Skip to main content

Hormonal Determinants

  • Chapter
  • First Online:

Abstract

The presentation of hormonal effects may be surprising in a work that focuses on the neural control of aggression. Hormones affect the organism in multiple ways, but none of these involves the direct activation of neurons or neuronal circuits. As such, they are not able to directly control the execution of behaviors. However, hormones have a large impact on how the neural system works. The neural mechanisms discussed in the next chapter are under hormonal control; moreover, dysfunctional aggression likely results from neural changes that are prompted by changes in hormone secretion patterns. As such hormone secretion patterns can be viewed as explanatory mechanisms for the neural control of aggression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Unfortunately, investigators often provide statistical figures (e.g., correlations coefficients) without illustrating the data. We cited here papers where correlations were shown on graphs. We note, however, that the phenomenon is general as judged from correlation coefficients provided in other papers.

  2. 2.

    This author measured plasma cortisol immediately after the arrival of subjects into the laboratory. An overlapping set of authors (thus under likely similar conditions) showed that “arrival levels” are higher than those seen after a resting period (van Goozen et al. 1998a, b). As such, van Bokhoven et al. (2005) studied reactive rather than basal levels of plasma cortisol which explains their inclusion in this section.

  3. 3.

    The authors of this study sampled cerebrospinal fluid for cortisol measurements by lumbar puncture, which is a rather invasive procedure, and its anticipation likely increased cortisol production. In our view, these authors studied anticipatory stress, which explains the inclusion of their study in this section.

References

  • Akbari EM, Budin R, Parada M, Fleming AS (2008) The effects of early isolation on sexual behavior and c-fos expression in naïve male Long-Evans rats. Dev Psychobiol 50:298–306

    PubMed  CAS  Google Scholar 

  • Albert DJ, Walsh ML, Zalys C, Dyson E (1986) Defensive aggression toward an experimenter: no differences between males and females following septal, medial accumbens, or medial hypothalamic lesions in rats. Physiol Behav 38:11–14

    PubMed  CAS  Google Scholar 

  • Albert DJ, Walsh ML, Jonik RH (1993) Aggression in humans: what is its biological foundation? Neurosci Biobehav Rev 17:405–425

    PubMed  CAS  Google Scholar 

  • Alden LE, Taylor CT (2004) Interpersonal processes in social phobia. Clin Psychol Rev 24:857–882

    PubMed  Google Scholar 

  • Almeida M, Lee R, Coccaro EF (2010) Cortisol responses to ipsapirone challenge correlate with aggression, while basal cortisol levels correlate with impulsivity, in personality disorder and healthy volunteer subjects. J Psychiatr Res 44(14):874–880

    PubMed  Google Scholar 

  • Aluja A, García LF (2007) Role of sex hormone-binding globulin in the relationship between sex hormones and antisocial and aggressive personality in inmates. Psychiatry Res 152:189–196

    PubMed  CAS  Google Scholar 

  • Amstislavskaya TG, Bulygina VV, Tikhonova MA, Maslova LN (2013) Social isolation during peri-adolescence or adulthood: effects on sexual motivation, testosterone and corticosterone response under conditions of sexual arousal in male rats. Chin J Physiol 56:36–43

    PubMed  Google Scholar 

  • Ansah TA, Wade LH, Shockley DC (1996) Changes in locomotor activity, core temperature, and heart rate in response to repeated cocaine administration. Physiol Behav 60:1261–1267

    PubMed  CAS  Google Scholar 

  • Archer J (1991) The influence of testosterone on human aggression. Br J Psychol 82:1–28

    PubMed  Google Scholar 

  • Archer J (2006) Testosterone and human aggression: an evaluation of the challenge hypothesis. Neurosci Biobehav Rev 30:319–345

    PubMed  CAS  Google Scholar 

  • Archer J, Ireland JL, Power CL (2007) Differences between bullies and victims, and men and women, on aggression-related variables among prisoners. Br J Soc Psychol 46:299–322

    PubMed  Google Scholar 

  • Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G, Hines M (2009) Fetal testosterone predicts sexually differentiated childhood behavior in girls and in boys. Psychol Sci 20:144–148

    PubMed Central  PubMed  Google Scholar 

  • Azar R, Zoccolillo M, Paquette D, Quiros E, Baltzer F, Tremblay RE (2004) Cortisol levels and conduct disorder in adolescent mothers. J Am Acad Child Adolesc Psychiatry 43:461–468

    PubMed  Google Scholar 

  • Bacskai E, Czobor P, Gerevich J (2011) Gender differences in trait aggression in young adults with drug and alcohol dependence compared to the general population. Prog Neuropsychopharmacol Biol Psychiatry 35:1333–1340

    PubMed  Google Scholar 

  • Bailey AA, Hurd PL (2005) Finger length ratio (2D:4D) correlates with physical aggression in men but not in women. Biol Psychol 68:215–222

    PubMed  Google Scholar 

  • Balasubramanian K, Pereira BM, Govindarajulu P (1983) Effect of adrenalectomy and corticosterone replacement on epididymal carbohydrate metabolism-studies on mature male rats. Andrologia 15:71–77

    PubMed  CAS  Google Scholar 

  • Balthazart J, Cornil CA, Charlier TD, Taziaux M, Ball GF (2009) Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in quail. J Exp Zool A Ecol Genet Physiol 311:323–345

    PubMed  Google Scholar 

  • Banks T, Dabbs JM Jr (1996) Salivary testosterone and cortisol in a delinquent and violent urban subculture. J Soc Psychol 136:49–56

    PubMed  CAS  Google Scholar 

  • Bedrosian TA, Fonken LK, Demas GE, Nelson RJ (2012) Photoperiod-dependent effects of neuronal nitric oxide synthase inhibition on aggression in Siberian hamsters. Horm Behav 61:176–180

    PubMed  CAS  Google Scholar 

  • Beeman EA (1947) The effect of male hormone on aggressive behavior in mice. Physiol Zool 20:373–405

    PubMed  CAS  Google Scholar 

  • Benderlioglu Z, Nelson RJ (2004) Digit length ratios predict reactive aggression in women, but not in men. Horm Behav 46:558–564

    PubMed  Google Scholar 

  • Benderlioglu Z, Sciulli PW, Nelson RJ (2004) Fluctuating asymmetry predicts human reactive aggression. Am J Hum Biol 16:458–469

    PubMed  Google Scholar 

  • Berenbaum SA, Duck SC, Bryk K (2000) Behavioral effects of prenatal versus postnatal androgen excess in children with 21-hydroxylase-deficient congenital adrenal hyperplasia. J Clin Endocrinol Metab 85:727–733

    PubMed  CAS  Google Scholar 

  • Bergeon Burns CM, Rosvall KA, Ketterson ED (2013) Neural steroid sensitivity and aggression: comparing individuals of two songbird subspecies. J Evol Biol 26:820–831

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bergman B, Brismar B (1994) Hormone levels and personality traits in abusive and suicidal male alcoholics. Alcohol Clin Exp Res 18:311–316

    PubMed  CAS  Google Scholar 

  • Bethea CL, Reddy AP, Robertson N, Coleman K (2013) Effects of aromatase inhibition and androgen activity on serotonin and behavior in male macaques. Behav Neurosci 127:400–414

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blair C, Granger D, Razza RP (2005) Cortisol reactivity is positively related to executive function in preschool children attending Head Start. Child Dev 76:554–567

    PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC (1989) Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol Psychiatry 13(Suppl):S3–S14

    PubMed  Google Scholar 

  • Blanchard DC, Spencer RL, Weiss SM, Blanchard RJ, McEwen B, Sakai RR (1995) Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20:117–134

    PubMed  CAS  Google Scholar 

  • Böhnke R, Bertsch K, Kruk MR, Naumann E (2010a) The relationship between basal and acute HPA axis activity and aggressive behavior in adults. J Neural Transm 117:629–637

    PubMed Central  PubMed  Google Scholar 

  • Böhnke R, Bertsch K, Kruk MR, Richter S, Naumann E (2010b) Exogenous cortisol enhances aggressive behavior in females, but not in males. Psychoneuroendocrinology 35:1034–1044

    PubMed  Google Scholar 

  • Book AS, Starzyk KB, Quinsey VL (2001) The relationship between testosterone and aggression: a meta-analysis. Aggress Viol Behav 6:579–599

    Google Scholar 

  • Booth A, Osgood D (1993) The influence of testosterone on deviance in adulthood. Criminology 31:93–117

    Google Scholar 

  • Booth A, Shelley G, Mazur A, Tharp G, Kittok R (1989) Testosterone, and winning and losing in human competition. Horm Behav 23(4):556–571

    PubMed  CAS  Google Scholar 

  • Brain PF, Nowell NW, Wouters A (1971) Some relationships between adrenal function and isolation induced intermale aggression in albino mice. Physiol Behav 6:27–29

    PubMed  CAS  Google Scholar 

  • Brambilla F, Bellodi L, Arancio C, Limonta D, Ferrari E, Solerte B (2001) Neurotransmitter and hormonal background of hostility in anorexia nervosa. Neuropsychobiology 43:225–232

    PubMed  CAS  Google Scholar 

  • Brewer-Smyth K, Burgess AW, Shults J (2004) Physical and sexual abuse, salivary cortisol, and neurologic correlates of violent criminal behavior in female prison inmates. Biol Psychiatry 55:21–31

    PubMed  CAS  Google Scholar 

  • Bronson FH, Desjardins C (1968) Aggression in adult mice: modification by neonatal injections of gonadal hormones. Science 161:705–706

    PubMed  CAS  Google Scholar 

  • Bronson FH, Desjardins C (1969) Aggressive behavior and seminal vesicle function in mice: differential sensitivity to androgen given neonatally. Endocrinology 85:971–974

    PubMed  CAS  Google Scholar 

  • Bronson FH, Eleftheriou BE (1965) Adrenal response to fighting in mice: separation of physical and psychological causes. Science 147:627–628

