Skip to main content

Intracellular pH Regulation of Plant Cells Under Anaerobic Conditions

  • Chapter
  • First Online:
Low-Oxygen Stress in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

The intracellular pH of living cells is strictly controlled in each compartment. Under normal conditions, the cytoplasmic pH (pHc) and the vacuolar pH (pHv) of typical plant cells are maintained at slightly alkaline (typically 7.5) and acidic (typically 5.5) values, respectively. A failure to maintain the pH homeostasis of cells leads to cell death. In general, anaerobic conditions induce acidosis in the cytoplasm of plant cells and thereby prolonged anoxia causes cell death. As a result, the regulation of intracellular pH has been an important topic for research in studies of the anoxia tolerance of plant cells (Plant Physiol 100:1–6, 1992; Annu Rev Plant Physiol Plant Mol Biol 48:223–250, 1997; Funct Plant Biol 30:1–47, 2003; Funct Plant Biol 30:999–1036, 2003; Plant Stress 2:1–19, 2008; Annu Rev Plant Biol 59:313–339, 2008). To date many researchers have published review articles to discuss acidosis and pH regulation of plant cells exposed to anaerobic conditions (Encyclopedia of plant physiology, Springer, Berlin, pp. 317–346, 1976; Annu Rev Plant Physiol 30:289–311, 1979; Int Rev Cytol 127:111–173, 1991; Ann Bot 79:39–48, 1997; Regulation of tissue pH in plants and animals, Cambridge University Press, Cambridge, pp. 193–213, 1999; Int Rev Cytol 206:1–44, 2001; Ann Bot 96:519–532, 2005; Plant roots: the hidden half, CRC Press, Boca Raton, Chapter 23, pp. 1–18, 2013). In this review, I will summarize the proposed mechanisms to control intracellular pH and include a brief discussion about anoxia tolerance on the basis of the limited information available for plant cells possessing extremely strong tolerance to anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  PubMed  Google Scholar 

  • Brauer D, Uknalis J, Triana R, Shachar-Hill Y, Tu S-I (1997) Effects of bafilomycin A1 and metabolic inhibitors on the maintenance of vacuolar acidity in maize root hair cells. Plant Physiol 113:809–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JKM (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi W-G, Roberts DM (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282:24209–24218

    Article  CAS  PubMed  Google Scholar 

  • Couldwell DL, Dunford R, Kruger NJ, Lloyd DC, Ratcliffe RG, Smith AMO (2009) Response of cytoplasmic pH to anoxia in plant tissues with altered activities of fermentation enzyme: application of methyl phosphonate as an NMR pH probe. Ann Bot 103:249–258

    Article  CAS  PubMed  Google Scholar 

  • Davies DD (1980) Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The biochemistry of plants. A comprehensive treatise, vol 2, Metabolism and respiration. Academic, New York, pp 581–611

    Google Scholar 

  • Davies JM (1997) Vacuolar energization: pumps, shunts and stress. J Exp Bot 48:633–641

    Article  CAS  Google Scholar 

  • Dixon MH, Hill SA, Jackson MB, Ratcliffe RG, Sweetlove LJ (2006) Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen. Plant Cell Physiol 47:128–140

    Article  CAS  PubMed  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Duby G, Boutry M (2009) The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch 457:645–655

    Article  CAS  PubMed  Google Scholar 

  • Ellis MH, Dennis ES, Peacock WJ (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol 119:57–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan TW-M, Higashi RM, Lane AN (1988) An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Arch Biochem Biophys 266:592–606

    Article  CAS  PubMed  Google Scholar 

  • Fan TW-M, Lane AN, Higashi RM (1992) Hypoxia does not affect rate of ATP synthesis and energy metabolism in rice shoot tips as measured by 31P NMR in vivo. Arch Biochem Biophys 294:314–318

    Article  CAS  PubMed  Google Scholar 

  • Felle HH (1993) Ion-selective microelectrode: their use and important in modern plant cell biology. Bot Acta 106:5–12

    CAS  Google Scholar 

  • Felle HH (1996) Control of cytoplasmic pH under anoxic conditions and its implication for plasma membrane proton transport in Medicago sativa root hair. J Exp Bot 47:967–973

