GB (2008) Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Res 163:201–212

    PubMed  Google Scholar 

  • Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215:7–20

    PubMed  Google Scholar 

  • Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J (2011) Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28–36

    PubMed  CAS  Google Scholar 

  • Toth M, Tulogdi A, Biro L, Soros P, Mikics E, Haller J (2012) The neural background of hyper-emotional aggression induced by post-weaning social isolation. Behav Brain Res 233:120–129

    PubMed  Google Scholar 

  • Tracey I (2005) Nociceptive processing in the human brain. Curr Opin Neurobiol 15:478–487

    PubMed  CAS  Google Scholar 

  • Trainor BC, Greiwe KM, Nelson RJ (2006) Individual differences in estrogen receptor alpha in select brain nuclei are associated with individual differences in aggression. Horm Behav 50:338–345

    PubMed Central  PubMed  CAS  Google Scholar 

  • Trainor BC, Finy MS, Nelson RJ (2008a) Paternal aggression in a biparental mouse: parallels with maternal aggression. Horm Behav 53:200–207

    PubMed Central  PubMed  Google Scholar 

  • Trainor BC, Finy MS, Nelson RJ (2008b) Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice. Horm Behav 53:192–199

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tranel D, Bechara A, Denburg NL (2002) Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex 38:589–612

    PubMed  Google Scholar 

  • Tsoory MM, Vouimba RM, Akirav I, Kavushansky A, Avital A, Richter-Levin G (2008) Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD. Prog Brain Res 167:35–51

    PubMed  CAS  Google Scholar 

  • Tulogdi A, Toth M, Halasz J, Mikics E, Fuzesi T, Haller J (2010) Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. Eur J Neurosci 32:1744–1753

    PubMed  Google Scholar 

  • Tulogdi A, Toth M, Barsvári B, Biró L, Mikics E, Haller J (2014) Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats. Dev Psychobiol 56(1):49–57

    PubMed  Google Scholar 

  • Valenstein ES, Cox VC, Kakolewski JW (1968) Modification of motivated behavior elicited by electrical stimulation of the hypothalamus. Science 159(3819):1119–1121

    PubMed  CAS  Google Scholar 

  • van Manen J, van Veelen CW (1988) Experiences in psycho-surgery in the Netherlands. Acta Neurochir Suppl 44:167–169

    PubMed  Google Scholar 

  • Veenema AH, Koolhaas JM, de Kloet ER (2004) Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines. Ann NY Acad Sci 1018:255–265

    PubMed  CAS  Google Scholar 

  • Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 24:1711–1720

    PubMed  Google Scholar 

  • Veenema AH, Bredewold R, Neumann ID (2007a) Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology 32:437–450

    PubMed  CAS  Google Scholar 

  • Veenema AH, Torner L, Blume A, Beiderbeck DI, Neumann ID (2007b) Low inborn anxiety correlates with high intermale aggression: link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Horm Behav 51:11–19

    PubMed  CAS  Google Scholar 

  • Veening JG, Coolen LM, de Jong TR, Joosten HW, de Boer SF, Koolhaas JM, Olivier B (2005) Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur J Pharmacol 526:226–239

    PubMed  CAS  Google Scholar 

  • Veit R, Lotze M, Sewing S, Missenhardt H, Gaber T, Birbaumer N (2010) Aberrant social and cerebral responding in a competitive reaction time paradigm in criminal psychopaths. Neuroimage 49:3365–3372

    PubMed  Google Scholar 

  • Velley L, Verney C, Kempf E, Berger B (1988) Opposite effects of ibotenic acid and 6-hydroxydopamine lesions of the lateral hypothalamus on intracranial self-stimulation and stimulation-induced locomotion. Neuroscience 25:595–603

    PubMed  CAS  Google Scholar 

  • Vergnes M, Karli P (1969) Interspecific rat-mice agression behavior: effects of electric stimulation of the lateral hypothalamus, amygdala and hypopocampus. J Physiol 61(Suppl 2):425