    PubMed  CAS  Google Scholar 

  • Brooks JH, Reddon JR (1996) Serum testosterone in violent and nonviolent young offenders. J Clin Psychol 52:475–483

    PubMed  CAS  Google Scholar 

  • Butovskaya ML, Vasilyev VA, Lazebny OE, Burkova VN, Kulikov AM, Mabulla A, Shibalev DV, Ryskov AP (2012) Aggression, digit ratio, and variation in the androgen receptor, serotonin transporter, and dopamine D4 receptor genes in African foragers: the Hadza. Behav Genet 42:647–662

    PubMed  Google Scholar 

  • Butovskaya M, Fedenok J, Burkova V, Manning J (2013) Sex differences in 2D:4D and aggression in children and adolescents from five regions of Russia. Am J Phys Anthropol 152(1):130–139

    PubMed  Google Scholar 

  • Butterfield PA, Crook JH (1968) The annual cycle of nest building and agonistic behaviour in captive Quelea quelea with reference to endocrine factors. Anim Behav 16:308–317

    PubMed  CAS  Google Scholar 

  • Buydens-Branchey L, Branchey M (2004) Cocaine addicts with conduct disorder are typified by decreased cortisol responsivity and high plasma levels of DHEA-S. Neuropsychobiology 50:161–166

    PubMed  CAS  Google Scholar 

  • Caldji C, Diorio J, Meaney MJ (2000) Variations in maternal care in infancy regulate the development of stress reactivity. Biol Psychiatry 48:1164–1174

    PubMed  CAS  Google Scholar 

  • Caldwell GS, Glickman SE, Smith ER (1984) Seasonal aggression independent of seasonal testosterone in wood rats. Proc Natl Acad Sci 81:5255–5257

    PubMed Central  PubMed  CAS  Google Scholar 

  • Canoine V, Gwinner E (2002) Seasonal differences in the hormonal control of territorial aggression in free-living European stonechats. Horm Behav 41:1–8

    PubMed  CAS  Google Scholar 

  • Canoine V, Fusani L, Schlinger B, Hau M (2007) Low sex steroids, high steroid receptors: increasing the sensitivity of the nonreproductive brain. Dev Neurobiol 67:57–67

    PubMed  CAS  Google Scholar 

  • Caramaschi D, de Boer SF, de Vries H, Koolhaas JM (2008a) Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav Brain Res 189:263–272

    PubMed  CAS  Google Scholar 

  • Caramaschi D, de Boer SF, Koolhaas JM (2008b) Is hyper-aggressiveness associated with physiological hypoarousal? A comparative study on mouse lines selected for high and low aggressiveness. Physiol Behav 95:591–598

    PubMed  CAS  Google Scholar 

  • Carré JM, Gilchrist JD, Morrissey MD, McCormick CM (2010) Motivational and situational factors and the relationship between testosterone dynamics and human aggression during competition. Biol Psychol 84:346–353

    PubMed  Google Scholar 

  • Casiano H, Belik SL, Cox BJ, Waldman JC, Sareen J (2008) Mental disorder and threats made by noninstitutionalized people with weapons in the national comorbidity survey replication. J Nerv Ment Dis 196:437–445

    PubMed  Google Scholar 

  • Cavigelli SA, Pereira ME (2000) Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Horm Behav 37:246–255

    PubMed  CAS  Google Scholar 

  • Cercone JJ, Beach SR, Arias I (2005) Gender symmetry in dating intimate partner violence: does similar behavior imply similar constructs? Violence Vict 20:207–218

    PubMed  Google Scholar 

  • Chang C, Li CY, Earley RL, Hsu YY (2012) Aggression and related behavioral traits: the impact of winning and losing and the role of hormones. Integrative Comp Biol 52:801–813

    Google Scholar 

  • Chichinadze KN, Domianidze TR, Matitaishvili TT, Chichinadze NK, Lazarashvili AG (2010) Possible relation of plasma testosterone level to aggressive behavior of male prisoners. Bull Exp Biol Med 149:7–9

    PubMed  CAS  Google Scholar 

  • Cho JJ, Cadet P, Salamon E, Mantione K, Stefano GB (2003) The nongenomic protective effects of estrogen on the male cardiovascular system: clinical and therapeutic implications in aging men. Med Sci Monit 9:RA63–RA68

    PubMed  CAS  Google Scholar 

  • Cicchetti D, Rogosch FA (2001) The impact of child maltreatment and psychopathology on neuroendocrine functioning. Dev Psychopathol 13:783–804

    PubMed  CAS  Google Scholar 

  • Cima M, Smeets T, Jelicic M (2008) Self-reported trauma, cortisol levels, and aggression in psychopathic and non-psychopathic prison inmates. Biol Psychol 78:75–86

    PubMed  Google Scholar 

  • Clipperton-Allen AE, Almey A, Melichercik A, Allen CP, Choleris E (2011) Effects of an estrogen receptor alpha agonist on agonistic behaviour in intact and gonadectomized male and female mice. Psychoneuroendocrinology 36:981–995

    PubMed  CAS  Google Scholar 

  • Coccaro EF, Beresford B, Minar P, Kaskow J, Geracioti T (2007a) CSF testosterone: relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder. J Psychiatr Res 41:488–492

    PubMed  Google Scholar 

  • Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007b) Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62:168–178

    PubMed  Google Scholar 

  • Cohen-Bendahan CC, Buitelaar JK, van Goozen SH, Orlebeke JF, Cohen-Kettenis PT (2005) Is there an effect of prenatal testosterone on aggression and other behavioral traits? A study comparing same-sex and opposite-sex twin girls. Horm Behav 47:230–237

    PubMed  CAS  Google Scholar 

  • Compaan JC, de Ruiter AJ, Koolhaas JM, van Oortmerssen GA, Bohus B (1992) Differential effects of neonatal testosterone treatment on aggression in two selection lines of mice. Physiol Behav 51:7–10

    PubMed  CAS  Google Scholar 

  • Compaan JC, Buijs RM, Pool CW, De Ruiter AJ, Koolhaas JM (1993a) Differential lateral septal vasopressin innervation in aggressive and nonaggressive male mice. Brain Res Bull 30:1–6

    PubMed  CAS  Google Scholar 

  • Compaan JC, van Wattum G, de Ruiter AJ, van Oortmerssen GA, Koolhaas JM, Bohus B (1993b) Genetic differences in female house mice in aggressive response to sex steroid hormone treatment. Physiol Behav 54:899–902

    PubMed  CAS  Google Scholar 

  • Compaan JC, Hutchison JB, Wozniak A, de Ruiter AJ, Koolhaas JM (1994a) Brain aromatase activity and plasma testosterone levels are elevated in aggressive male mice during early ontogeny. Brain Res Dev Brain Res 82:185–192

    PubMed  CAS  Google Scholar 

  • Compaan JC, Wozniak A, De Ruiter AJ, Koolhaas JM, Hutchison JB (1994b) Aromatase activity in the preoptic area differs between aggressive and nonaggressive male house mice. Brain Res Bull 35:1–7

    PubMed  CAS  Google Scholar 

  • Cornil CA, Charlier TD (2010) Rapid behavioural effects of oestrogens and fast regulation of their local synthesis by brain aromatase. J Neuroendocrinol 22:664–673

    PubMed Central  PubMed  CAS  Google Scholar 

  • Corum CR, Thurmond JB (1997) Effects of acute exposure to stress on subsequent aggression and locomotion performance. Psychosom Med 39:436–443

    Google Scholar 

  • Cunningham RL, McGinnis MY (2008) Prepubertal social subjugation and anabolic androgenic steroid-induced aggression in male rats. J Neuroendocrinol 20:997–1005

    PubMed  CAS  Google Scholar 

  • Dabbs JM Jr, Morris R (1990) Testosterone, social class, and antisocial behavior in a sample of 4,462 men. Psychol Sci 1:209–211

    Google Scholar 

  • Dabbs JM Jr, Jurkovic GJ, Frady RL (1991) Salivary testosterone and cortisol among late adolescent male offenders. J Abnorm Child Psychol 19:469–478

    PubMed  Google Scholar 

  • Datson NA, Morsink MC, Meijer OC, de Kloet ER (2008) Central corticosteroid actions: search for gene targets. Eur J Pharmacol 583:272–289

    PubMed  CAS  Google Scholar 

  • de Boer SF, van der Vegt BJ, Koolhaas JM (2003) Individual variation in aggression of feral rodent strains: a standard for the genetics of aggression and violence? Behav Genet 33:485–501

    PubMed  Google Scholar 

  • de Kloet ER, Han F, Meijer OC (2008a) From the stalk to down under about brain glucocorticoid receptors, stress and development. Neurochem Res 33:637–642

    PubMed  Google Scholar 

  • de Kloet ER, Karst H, Joëls M (2008b) Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 29:268–272

    PubMed  Google Scholar 

  • DeBold JF, Miczek KA (1985) Testosterone modulates the effects of ethanol on male mouse aggression. Psychopharmacology (Berl) 86:286–290

    CAS  Google Scholar 

  • Demas GE, Moffatt CA, Drazen DL, Nelson RJ (1999) Castration does not inhibit aggressive behavior in adult male prairie voles (Microtus ochrogaster). Physiol Behav 66:59–62

    PubMed  CAS  Google Scholar 

  • Demas GE, Polacek KM, Durazzo A, Jasnow AM (2004) Adrenal hormones mediate melatonin-induced increases in aggression in male Siberian hamsters (Phodopus sungorus). Horm Behav 46:582–591

    PubMed  CAS  Google Scholar 

  • DeNardo DF, Sinervo B (1994) Effects of corticosterone on activity and home-range size of free-ranging male lizards. Horm Behav 28:53–65

    PubMed  CAS  Google Scholar 

  • DiBattista JD, Anisman H, Whitehead M, Gilmour KM (2005) The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout Oncorhynchus mykiss. J Exp Biol 208:2707–2718

    PubMed  CAS  Google Scholar 

  • Dixson AF (1993) Sexual and aggressive behaviour of adult male marmosets (Callithrix jacchus) castrated neonatally, prepubertally, or in adulthood. Physiol Behav 54:301–307

    PubMed  CAS  Google Scholar 

  • Dmitrieva TN, Oades RD, Hauffa BP, Eggers C (2001) Dehydroepiandrosterone sulphate and corticotropin levels are high in young male patients with conduct disorder: comparisons for growth factors, thyroid and gonadal hormones. Neuropsychobiology 43:134–140

    PubMed  CAS  Google Scholar 

  • Dolan M, Anderson IM, Deakin JF (2001) Relationship between 5-HT function and impulsivity and aggression in male offenders with personality disorders. Br J Psychiatry 178:352–359

    PubMed  CAS  Google Scholar 

  • Dominguez R, Cruz-Morales SE, Carvalho MC, Xavier M, Brandao ML (2003) Effect of steroid injection to newborn rats on serotonin activity in frontal cortex and raphe. Neuroreport 14:597–599

    PubMed  CAS  Google Scholar 

  • Dorn LD, Kolko DJ, Susman EJ, Huang B, Stein H, Music E, Bukstein OG (2009) Salivary gonadal and adrenal hormone differences in boys and girls with and without disruptive behavior disorders: contextual variants. Biol Psychol 81:31–39

    PubMed Central  PubMed  Google Scholar 

  • Earley RL, Edwards JT, Aseem O, Felton K, Blumer LS, Karom M, Grober MS (2006) Social interactions tune aggression and stress responsiveness in a territorial cichlid fish (Archocentrus nigrofasciatus). Physiol Behav 88:353–363

    PubMed  CAS  Google Scholar 

  • Edwards DA (1969) Early androgen stimulation and aggressive behavior in male and female mice. Physiol Behav 40:333–338

    Google Scholar 

  • Ehrenkranz J, Bliss E, Sheard MH (1974) Plasma testosterone: correlation with aggressive behavior and social dominance in man. Psychosom Med 36:469–475

    PubMed  CAS  Google Scholar 

  • Everts HG, De Ruiter AJ, Koolhaas JM (1997) Differential lateral septal vasopressin in wild-type rats: correlation with aggression. Horm Behav 31:136–144

    PubMed  CAS  Google Scholar 

  • Fairchild G, van Goozen SH, Stollery SJ, Brown J, Gardiner J, Herbert J, Goodyer IM (2008) Cortisol diurnal rhythm and stress reactivity in male adolescents with early-onset or adolescence-onset conduct disorder. Biol Psychiatry 64:599–606

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fang CY, Egleston BL, Brown KM, Lavigne JV, Stevens VJ, Barton BA, Chandler DW, Dorgan JF (2009) Family cohesion moderates the relation between free testosterone and delinquent behaviors in adolescent boys and girls. J Adolesc Health 44:590–597

    PubMed Central  PubMed  Google Scholar 

  • Fava M (1998) Depression with anger attacks. J Clin Psychiatry 59(Suppl 18):18–22

    PubMed  Google Scholar 

  • Feek CM, Tuzi NL, Edwards CR (1989) Adrenalectomy does not influence basal secretion of testosterone in rat in vivo. J Steroid Biochem 32:725–728

    PubMed  CAS  Google Scholar 

  • Ferree ED, Wikelski MC, Anderson DJ (2004) Hormonal correlates of siblicide in Nazca boobies: support for the challenge hypothesis. Horm Behav 46:655–662

    PubMed  CAS  Google Scholar 

  • Ferris CF (2003) Using an animal model to assess the long-term behavioral and biological consequences of adolescent abuse and exposure to alcohol. Ann NY Acad Sci 1008:69–78

    PubMed  Google Scholar 

  • Ferris CF, Messenger T, Sullivan R (2005) Behavioral and neuroendocrine consequences of social subjugation across adolescence and adulthood. Front Zool 2:7

    PubMed Central  PubMed  Google Scholar 

  • Finkelstein JW, Susman EJ, Chinchilli VM, Kunselman SJ, D’Arcangelo MR, Schwab J, Demers LM, Liben LS, Lookingbill G, Kulin HE (1997) Estrogen or testosterone increases self-reported aggressive behaviors in hypogonadal adolescents. J Clin Endocrinol Metab 82:2433–2438

    PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology (Berl) 146:391–399

    CAS  Google Scholar 

  • Follenius M, Simon C, Brandenberger G, Lenzi P (1987) Ultradian plasma corticotropin and cortisol rhythms: time-series analyses. J Endocrinol Invest 10:261–266

    PubMed  CAS  Google Scholar 

  • Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29:169–181

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fowler KA, Westen D (2011) Subtyping male perpetrators of intimate partner violence. J Interpers Violence 26:607–639

    PubMed  Google Scholar 

  • Fuxjager MJ, Montgomery JL, Marler CA (2011) Species differences in the winner effect disappear in response to post-victory testosterone manipulations. Proc Biol Sci 278:3497–3503

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaab J, Rohleder N, Nater UM, Ehlert U (2005) Psychological determinants of the cortisol stress response: the role of anticipatory cognitive appraisal. Psychoneuroendocrinology 30:599–610

    PubMed  CAS  Google Scholar 

  • Gabor CS, Phan A, Clipperton-Allen AE, Kavaliers M, Choleris E (2012) Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition. Behav Neurosci 126:97–109

    PubMed  CAS  Google Scholar 

  • Gandelman R, Simon NG, McDermott NJ (1979) Prenatal exposure to testosterone and its precursors influences morphology and later behavioral responsiveness to testosterone of female mice. Physiol Behav 23:23–26

    PubMed  CAS  Google Scholar 

  • Gao HB, Shan LX, Monder C, Hardy MP (1996) Suppression of endogenous corticosterone levels in vivo increases the steroidogenic capacity of purified rat Leydig cells in vitro. Endocrinology 137:1714–1718

    PubMed  CAS  Google Scholar 

  • Geniole SN, Carré JM, McCormick CM (2011) State, not trait, neuroendocrine function predicts costly reactive aggression in men after social exclusion and inclusion. Biol Psychol 87:137–145

    PubMed  Google Scholar 

  • George DT, Umhau JC, Phillips MJ, Emmela D, Ragan PW, Shoaf SE, Rawlings RR (2001) Serotonin, testosterone and alcohol in the etiology of domestic violence. Psychiatry Res 104:27–37

    PubMed  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Avanzini P, Chittolini B, Giucastro G, Caccavari R, Palladino M, Maestri D, Monica C, Delsignore R, Brambilla F (1997) Neurotransmitter-neuroendocrine responses to experimentally induced aggression in humans: influence of personality variable. Psychiatry Res 66:33–43

    PubMed  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Ampollini R, Giusti F, Delsignore R, Raggi MA, Laviola G, Macchia T, Brambilla F (2001a) Experimentally induced aggressive behavior in subjects with 3,4-methylenedioxy-methamphetamine (“Ecstasy”) use history: psychobiological correlates. J Subst Abuse 13:471–491

    PubMed  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Raggi MA, Giusti F, Delsignore R, Bertacca S, Brambilla F (2001b) Aggressive responding of male heroin addicts under methadone treatment: psychometric and neuroendocrine correlates. Drug Alcohol Depend 65:85–95

    PubMed  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Moi G, Bussandri M, Bubici C, Mossini M, Raggi MA, Brambilla F (2004) Aggressive responding in abstinent heroin addicts: neuroendocrine and personality correlates. Prog Neuropsychopharmacol Biol Psychiatry 28:129–139

    PubMed  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Raggi MA, Moi G, Branchi B, Moroni M, Brambilla F (2007) Experimentally induced aggressiveness in heroin-dependent patients treated with buprenorphine: comparison of patients receiving methadone and healthy subjects. Psychiatry Res 149:201–213

    PubMed  CAS  Google Scholar 

  • Gleason ED, Fuxjager MJ, Oyegbile TO, Marler CA (2009) Testosterone release and social context: when it occurs and why. Front Neuroendocrinol 30:460–469

    PubMed  CAS  Google Scholar 

  • Glenn AL, Raine A, Schug RA, Gao Y, Granger DA (2011) Increased testosterone-to-cortisol ratio in psychopathy. J Abnorm Psychol 120:389–399

    PubMed Central  PubMed  Google Scholar 

  • Golubchik P, Mozes T, Maayan R, Weizman A (2009) Neurosteroid blood levels in delinquent adolescent boys with conduct disorder. Eur Neuropsychopharmacol 19:49–52

    PubMed  CAS  Google Scholar 

  • Gordis EB, Granger DA, Susman EJ, Trickett PK (2006) Asymmetry between salivary cortisol and alpha-amylase reactivity to stress: relation to aggressive behavior in adolescents. Psychoneuroendocrinology 31:976–987

    PubMed  CAS  Google Scholar 

  • Groeneweg FL, Karst H, de Kloet ER, Joëls M (2011) Rapid non-genomic effects of corticosteroids and their role in the central stress response. J Endocrinol 209:153–167

    PubMed  CAS  Google Scholar 

  • Gunnar MR, Vazquez DM (2001) Low cortisol and a flattening of expected daytime rhythm: potential indices of risk in human development. Develop Psychopathol 13:515–538

    CAS  Google Scholar 

  • Gunnar MR, Kryzer E, Van Ryzin MJ, Phillips DA (2010) The rise in cortisol in family day care: associations with aspects of care quality, child behavior, and child sex. Child Dev 8:851–869

    Google Scholar 

  • Haffmans PM, Sival RC, Lucius SA, Cats Q, van Gelder L (2001) Bright light therapy and melatonin in motor restless behaviour in dementia: a placebo-controlled study. Int J Geriatr Psychiatry 16:106–110

    PubMed  CAS  Google Scholar 

  • Haller J (2013) The neurobiology of abnormal manifestations of aggression–a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Res Bull 93:97–109