    Google Scholar 

  • Verwer RW, Van Vulpen EH, Van Uum JF (1996) Postnatal development of amygdaloid projections to the prefrontal cortex in the rat studied with retrograde and anterograde tracers. J Comp Neurol 376:75–96

    PubMed  CAS  Google Scholar 

  • Vochteloo JD, Koolhaas JM (1987) Medial amygdala lesions in male rats reduce aggressive behavior: interference with experience. Physiol Behav 41:99–102

    PubMed  CAS  Google Scholar 

  • Volkow ND, Tancredi LR, Grant C, Gillespie H, Valentine A, Mullani N, Wang GJ, Hollister L (1995) Brain glucose metabolism in violent psychiatric patients: a preliminary study. Psychiatry Res 61:243–253

    PubMed  CAS  Google Scholar 

  • Völlm B, Richardson P, McKie S, Reniers R, Elliott R, Anderson IM, Williams S, Dolan M, Deakin B (2010) Neuronal correlates and serotonergic modulation of behavioural inhibition and reward in healthy and antisocial individuals. J Psychiatr Res 44:123–131

    PubMed  Google Scholar 

  • Wall VL, Fischer EK, Bland ST (2012) Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav 107:440–450

    PubMed  CAS  Google Scholar 

  • Wallinga AE, ten Voorde AM, de Boer SF, Koolhaas JM, Buwalda B (2009) MDMA-induced serotonergic neurotoxicity enhances aggressiveness in low- but not high-aggressive rats. Eur J Pharmacol 618:22–27

    PubMed  CAS  Google Scholar 

  • Wang Z, Hulihan TJ, Insel TR (1997) Sexual and social experience is associated with different patterns of behavior and neural activation in male prairie voles. Brain Res 767:321–332

    PubMed  CAS  Google Scholar 

  • Wang Y, He Z, Zhao C, Li L (2013) Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. Behav Brain Res 245:42–49

    PubMed  Google Scholar 

  • Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal – cerebellar pathways. Front Integr Neurosci 3:18

    PubMed Central  PubMed  Google Scholar 

  • Weerts EM, Miller LG, Hood KE, Miczek KA (1992) Increased GABAA-dependent chloride uptake in mice selectively bred for low aggressive behavior. Psychopharmacology (Berl) 108:196–204

    CAS  Google Scholar 

  • Weinberg A, Klonsky ED, Hajcak G (2009) Autonomic impairment in borderline personality disorder: a laboratory investigation. Brain Cogn 71:279–286

    PubMed  Google Scholar 

  • Weissenberger AA, Dell ML, Liow K, Theodore W, Frattali CM, Hernandez D, Zametkin AJ (2001) Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 40:696–703

    PubMed  CAS  Google Scholar 

  • White SF, Brislin SJ, Sinclair S, Blair JR (2013) Punishing unfairness: rewarding or the organization of a reactively aggressive response? Hum Brain Mapp. doi:10.1002/hbm.22316 [Epub ahead of print]

  • Whittle S, Allen NB, Lubman DI, Yücel M (2006) The neurobiological basis of temperament: towards a better understanding of psychopathology. Neurosci Biobehav Rev 30:511–525

    PubMed  Google Scholar 

  • Winstanley CA, Olausson P, Taylor JR, Jentsch JD (2010) Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 34:1306–1318

    PubMed Central  PubMed  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    PubMed  CAS  Google Scholar 

  • Witte AV, Flöel A, Stein P, Savli M, Mien LK, Wadsak W, Spindelegger C, Moser U, Fink M, Hahn A, Mitterhauser M, Kletter K, Kasper S, Lanzenberger R (2009) Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum Brain Mapp 30:2558–2570

    PubMed  Google Scholar 

  • Woodworth CH (1971) Attack elicited in rats by electrical stimulation of the lateral hypothalamus. Physiol Behav 6:345–353

    PubMed  CAS  Google Scholar 

  • Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP, Swinnen SP, Wenderoth N, Arckens L, D’Hooge R (2013) Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci U S A 110:3131–3136