    PubMed  CAS  Google Scholar 

  • Haller J, Barna I, Baranyi M (1995) Hormonal and metabolic responses during psychosocial stimulation in aggressive and nonaggressive rats. Psychoneuroendocrinology 20:65–74

    PubMed  CAS  Google Scholar 

  • Haller J, Kiem DT, Makara GB (1996) The physiology of social conflict in rats: what is particularly stressful? Behav Neurosci 110:353–359

    PubMed  CAS  Google Scholar 

  • Haller J, Albert I, Makara GB (1997) Acute behavioural effects of corticosterone lack specificity but show marked context-dependency. J Neuroendocrinol 9:515–518

    PubMed  CAS  Google Scholar 

  • Haller J, Abrahám I, Zelena D, Juhász G, Makara GB, Kruk MR (1998a) Aggressive experience affects the sensitivity of neurons towards pharmacological treatment in the hypothalamic attack area. Behav Pharmacol 9:469–475

    PubMed  CAS  Google Scholar 

  • Haller J, Halasz J, Makara GB, Kruk MR (1998b) Acute effects of glucocorticoids: behavioral and pharmacological perspectives. Neurosci Biobehav Rev 23:337–344

    PubMed  CAS  Google Scholar 

  • Haller J, Millar S, Kruk MR (1998c) Mineralocorticoid receptor blockade inhibits aggressive behaviour in male rats. Stress 2:201–207

    PubMed  CAS  Google Scholar 

  • Haller J, Halasz J, Mikics E, Kruk MR, Makara GB (2000a) Ultradian corticosterone rhythm and the propensity to behave aggressively in male rats. J Neuroendocrinol 12:937–940

    PubMed  CAS  Google Scholar 

  • Haller J, Millar S, van de Schraaf J, de Kloet RE, Kruk MR (2000b) The active phase-related increase in corticosterone and aggression are linked. J Neuroendocrinol 12:431–436

    PubMed  CAS  Google Scholar 

  • Haller J, van de Schraaf J, Kruk MR (2001) Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for “pathological” aggression? J Neuroendocrinol 13:102–107

    PubMed  CAS  Google Scholar 

  • Haller J, Halász J, Mikics E, Kruk MR (2004) Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. J Neuroendocrinol 16:550–557

    PubMed  CAS  Google Scholar 

  • Haller J, Mikics E, Makara GB (2008) The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Front Neuroendocrinol 29:273–291

    PubMed  CAS  Google Scholar 

  • Hampson E, Ellis CL, Tenk CM (2008) On the relation between 2D:4D and sex-dimorphic personality traits. Arch Sex Behav 37:133–144

    PubMed  Google Scholar 

  • Haug M, Simler S, Ciesielski L, Mandel P, Moutier R (1984) Influence of castration and brain GABA levels in three strains of mice on aggression towards lactating intruders. Physiol Behav 32:767–770

    PubMed  CAS  Google Scholar 

  • Hayden-Hixson DM, Ferris CF (1991a) Cortisol exerts site-, context- and dose-dependent effects on agonistic responding in hamsters. J Neuroendocrinol 3:613–622

    PubMed  CAS  Google Scholar 

  • Hayden-Hixson DM, Ferris CF (1991b) Steroid specific regulation of agonistic responding in the anterior hypothalamus of male hamsters. Physiol Behav 50:793–799

    PubMed  CAS  Google Scholar 

  • He F, Tai F, Zhang Y, Zhang X (2012) Effects of castration on aggression and levels of serum sex hormones and their central receptors in mandarin voles (Microtus mandarinus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198:347–362

    PubMed  CAS  Google Scholar 

  • Heide KM, Solomon EP (2009) Female juvenile murderers: biological and psychological dynamics leading to homicide. Int J Law Psychiatry 32:244–252

    PubMed  Google Scholar 

  • Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16:2181–2187

    PubMed  CAS  Google Scholar 

  • Herman BH (1990) A possible role of proopiomelanocortin peptides in self-injurious behavior. Prog Neuropsychopharmacol Biol Psychiatry 14(Suppl):S109–S139

    PubMed  Google Scholar 

  • Hill R, Simpson B, Millet G, Manning J, Kilduff L (2012) Right-left digit ratio (2D:4D) and maximal oxygen uptake. J Sports Sci 30:129–134

    PubMed  Google Scholar 

  • Hines M (2010) Sex-related variation in human behavior and the brain. Trends Cogn Sci 14:448–456

    PubMed Central  PubMed  Google Scholar 

  • Hines M, Golombok S, Rust J, Johnston KJ, Golding J, Avon Longitudinal Study of Parents and Children Study Team (2002) Testosterone during pregnancy and gender role behavior of preschool children: a longitudinal, population study. Child Dev 73:1678–1687

    PubMed  Google Scholar 

  • Höglund E, Balm PH, Winberg S (2002) Behavioural and neuroendocrine effects of environmental background colour and social interaction in Arctic charr (Salvelinus alpinus). J Exp Biol 205:2535–2543

    PubMed  Google Scholar 

  • Holi M, Auvinen-Lintunen L, Lindberg N, Tani P, Virkkunen M (2006) Inverse correlation between severity of psychopathic traits and serum cortisol levels in young adult violent male offenders. Psychopathology 39:102–104

    PubMed  Google Scholar 

  • Hutchison JB (1974) Post-castration decline in behavioural responsiveness in intrahypothalamic androgen in doves. Brain Res 81:169–181

    PubMed  CAS  Google Scholar 

  • Hyde JS (2014) Gender similarities and differences. Annu Rev Psychol 65:373–398

    PubMed  Google Scholar 

  • Ing NH (2005) Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod 72:1290–1296

    PubMed  CAS  Google Scholar 

  • Ivanov I, Yehuda R, Greenblatt E, Davidow J, Makotkine I, Alfi L, Newcorn JH (2011) The effect of trauma on stress reactivity in aggressive youth. Psychiatry Res 189:396–402

    PubMed  Google Scholar 

  • Jasnow AM, Huhman KL, Bartness TJ, Demas GE (2000) Short-day increases in aggression are inversely related to circulating testosterone concentrations in male Siberian hamsters (Phodopus sungorus). Horm Behav 38:102–110

    PubMed  CAS  Google Scholar 

  • Jasnow AM, Huhman KL, Bartness TJ, Demas GE (2002) Short days and exogenous melatonin increase aggression of male Syrian hamsters (Mesocricetus auratus). Horm Behav 42:13–20

    PubMed  CAS  Google Scholar 

  • Johnsen TS, Zuk M (1995) Testosterone and aggression in male red jungle fowl. Horm Behav 29:593–598

    PubMed  CAS  Google Scholar 

  • Kalra PS, Kalra SP (1977) Circadian periodicities of serum androgens, progesterone, gonadotropins and luteinizing hormone-releasing hormone in male rats: the effects of hypothalamic deafferentation, castration and adrenalectomy. Endocrinology 101:1821–1827

    PubMed  CAS  Google Scholar 

  • Kariyawasam SH, Zaw F, Handley SL (2002) Reduced salivary cortisol in children with comorbid attention deficit hyperactivity disorder and oppositional defiant disorder. Neuro Endocrinol Lett 23:45–48

    PubMed  CAS  Google Scholar 

  • Kirillova GP, Vanyukov MM, Kirisci L, Reynolds M (2008) Physical maturation, peer environment, and the ontogenesis of substance use disorders. Psychiatry Res 158:43–53

    PubMed Central  PubMed  Google Scholar 

  • Klein WP, Simon NG (1991) Timing of neonatal testosterone exposure in the differentiation of estrogenic regulatory systems for aggression. Physiol Behav 50:91–93

    PubMed  CAS  Google Scholar 

  • Klimes-Dougan B, Hastings PD, Granger DA, Usher BA, Zahn-Waxler C (2001) Adrenocortical activity in at-risk and normally developing adolescents: individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Dev Psychopathol 13:695–719

    PubMed  CAS  Google Scholar 

  • Koolhaas JM, De Boer SF, De Rutter AJ, Meerlo P, Sgoifo A (1997) Social stress in rats and mice. Acta Physiol Scand Suppl 640:69–72

    PubMed  CAS  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35:1291–1301

    PubMed  CAS  Google Scholar 

  • Kreuz LE, Rose RM (1972) Assessment of aggressive behaviour and plasma testosterone in a young criminal population. Psychosom Med 34:321–332

    PubMed  CAS  Google Scholar 

  • Kruesi MJ, Schmidt ME, Donnelly M, Hibbs ED, Hamburger SD (1989) Urinary free cortisol output and disruptive behavior in children. J Am Acad Child Adolesc Psychiatry 28:441–443

    PubMed  CAS  Google Scholar 

  • Kruk MR, Halász J, Meelis W, Haller J (2004) Fast positive feedback between the adrenocortical stress response and a brain mechanism involved in aggressive behavior. Behav Neurosci 118:1062–1070

    PubMed  CAS  Google Scholar 

  • Kudielka BM, Wüst S (2010) Human models in acute and chronic stress: assessing determinants of individual hypothalamus-pituitary-adrenal axis activity and reactivity. Stress 13:1–14

    PubMed  Google Scholar 

  • Landys MM, Goymann W, Schwabl I, Trapschuh M, Slagsvold T (2010) Impact of season and social challenge on testosterone and corticosterone levels in a year-round territorial bird. Horm Behav 58:317–325

    PubMed  CAS  Google Scholar 

  • Leshner AI, Korn SJ, Mixon JF, Rosenthal C, Besser AK (1980) Effects of corticosterone on submissiveness in mice: some temporal and theoretical considerations. Physiol Behav 24:282–288

    Google Scholar 

  • Lindberg N, Tani P, Appelberg B, Naukkarinen H, Rimón R, Porkka-Heiskanen T, Virkkunen M (2003) Human impulsive aggression: a sleep research perspective. J Psychiatr Res 37:313–324

    PubMed  Google Scholar 

  • Lisciotto CA, DeBold JF, Miczek KA (1990) Sexual differentiation and the effects of alcohol on aggressive behavior in mice. Pharmacol Biochem Behav 35:357–362

    PubMed  CAS  Google Scholar 

  • Liu J, Portnoy J, Raine A (2012) Association between a marker for prenatal testosterone exposure and externalizing behavior problems in children. Dev Psychopathol 24:771–782

    PubMed  Google Scholar 

  • Loney BR, Butler MA, Lima EN, Counts CA, Eckel LA (2006) The relation between salivary cortisol, callous-unemotional traits, and conduct problems in an adolescent non-referred sample. J Child Psychol Psychiatry 47:30–36

    PubMed  Google Scholar 

  • Lopez-Duran NL, Olson SL, Hajal NJ, Felt BT, Vazquez DM (2009) Hypothalamic pituitary adrenal axis functioning in reactive and proactive aggression in children. J Abnorm Child Psychol 37:169–182

    PubMed  Google Scholar 

  • Lucion AB, De-Almeida RM, Da-Silva RS (1996) Territorial aggression, body weight, carbohydrate metabolism and testosterone levels of wild rats maintained in laboratory colonies. Braz J Med Biol Res 29:1657–1662

    PubMed  CAS  Google Scholar 

  • Mainardi M, Valenti G, Valsecchi P, Parmigiani S, Brain PF, Vescovi P (1987) Acute effects of low doses of two ACTH preparations on fighting behavior in male mice. Med Sci Res 15:649–650

    CAS  Google Scholar 

  • Manharth A, Harris-Gerber L (2002) Surgical castration and the effect on aggression in rock hyrax (Procavia capensis). J Zoo Wildl Med 33:80–82

    PubMed  Google Scholar 

  • Maras A, Laucht M, Gerdes D, Wilhelm C, Lewicka S, Haack D, Malisova L, Schmidt MH (2003) Association of testosterone and dihydrotestosterone with externalizing behavior in adolescent boys and girls. Psychoneuroendocrinology 28:932–940

    PubMed  CAS  Google Scholar 

  • Márquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, Magistretti PJ, Trono D, Sandi C (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 3:e216

    PubMed Central  PubMed  Google Scholar 

  • Marsman R, Swinkels SH, Rosmalen JG, Oldehinkel AJ, Ormel J, Buitelaar JK (2008) HPA-axis activity and externalizing behavior problems in early adolescents from the general population: the role of comorbidity and gender The TRAILS study. Psychoneuroendocrinology 33:789–798

    PubMed  CAS  Google Scholar 

  • McBurnett K, Lahey BB, Rathouz PJ, Loeber R (2000) Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Arch Gen Psychiatry 57:38–43

    PubMed  CAS  Google Scholar 

  • McBurnett K, King J, Scarpa A (2003) The HPA and the development of aggressive, antisocial, and substance abuse disorders. In: Cicchetti D, Walker E (eds) Neurodevelopmental mechanisms in psychopathology. Cambridge University Press, New York, NY, pp 324–344

    Google Scholar 

  • McBurnett K, Raine A, Stouthamer-Loeber M, Loeber R, Kumar AM, Kumar M, Lahey BB (2005) Mood and hormone responses to psychological challenge in adolescent males with conduct problems. Biol Psychiatry 57:1109–1116

    PubMed  CAS  Google Scholar 

  • Meddle SL, Romero LM, Astheimer LB, Buttemer WA, Moore IT, Wingfield JC (2002) Steroid hormone interrelationships with territorial aggression in an Arctic-breeding songbird, Gambel’s whitecrowned sparrow, Zonotrichia leucophrys gambelii. Horm Behav 42:212–221

    PubMed  CAS  Google Scholar 

  • Mehta PH, Josephs RA (2010) Testosterone and cortisol jointly regulate dominance: evidence for a dual-hormone hypothesis. Horm Behav 58:898–906

    PubMed  CAS  Google Scholar 

  • Mikics E, Kruk MR, Haller J (2004) Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29:618–635

    PubMed  CAS  Google Scholar 

  • Mikics E, Barsy B, Haller J (2007) The effect glucocorticoids on aggressiveness in established colonies of rats. Psychoneuroendocrinology 32:160–170

    PubMed  CAS  Google Scholar 

  • Millesi E, Hoffmann IE, Steurer S, Metwaly M, Dittami JP (2002) Vernal changes in the behavioral and endocrine responses to GnRH application in male European ground squirrels. Horm Behav 41:51–58

    PubMed  CAS  Google Scholar 

  • Millet K, Dewitte S (2009) The presence of aggression cues inverts the relation between digit ratio (2D:4D) and prosocial behaviour in a dictator game. Br J Psychol 100:151–162

    PubMed  Google Scholar 

  • Moldow RL, Fischman AJ (1987) Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Peptides 8:819–822

    PubMed  CAS  Google Scholar 

  • Money J (1965) Influence of hormones on sexual behavior. Annu Rev Med 16:67–82

    PubMed  CAS  Google Scholar 

  • Mong JA, Pfaff DW (2003) Hormonal and genetic influences underlying arousal as it drives sex and aggression in animal and human brains. Neurobiol Aging 24(Suppl 1):S83–S88

    PubMed  CAS  Google Scholar 

  • Moore MC, Marler CA (1987) Effects of testosterone manipulations on nonbreeding season territorial aggression in free-living male lizards, Sceloporus jarrovi. Gen Comp Endocrinol 65:225–232

    PubMed  CAS  Google Scholar 

  • Moss HB, Vanyukov MM, Martin CS (1995) Salivary cortisol responses and the risk for substance abuse in prepubertal boys. Biol Psychiatry 38:547–555

    PubMed  CAS  Google Scholar 

  • Motelica-Heino I, Edwards DA, Roffi J (1993) Intermale aggression in mice: does hour of castration after birth influence adult behaviour? Physiol Behav 53:1017–1019

    PubMed  CAS  Google Scholar 

  • Muller MN, Wrangham RW (2004) Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge’ hypothesis. Anim Behav 67:113–123

    Google Scholar 

  • Munro AD, Pitcher TJ (1985) Steroid hormones and agonistic behavior in a cichlid teleost, Aequidens pulcher. Horm Behav 19:353–371

    PubMed  CAS  Google Scholar 

  • Murray-Close D, Han G, Cicchetti D, Crick NR, Rogosch FA (2008) Neuroendocrine regulation and physical and relational aggression: the moderating roles of child maltreatment and gender. Dev Psychol 44:1160–1176

    PubMed Central  PubMed  Google Scholar 

  • Nelson RJ (2005) Effects of nitric oxide on the HPA axis and aggression. Novartis Found Symp 268:147–160

    PubMed  CAS  Google Scholar 

  • Nelson RJ, Trainor BC, Chiavegatto S, Demas GE (2006) Pleiotropic contributions of nitric oxide to aggressive behavior. Neurosci Biobehav Rev 30:346–355

    PubMed  CAS  Google Scholar 

  • Neumann ID, Veenema AH, Beiderbeck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4:12

    PubMed Central  PubMed  Google Scholar 

  • Nyby JG (2008) Reflexive testosterone release: a model system for studying the nongenomic effects of testosterone upon male behavior. Front Neuroendocrinol 29:199–210

    PubMed Central  PubMed  CAS  Google Scholar 

  • O’Connor DB, Archer J, Hair WM, Wu FC (2002) Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiol Behav 75:557–566

    PubMed  Google Scholar 

  • O’Neal CR, Brotman LM, Huang KY, Gouley KK, Kamboukos D, Calzada EJ, Pine DS (2010) Understanding relations among early family environment, cortisol response, and child aggression via a prevention experiment. Child Dev 81:290–305

    PubMed Central  PubMed  Google Scholar 

  • Oosterlaan J, Geurts HM, Knol DL, Sergeant JA (2005) Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry Res 134:1–10

    PubMed  CAS  Google Scholar 

  • Ortiz R, Armario A, Castellanos JM (1984) Post-weaning differential housing and testosterone secretion in male mice. Experientia 40:1428–1429

    PubMed  CAS  Google Scholar 

  • Overli O, Kotzian S, Winberg S (2002) Effects of cortisol on aggression and locomotor activity in rainbow trout. Horm Behav 42:53–61

    PubMed  CAS  Google Scholar 

  • Painuly NP, Grover S, Gupta N, Mattoo SK (2011) Prevalence of anger attacks in depressive and anxiety disorders: implications for their construct? Psychiatry Clin Neurosci 65:165–174

    PubMed  Google Scholar 

  • Pajer K, Gardner W, Rubin RT, Perel J, Neal S (2001) Decreased cortisol levels in adolescent girls with conduct disorder. Arch Gen Psychiatry 58:297–302

    PubMed  CAS  Google Scholar 

  • Pajer K, Tabbah R, Gardner W, Rubin RT, Czambel RK, Wang Y (2006) Adrenal androgen and gonadal hormone levels in adolescent girls with conduct disorder. Psychoneuroendocrinology 31:1245–1256

    PubMed  CAS  Google Scholar 

  • Parmigiani S, Dadomo H, Bartolomucci A, Brain PF, Carbucicchio A, Costantino C, Ferrari PF, Palanza P, Volpi R (2009) Personality traits and endocrine response as possible asymmetry factors of agonistic outcome in karate athletes. Aggress Behav 35:324–333

    PubMed  CAS  Google Scholar 

  • Pasterski V, Hindmarsh P, Geffner M, Brook C, Brain C, Hines M (2007) Increased aggression and activity level in 3- to 11-year-old girls with congenital adrenal hyperplasia (CAH). Horm Behav 52:368–374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pavlov KA, Chistiakov DA, Chekhonin VP (2012) Genetic determinants of aggression and impulsivity in humans. J Appl Genet 53:61–82

    PubMed  CAS  Google Scholar 

  • Peters PJ, Bronson FH, Whitsett JM (1972) Neonatal castration and intermale aggression in mice. Physiol Behav 8:265–268