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang Y, Raine A, Lencz T, Bihrle S, Lacasse L, Colletti P (2005) Prefrontal white matter in pathological liars. Br J Psychiatry 187:320–325

    PubMed  Google Scholar 

  • Yang Y, Raine A, Narr KL, Colletti P, Toga AW (2009) Localization of deformations within the amygdala in individuals with psychopathy. Arch Gen Psychiatry 66:986–994

    PubMed Central  PubMed  Google Scholar 

  • Zagrodzka J, Fonberg E (1977) Amygdalar area involved in predatory behavior in cats. Acta Neurobiol Exp 37:131–136

    CAS  Google Scholar 

  • Zagrodzka J, Fonberg E (1978) Predatory versus alimentary behavior after amygdala lesions in cats. Physiol Behav 20:523–531

    PubMed  CAS  Google Scholar 

  • Zalcman SS, Siegel A (2006) The neurobiology of aggression and rage: role of cytokines. Brain Behav Immun 20:507–514

    PubMed  CAS  Google Scholar 

  • Lee GP, Bechara A, Adolphs R, Arena J, Meador KJ, Loring DW, Smith JR (1998) Clinical and physiological effects of stereotaxic bilateral amygdalotomy for intractable aggression. J Neuropsychiatry Clin Neurosci 10:413–420

    PubMed  CAS  Google Scholar 

  • Anschel S, Alexander M, Perachio AA (1982) Multiple connections of medial hypothalamic neurons in the rat. Exp Brain Res 46:383–392

    PubMed  CAS  Google Scholar 

  • Beltt BM, Keesey RE (1975) Hypothalamic map of stimulation current thresholds for inhibition of feeding in rats. Am J Physiol 229:1124–1133

    PubMed  CAS  Google Scholar 

  • Franzini A, Marras C, Ferroli P, Bugiani O, Broggi G (2005) Stimulation of the posterior hypothalamus for medically intractable impulsive and violent behavior. Stereotact Funct Neurosurg 83:63–66

    PubMed  Google Scholar 

  • Herberg LJ, Blundell JE (1967) Lateral hypothalamus: hoarding behavior elicited by electrical stimulation. Science 155:349–350

    PubMed  CAS  Google Scholar 

  • Hoebel BG, Teitelbaum P (1962) Hypothalamic control of feeding and self-stimulation. Science 135:375–37

    PubMed  CAS  Google Scholar 

  • Lammers JH, Meelis W, Kruk MR, van der Poel AM (1987) Hypothalamic substrates for brain stimulation-induced grooming, digging and circling in the rat. Brain Res 418:1–19

    PubMed  CAS  Google Scholar 

  • Mendelson J (1970) Self-induced drinking in rats: the qualitative identity of drive and reward systems in the lateral hypothalamus. Physiol Behav 5:925–930

    PubMed  CAS  Google Scholar 

  • Morandotti N, Dima D, Jogia J, Frangou S, Sala M, Vidovich GZ, Lazzaretti M, Gambini F, Marraffini E, d’Allio G, Barale F, Zappoli F, Caverzasi E, Brambilla P (2013) Childhood abuse is associated with structural impairment in the ventrolateral prefrontal cortex and aggressiveness in patients with borderline personality disorder. Psychiatry Res 213:18–23

    PubMed  Google Scholar 

  • Spoont MR, Kuskowski M, Pardo JV (2010) Autobiographical memories of anger in violent and non-violent individuals: a script-driven imagery study. Psychiatry Res 183:225–229

    PubMed  Google Scholar 

  • Tebartz van Elst L, Hesslinger B, Thiel T, Geiger E, Haegele K, Lemieux L, Lieb K, Bohus M, Hennig J, Ebert D (2003) Frontolimbic brain abnormalities in patients with borderline personality disorder: a volumetric magnetic resonance imaging study. Biol Psychiatry 54:163–171

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Haller, J. (2014). Focal Points of Aggression Control. In: Neurobiological Bases of Abnormal Aggression and Violent Behaviour. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1268-7_4

Download citation

Publish with us

Policies and ethics