    PubMed  CAS  Google Scholar 

  • Plusquellec P, Bouissou M (2001) Behavioural characteristics of two dairy breeds of cows selected (Hérens) or not (Brune des Alpes) for fighting and dominance ability. Appl Anim Behav Sci 72:1–21

    PubMed  Google Scholar 

  • Poggioli R, Vergoni AV, Santi R, Carani C, Baraghini GF, Zini D, Marrama P, Bertolini A (1984) Sexual behavior of male rats: influence of short- and long-term adrenalectomy. Horm Behav 18:79–85

    PubMed  CAS  Google Scholar 

  • Popma A, Jansen LM, Vermeiren R, Steiner H, Raine A, Van Goozen SH, van Engeland H, Doreleijers TA (2006) Hypothalamus pituitary adrenal axis and autonomic activity during stress in delinquent male adolescents and controls. Psychoneuroendocrinology 31:948–957

    PubMed  CAS  Google Scholar 

  • Popma A, Doreleijers TA, Jansen LM, Van Goozen SH, Van Engeland H, Vermeiren R (2007a) The diurnal cortisol cycle in delinquent male adolescents and normal controls. Neuropsychopharmacology 32:1622–1628

    PubMed  CAS  Google Scholar 

  • Popma A, Vermeiren R, Geluk CA, Rinne T, van den Brink W, Knol DL, Jansen LM, van Engeland H, Doreleijers TA (2007b) Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biol Psychiatry 61:405–411

    PubMed  CAS  Google Scholar 

  • Poustka L, Maras A, Hohm E, Fellinger J, Holtmann M, Banaschewski T, Lewicka S, Schmidt MH, Esser G, Laucht M (2010) Negative association between plasma cortisol levels and aggression in a high-risk community sample of adolescents. J Neural Transm 117:621–627

    PubMed  CAS  Google Scholar 

  • Quadagno DM, Briscoe R, Quadagno JS (1977) Effect of perinatal gonadal hormones on selected nonsexual behavior patterns: a critical assessment of the human and nonhuman literature. Psychol Bull 84:62–80

    PubMed  CAS  Google Scholar 

  • Quadagno DM, McQuitty C, McKee J, Koelliker L, Wolfe G, Johnson DC (1987) The effects of intrauterine position on competition and behavior in the mouse. Physiol Behav 41:639–642

    PubMed  CAS  Google Scholar 

  • Ramenofsky M (1985) Acute changes in plasma steroids and agonistic behavior in male Japanese quail. Gen Comp Endocrinol 60:116–128

    PubMed  CAS  Google Scholar 

  • Rasanen P, Hakko H, Visuri S, Paanila J, Kapanen P, Suomela T, Tiihonen J (1999) Serum testosterone levels, mental disorders and criminal behavior. Acta Psychiat Scand 99:348–352

    PubMed  CAS  Google Scholar 

  • Reef J, Diamantopoulou S, van Meurs I, Verhulst FC, van der Ende J (2011) Developmental trajectories of child to adolescent externalizing behavior and adult DSM-IV disorder: results of a 24-year longitudinal study. Soc Psychiatry Psychiatr Epidemiol 46:1233–1241

    PubMed Central  PubMed  Google Scholar 

  • Reinisch JM (1981) Prenatal exposure to synthetic progestins increases potential for aggression in humans. Science 211:1171–1173

    PubMed  CAS  Google Scholar 

  • Reinisch JM, Sanders SA (1986) A test of sex differences in aggressive response to hypothetical conflict situations. J Pers Soc Psychol 50:1045–1049

    PubMed  CAS  Google Scholar 

  • Rejeski WJ, Gregg E, Kaplan JR, Manuck SB (1990) Anabolic-androgenic steroids: effects on social behavior and baseline heart rate. Health Psychol 9:774–791

    PubMed  CAS  Google Scholar 

  • Roepke S, Ziegenhorn A, Kronsbein J, Merkl A, Bahri S, Lange J, Lübbert H, Schweiger U, Heuser I, Lammers CH (2010) Incidence of polycystic ovaries and androgen serum levels in women with borderline personality disorder. J Psychiatr Res 44:847–852

    PubMed  Google Scholar 

  • Romero-Martínez A, Lila M, Sariñana-González P, González-Bono E, Moya-Albiol L (2013) High testosterone levels and sensitivity to acute stress in perpetrators of domestic violence with low cognitive flexibility and impairments in their emotional decoding process: a preliminary study. Aggress Behav 39:355–369

    PubMed  Google Scholar 

  • Ros AF, Dieleman SJ, Groothuis TG (2002) Social stimuli, testosterone, and aggression in gull chicks: support for the challenge hypothesis. Horm Behav 41:334–342

    PubMed  CAS  Google Scholar 

  • Rose RM, Holaday JW, Bernstein IS (1971) Plasma testosterone, dominance rank and aggressive behaviour in male rhesus monkeys. Nature 231:366–368

    PubMed  CAS  Google Scholar 

  • Rubin RT, Reimsch JM, Haskett RF (1981) Postnatal gonadal steroid effects on human behavior. Science 211:1318–1324

    PubMed  CAS  Google Scholar 

  • Ruiz-de-la-torre JL, Manteca X (1999) Effects of testosterone on aggressive behaviour after social mixing in male lambs. Physiol Behav 68:109–113

    PubMed  CAS  Google Scholar 

  • Rutter M, Moffitt TE, Caspi A (2006) Gene-environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiat 47:226–261

    PubMed  Google Scholar 

  • Ruttle PL, Shirtcliff EA, Serbin LA, Fisher DB, Stack DM, Schwartzman AE (2011) Disentangling psychobiological mechanisms underlying internalizing and externalizing behaviors in youth: longitudinal and concurrent associations with cortisol. Horm Behav 59:123–132

    PubMed Central  PubMed  Google Scholar 

  • Ryan BC, Vandenbergh JG (2002) Intrauterine position effects. Neurosci Biobehav Rev 26:665–678

    PubMed  Google Scholar 

  • Salas-Ramirez KY, Montalto PR, Sisk CL (2008) Anabolic androgenic steroids differentially affect social behaviors in adolescent and adult male Syrian hamsters. Horm Behav 53:378–385

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salas-Ramirez KY, Montalto PR, Sisk CL (2010) Anabolic steroids have long-lasting effects on male social behaviors. Behav Brain Res 208:328–335

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sandnabba NK, Lagerspetz KM, Jensen E (1994) Effects of testosterone exposure and fighting experience on the aggressive behavior of female and male mice selectively bred for intermale aggression. Horm Behav 28:219–231

    PubMed  CAS  Google Scholar 

  • Saxbe DE, Margolin G, Spies Shapiro LA, Baucom BR (2012) Does dampened physiological reactivity protect youth in aggressive family environments? Child Dev 83:821–830

    PubMed Central  PubMed  Google Scholar 

  • Scerbo AS, Kolko DJ (1994) Salivary testosterone and cortisol in disruptive children: relationship to aggressive, hyperactive, and internalizing behaviors. J Am Acad Child Adolesc Psychiatry 33:1174–1184

    PubMed  CAS  Google Scholar 

  • Schaal B, Tremblay RE, Soussignan R, Susman EJ (1996) Male testosterone linked to high social dominance but low physical aggression in early adolescence. J Am Acad Child Adolesc Psychiatry 35:1322–1330

    PubMed  CAS  Google Scholar 

  • Schjolden J, Basic D, Winberg S (2009) Aggression in rainbow trout is inhibited by both MR and GR antagonists. Physiol Behav 98:625–630

    PubMed  CAS  Google Scholar 

  • Schlinger BA, Callard GV (1989) Estrogen receptors in quail brain: a functional relationship to aromatase and aggresiveness. Biol Reprod 40:268–275

    PubMed  CAS  Google Scholar 

  • Schlinger BA, Callard GV (1990) Aromatization mediates aggressive behavior in quail. Gen Comp Endocrinol 79:39–53

    PubMed  CAS  Google Scholar 

  • Schuett GW, Grober MS (2000) Post-fight levels of plasma lactate and corticosterone in male copperheads, Agkistrodon contortrix (Serpentes, Viperidae): differences between winners and losers. Physiol Behav 71:335–341

    PubMed  CAS  Google Scholar 

  • Schuurman T (1980) Hormonal correlates of agonistic behaviour in adult male rats. Prog Brain Res 53:415–420

    PubMed  CAS  Google Scholar 

  • Scordalakes EM, Rissman EF (2004) Aggression and arginine vasopressin immunoreactivity regulation by androgen receptor and estrogen receptor alpha. Genes Brain Behav 3:20–26

    PubMed  CAS  Google Scholar 

  • Scotti MA, Belén J, Jackson JE, Demas GE (2008) The role of androgens in the mediation of seasonal territorial aggression in male Siberian hamsters (Phodopus sungorus). Physiol Behav 95:633–640

    PubMed  CAS  Google Scholar 

  • Scotti MA, Schmidt KL, Newman AE, Bonu T, Soma KK, Demas GE (2009) Aggressive encounters differentially affect serum dehydroepiandrosterone and testosterone concentrations in male Siberian hamsters (Phodopus sungorus). Horm Behav 56:376–381

    PubMed  CAS  Google Scholar 

  • Seward JP (1945) Aggressive behaviour in the rat: general characteristics, age and sex differences. J Comp Psychol 38:423–430

    Google Scholar 

  • Shimozuru M, Kikusui T, Takeuchi Y, Mori Y (2008) Effects of isolation-rearing on the development of social behaviors in male Mongolian gerbils (Meriones unguiculatus). Physiol Behav 94:491–500

    PubMed  CAS  Google Scholar 

  • Shirtcliff EA, Essex MJ (2008) Concurrent and longitudinal associations of basal and diurnal cortisol with mental health symptoms in early adolescence. Dev Psychobiol 50:690–703

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shirtcliff EA, Granger DA, Booth A, Johnson D (2005) Low salivary cortisol levels and externalizing behavior problems in youth. Dev Psychopathol 17:167–184

    PubMed  Google Scholar 

  • Shoal GD, Giancola PR, Kirillova GP (2003) Salivary cortisol, personality, and aggressive behavior in adolescent boys: a 5-year longitudinal study. J Am Acad Child Adolesc Psychiatry 42:1101–1107

    PubMed  Google Scholar 

  • Shufelt CL, Braunstein GD (2009) Safety of testosterone use in women. Maturitas 63:63–66

    PubMed  CAS  Google Scholar 

  • Silverin B (1993) Territorial aggressiveness and its relation to the endocrine system in the pied flycatcher. Gen Comp Endocrinol 89:206–213

    PubMed  CAS  Google Scholar 

  • Simerly RB, Swanson LW, Gorski RA (1985) Reversal of the sexually dimorphic distribution of serotonin-immunoreactive fibers in the medial preoptic nucleus by treatment with perinatal androgen. Brain Res 340:91–98

    PubMed  CAS  Google Scholar 

  • Sjoberg RL, Ducci F, Barr CS, Newman TK, Dell’osso L, Virkkunen M, Goldman D (2008) A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 33:425–430

    PubMed Central  PubMed  Google Scholar 

  • Sluyter F, van Oortmerssen GA, de Ruiter AJ, Koolhaas JM (1996) Aggression in wild house mice: current state of affairs. Behav Genet 26:489–496

    PubMed  CAS  Google Scholar 

  • Sluyter F, Keijser JN, Boomsma DI, van Doornen LJ, van den Oord EJ, Snieder H (2000) Genetics of testosterone and the aggression-hostility-anger (AHA) syndrome: a study of middle-aged male twins. Twin Res 3:266–276

    PubMed  CAS  Google Scholar 

  • Snoek H, van Goozen SH, Matthys W, Sigling HO, Koppeschaar HP, Westenberg HG, van Engeland H (2002) Serotonergic functioning in children with oppositional defiant disorder: a sumatriptan challenge study. Biol Psychiatry 51:319–325

    PubMed  CAS  Google Scholar 

  • Soderstrom H, Blennow K, Forsman A, Liesivuori J, Pennanen S, Tiihonen J (2004) A controlled study of tryptophan and cortisol in violent offenders. J Neural Transm 111:1605–1610

    PubMed  CAS  Google Scholar 

  • Soler H, Vinayak P, Quadagno D (2000) Biosocial aspects of domestic violence. Psychoneuroendocrinology 25:721–739

    PubMed  CAS  Google Scholar 

  • Solomon MB, Karom MC, Norvelle A, Markham CA, Erwin WD, Huhman KL (2009) Gonadal hormones modulate the display of conditioned defeat in male Syrian hamsters. Horm Behav 56:423–428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Soma KK (2006) Testosterone and aggression: berthold, birds and beyond. J Neuroendocrinol 18:543–551

    PubMed Central  PubMed  CAS  Google Scholar 

  • Soma KK, Sullivan KA, Tramontin AD, Saldanha CJ, Schlinger BA, Wingfield JC (2000) Acute and chronic effects of an aromatase inhibitor on territorial aggression in breeding and nonbreeding male song sparrows. J Comp Physiol A 186:759–769

    PubMed  CAS  Google Scholar 

  • Soma KK, Schlinger BA, Wingfield JC, Saldanha CJ (2003) Brain aromatase, 5 alpha-reductase, and 5 beta-reductase change seasonally in wild male song sparrows: relationship to aggressive and sexual behavior. J Neurobiol 56:209–221

    PubMed  CAS  Google Scholar 

  • Soma KK, Scotti MA, Newman AE, Charlier TD, Demas GE (2008) Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrinol 29:476–489

    PubMed  CAS  Google Scholar 

  • Sondeijker FE, Ferdinand RF, Oldehinkel AJ, Tiemeier H, Ormel J, Verhulst FC (2008) HPA-axis activity as a predictor of future disruptive behaviors in young adolescents. Psychophysiology 45:398–404

    PubMed  Google Scholar 

  • Stalenheim EG, Eriksson E, von Knorring L, Wide L (1998) Testosterone as a biological marker in psychopathy and alcoholism. Psychiatry Res 77:79–88

    PubMed  CAS  Google Scholar 

  • Stanworth RD, Jones TH (2008) Testosterone for the aging male; current evidence and recommended practice. Clin Interv Aging 3:25–44

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stewart J, Rajabi H (1994) Estradiol derived from testosterone in prenatal life affects the development of catecholamine systems in the frontal cortex in the male rat. Brain Res 646:157–160

    PubMed  CAS  Google Scholar 

  • Stupfel M, Pavely A (1990) Ultradian, circahoral and circadian structures in endothermic vertebrates and humans. Comp Biochem Physiol A Comp Physiol 96:1–11

    PubMed  CAS  Google Scholar 

  • Summers CH, Summers TR, Moore MC, Korzan WJ, Woodley SK, Ronan PJ, Höglund E, Watt MJ, Greenberg N (2003) Temporal patterns of limbic monoamine and plasma corticosterone response during social stress. Neuroscience 116:553–563

    PubMed  CAS  Google Scholar 

  • Terburg D, Morgan B, van Honk J (2009) The testosterone-cortisol ratio: a hormonal marker for proneness to social aggression. Int J Law Psychiatry 32:216–223

    PubMed  Google Scholar 

  • Timmer M, Sandi C (2010) A role for glucocorticoids in the long-term establishment of a social hierarchy. Psychoneuroendocrinology 35:1543–1552

    PubMed  CAS  Google Scholar 

  • Tokarz RR (1987) Effects of corticosterone treatment on male aggressive behavior in a lizard (Anolis sagrei). Horm Behav 21:358–370

    PubMed  CAS  Google Scholar 

  • Tornatzky W, Miczek KA (1994) Behavioral and autonomic responses to intermittent social stress: differential protection by clonidine and metoprolol. Psychopharmacology (Berl) 116:346–356

    CAS  Google Scholar 

  • Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J (2011) Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28–36

    PubMed  CAS  Google Scholar 

  • Trainor BC, Marler CA (2001) Testosterone, paternal behavior, and aggression in the monogamous California mouse (Peromyscus californicus). Horm Behav 40:32–42

    PubMed  CAS  Google Scholar 

  • Trainor BC, Bird IM, Marler CA (2004) Opposing hormonal mechanisms of aggression revealed through short-lived testosterone manipulations and multiple winning experiences. Horm Behav 45:115–121

    PubMed  CAS  Google Scholar 

  • Trainor BC, Greiwe KM, Nelson RJ (2006) Individual differences in estrogen receptor alpha in select brain nuclei are associated with individual differences in aggression. Horm Behav 50:338–345

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tremblay RE (1999) When children’s social development fails. In: Keating DP, Hertzman C (eds) Developmental health and the wealth of nations: social, biological, and educational dynamics. The Guilford Press, New York, NY, pp 55–71

    Google Scholar 

  • Trifonova ST, Gantenbein M, Turner JD, Muller CP (2013) The use of saliva for assessment of cortisol pulsatile secretion by deconvolution analysis. Psychoneuroendocrinology 38(7):1090–1101

    PubMed  CAS  Google Scholar 

  • Turner AK (1994) Genetic and hormonal influences on male violence. In: Archer J (ed) Male violence. Routledge, New York, NY, pp 233–252

    Google Scholar 

  • Vaillancourt T, Sunderani S (2011) Psychopathy and indirect aggression: the roles of cortisol, sex, and type of psychopathy. Brain Cogn 77:170–175

    PubMed  Google Scholar 

  • Vaillancourt KL, Dinsdale NL, Hurd PL (2012) Estrogen receptor 1 promoter polymorphism and digit ratio in men. Am J Hum Biol 24:682–689

    PubMed  Google Scholar 

  • van Anders SM, Goldey KL, Kuo PX (2011) The steroid/peptide theory of social bonds: integrating testosterone and peptide responses for classifying social behavioral contexts. Psychoneuroendocrinology 36:1265–1275

    PubMed  Google Scholar 

  • van Bokhoven I, Van Goozen SH, van Engeland H, Schaal B, Arseneault L, Séguin JR, Nagin DS, Vitaro F, Tremblay RE (2005) Salivary cortisol and aggression in a population-based longitudinal study of adolescent males. J Neural Transm 112:1083–1096

    PubMed  Google Scholar 

  • Van de Wiel N, van Goozen S, Matthys W, Snoek H, van Engeland H (2004) Cortisol and treatment effect in children with disruptive behavior disorders: a preliminary study. J Am Acad Child Adoloscent Psychiatry 43:1011–1018

    Google Scholar 

  • Van den Bergh BR, Van Calster B, Pinna Puissant S, Van Huffel S (2008) Self-reported symptoms of depressed mood, trait anxiety and aggressive behavior in post-pubertal adolescents: associations with diurnal cortisol profiles. Horm Behav 54:253–257

    PubMed  Google Scholar 

  • van der Meij L, Almela M, Buunk AP, Dubbs S, Salvador A (2012) 2D:4D in men is related to aggressive dominance but not to sociable dominance. Aggress Behav 38:208–212

    PubMed  Google Scholar 

  • van Goozen SH, Matthys W, Cohen-Kettenis PT, Gispen-de Wied C, Wiegant VM, van Engeland H (1998a) Salivary cortisol and cardiovascular activity during stress in oppositional-defiant disorder boys and normal controls. Biol Psychiatry 43:531–539

    PubMed  Google Scholar 

  • van Goozen SH, Matthys W, Cohen-Kettenis PT, Thijssen JH, van Engeland H (1998b) Adrenal androgens and aggression in conduct disorder prepubertal boys and normal controls. Biol Psychiatry 43:156–158

    PubMed  Google Scholar 

  • van Goozen SH, Matthys W, Cohen-Kettenis PT, Buitelaar JK, van Engeland H (2000a) Hypothalamic-pituitary-adrenal axis and autonomic nervous system activity in disruptive children and matched controls. J Am Acad Child Adolesc Psychiatry 39:1438–1445

    PubMed  Google Scholar 

  • van Goozen SHM, van den Ban E, Matthys W, Cohen-Kettenis PT, Thijssen JHH, van Engeland H (2000b) Increased adrenal androgen functioning in children with oppositional defiant disorder: a comparison with psychiatric and normal controls. J Am Acad Child Adolesc Psychiatry 39:1446–1451

    PubMed  Google Scholar 

  • van Goozen SH, Fairchild G, Snoek H, Harold GT (2007) The evidence for a neurobiological model of childhood antisocial behavior. Psychol Bull 133:149–182

    PubMed  Google Scholar 

  • van Honk J, Harmon-Jones E, Morgan BE, Schutter DJ (2010) Socially explosive minds: the triple imbalance hypothesis of reactive aggression. J Pers 78:67–94

    PubMed  Google Scholar 

  • van Oortmerssen GA, Dijk DJ, Schuurman T (1987) Studies in wild house mice. II. Testosterone and aggression. Horm Behav 21:139–152

    PubMed  Google Scholar 

  • van Oortmerssen GA, Benus RF, Sluyter F (1992) Studies on wild house mice. IV. On the heredity of testosterone and readiness to attack. Aggress Behav 18:143–148

    Google Scholar 

  • Vanyukov MM, Moss HB, Plail JA, Blackson T, Mezzich AC, Tarter RE (1993) Antisocial symptoms in preadolescent boys and in their parents: associations with cortisol. Psychiatry Res 46:9–17

    PubMed  CAS  Google Scholar 

  • Veenema AH, Neumann ID (2009) Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology 34:463–467

    PubMed  CAS  Google Scholar 

  • Veenema AH, Koolhaas JM, de Kloet ER (2004) Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines. Ann NY Acad Sci 1018:255–265

    PubMed  CAS  Google Scholar 

  • Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 24:1711–1720

    PubMed  Google Scholar 

  • Veenema AH, Bredewold R, Neumann ID (2007a) Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology 32:437–450

    PubMed  CAS  Google Scholar 

  • Veenema AH, Torner L, Blume A, Beiderbeck DI, Neumann ID (2007b) Low inborn anxiety correlates with high intermale aggression: link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Horm Behav 51:11–19

    PubMed  CAS  Google Scholar 

  • Verona E, Kilmer A (2007) Stress exposure and affective modulation of aggressive behavior in men and women. J Abnormal Psychol 116:410–421

    Google Scholar 

  • Victoroff J, Quota S, Adelman JR, Celinska B, Stern N, Wilcox R, Sapolsky RM (2011) Support for religio-political aggression among teenaged boys in Gaza: Part II: Neuroendocrinological findings. Aggress Behav 37:121–132

    PubMed  CAS  Google Scholar 

  • Virkkunen M (1985) Urinary free cortisol secretion in habitually violent offenders. Acta Psychiatr Scand 72:40–44

    PubMed  CAS  Google Scholar 

  • Virkkunen M, Kallio E, Rawlings R, Tokola R, Poland RE, Guidotti A, Nemeroff C, Bissette G, Kalogeras K, Karonen SL, Linnoila M (1994a) Personality profiles and state aggressiveness in Finnish alcoholic violent offenders fire setters and healthy volunteers. Arch Gen Psychiatry 51:28–33

    PubMed  CAS  Google Scholar 

  • Virkkunen M, Rawlings R, Tokola R, Poland RE, Guidotti A, Nemeroff C, Bissette G, Kalogeras K, Karonen SL, Linnoila M (1994b) CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Arch Gen Psychiatry 51:20–27

    PubMed  CAS  Google Scholar 

  • Voracek M (2013) Differential correlations of digit ratio (2D:4D) with aggressive dominance and sociable dominance are not demonstrated: commentary on van der Meij, Almela, Buunk, Dubbs, and Salvador (2012, Aggressive Behavior, 38(3), 208–212). Aggress Behav 39:85–87

    PubMed  Google Scholar 

  • Voracek M, Stieger S (2009) Replicated nil associations of digit ratio (2D:4D) and absolute finger lengths with implicit and explicit measures of aggression. Psicothema 21:382–389

    PubMed  Google Scholar 

  • Walker WH (2003) Nongenomic actions of androgen in Sertoli cells. Curr Top Dev Biol 56:25–53

    PubMed  CAS  Google Scholar 

  • Wang D, Szyf M, Benkelfat C, Provençal N, Turecki G, Caramaschi D, Côté SM, Vitaro F, Tremblay RE, Booij L (2012a) Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One 7:e39501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang D, Zhang J, Zhang Z (2012b) Effect of testosterone and melatonin on social dominance and agonistic behavior in male Tscheskia triton. Behav Processes 89:271–277

    PubMed  Google Scholar 

  • Warne GL, Faiman C, Reyes FI, Winter JSD (1977) Studies on human sexual development. V. Concentrations of testosterone, 17-hydroxyprogesterone and progesterone in human amniotic fluid throughout gestation. J Clin Endocrinol Metab 44:934–938

    PubMed  CAS  Google Scholar 

  • Weiner CL, Primeau M, Ehrmann DA (2004) Androgens and mood dysfunction in women: comparison of women with polycystic ovarian syndrome to healthy controls. Psychosom Med 66:356–362

    PubMed  CAS  Google Scholar 

  • Weiss CS, Coughlin JP (1979) Maintained aggressive behavior in gonadectomized male Siamese fighting fish (Betta splendens). Physiol Behav 23:173–177

    PubMed  CAS  Google Scholar 

  • Wen JC, Hotchkiss AK, Demas GE, Nelson RJ (2004) Photoperiod affects neuronal nitric oxide synthase and aggressive behaviour in male Siberian hamsters (Phodopus sungorus). J Neuroendocrinol 16:916–921

    PubMed  CAS  Google Scholar 

  • White TL, Grover VK, de Wit H (2006) Cortisol effects of D-amphetamine relate to traits of fearlessness and aggression but not anxiety in healthy humans. Pharmacol Biochem Behav 85:123–131

    PubMed  CAS  Google Scholar 

  • Williams JR, Ghandour RM, Kub JE (2008) Female perpetration of violence in heterosexual intimate relationships: adolescence through adulthood. Trauma Violence Abuse 9:227–249

    PubMed Central  PubMed  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM Jr, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Naturalist 136:829–846

    Google Scholar 

  • Winslow JT, Miczek KA (1988) Androgen dependency of alcohol effects on aggressive behavior: a seasonal rhythm in high-ranking squirrel monkeys. Psychopharmacology (Berl) 95:92–98

    CAS  Google Scholar 

  • Winslow JT, Ellingboe J, Miczek KA (1988) Effects of alcohol on aggressive behavior in squirrel monkeys: influence of testosterone and social context. Psychopharmacology (Berl) 95:356–363

    CAS  Google Scholar 

  • Wirth MM, Schultheiss OC (2007) Basal testosterone moderates responses to anger faces in humans. Physiol Behav 90:496–505

    PubMed  CAS  Google Scholar 

  • Witte AV, Flöel A, Stein P, Savli M, Mien LK, Wadsak W, Spindelegger C, Moser U, Fink M, Hahn A, Mitterhauser M, Kletter K, Kasper S, Lanzenberger R (2009) Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum Brain Mapp 30:2558–2570

    PubMed  Google Scholar 

  • Wood GE, Young LT, Reagan LP, McEwen BS (2003) Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm Behav 43:205–213

    PubMed  Google Scholar 

  • Woodley SK, Matt KS, Moore MC (2000) Neuroendocrine responses in free-living female and male lizards after aggressive interactions. Physiol Behav 71:373–381

    PubMed  CAS  Google Scholar 

  • Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, Honda S, Harada N, Shah NM (2009) Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139:61–72

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang SJ, Shin DW, Noh KS, Stein MA (2007) Cortisol is inversely correlated with aggression for those boys with attention deficit hyperactivity disorder who retain their reactivity to stress. Psychiatry Res 153:55–60

    PubMed  CAS  Google Scholar 

  • Yildirim BO, Derksen JJ (2012a) A review on the relationship between testosterone and the interpersonal/affective facet of psychopathy. Psychiatry Res 197:181–198

    PubMed  CAS  Google Scholar 

  • Yildirim BO, Derksen JJ (2012b) A review on the relationship between testosterone and life-course persistent antisocial behavior. Psychiatry Res 200:984–1010

    PubMed  CAS  Google Scholar 

  • Yodyingyuad U, de la Riva C, Abbott DH, Herbert J, Keverne EB (1985) Relationship between dominance hierarchy, cerebrospinal fluid levels of amine transmitter metabolites (5-hydroxyindole acetic acid and homovanillic acid) and plasma cortisol in monkeys. Neuroscience 16:851–858

    PubMed  CAS  Google Scholar 

  • Yohe LR, Suzuki H, Lucas LR (2012) Aggression is suppressed by acute stress but induced by chronic stress: immobilization effects on aggression, hormones, and cortical 5-HT(1B)/striatal dopamine D(2) receptor density. Cogn Affect Behav Neurosci 12:446–459

    PubMed  Google Scholar 

  • Yu YZ, Shi JX (2009) Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. Biomed Environ Sci 22:44–49

    PubMed  CAS  Google Scholar 

  • Bjorkqvist K, Oesterman K, Kaukiainen A (1992) The development of direct and indirect aggressive strategies in males and females. In: Bjoerkqvist K, Niemelae P (eds) Of mice and women: aspects of female aggression. Academic, San Diego, CA, pp 51–64

    Google Scholar 

  • Castro WL, Matt KS (1997) The importance of social condition in the hormonal and behavioral responses to an acute social stressor in the male Siberian dwarf hamster (Phodopus sungorus). Horm Behav 32:209–216

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Haller, J. (2014). Hormonal Determinants. In: Neurobiological Bases of Abnormal Aggression and Violent Behaviour. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1268-7_2

Download citation

Publish with us

Policies and ethics