    Article  CAS  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96:519–532

    Article  CAS  PubMed  Google Scholar 

  • Felle HH (2006) Apoplastic pH during low-oxygen stress in barley. Ann Bot 98:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Fox GG, McCallan NR, Ratcliffe RG (1995) Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism. Planta 195:324–330

    Article  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Gerendas J, Ratcliffe RF (2013) Root pH regulation. In: Eshel A, Beeckman T (eds) Plant roots: the hidden half, 4th edn. CRC Press, Boca Raton, Chapter 23, pp 1–18

    Google Scholar 

  • Gerendás J, Schurr U (1999) Physicochemical aspects of ion relations and pH regulation in plants—a quantitative approach. J Exp Bot 50:1101–1114

    Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gout E, Bligny R, Douce R (1992) Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. J Biol Chem 267:13903–13909

    CAS  PubMed  Google Scholar 

  • Gout E, Boisson A-M, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carobon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Article  CAS  Google Scholar 

  • Guern J, Felle H, Mathieu Y, Kurkdjian A (1991) Regulation of intracellular pH in plant cells. Int Rev Cytol 127:111–173

    CAS  Google Scholar 

  • Harada T, Satoh S, Yoshioka T, Ishizawa K (2005) Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia. Ann Bot 96:683–692

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Greenway H, Colmer TD (2003) Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-‘intolerant’ but not of a ‘tolerant’, genotype. J Exp Bot 54:2363–2373

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Greenway H, Colmer TD, Millar AH (2005) Protein synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth and energy utilization. Ann Bot 96:703–715

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Colmer TD, Millar AH (2008) Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci 13:221–227

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Kleczkowski LA (2011) Magnesium and cell energetics in plants under anoxia. Biochem J 437:373–379

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa K, Murakami S, Kawakami Y, Kuramochi H (1999) Growth and energy status of arrowhead tubers, pondweed turions and rice seedlings under anoxic conditions. Plant Cell Environ 22:505–514

    Article  Google Scholar 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204:277–287

    Article  CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koizumi Y, Hara Y, Yazaki Y, Sakano K, Ishizawa K (2011) Involvement of plasma membrane H+-ATPase in anoxic elongation of stems in pondweed (Potamogeton distinctus) turions. New Phytol 190:421–430

    Article  CAS  PubMed  Google Scholar 

  • Kosegarten H, Grolig F, Wieneke J, Wilson G, Hoffmann B (1997) Differential ammonia-elicited changes of cytosolic pH in root hair cells of rice and maize as monitored by 2′,7′-bis-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein-fluorescence ratio. Plant Physiol 113:451–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulichikhin KY, Aitio O, Chirkova TV, Fagerstedt KV (2007) Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryza sativa) and wheat (Triticum aestivum) root tips: in vivo 31P-NMR study. Physiol Plant 129:507–518

    Article  CAS  Google Scholar 

  • Kulichikhin KY, Greenway H, Byrne L, Colmer TD (2009) Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral conditions. J Exp Bot 60:2119–2128

    Article  CAS  PubMed  Google Scholar 

  • Kurkdjian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40:271–303

    Article  CAS  Google Scholar 

  • Libourel IGL, van Bodegom PM, Fricker MD, Ratcliffe RG (2006) Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol 142:1710–1717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Zhang Q, Burton RA, Shirley NJ, Atwell BJ (2010) Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol 72:47–60

    Article  CAS  PubMed  Google Scholar 

  • Lloyd P (2004) Strong ion calculator—a practical bedside application of modern quantitative acid-base physiology. Crit Care Resusc 6:285–294

    CAS  PubMed  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Maeshima M, Neuthaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  CAS  PubMed  Google Scholar 

  • Mathieu Y, Guern J, Pean M, Pasquier C, Beloeil J-C, Lallemand J-Y (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cells. II. Possible mechanisms involved in pH regulation during acid-load. Plant Physiol 82:846–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menegus F, Cattaruzza L, Chersi A, Fronza G (1989) Differences in the anaerobic lactate-succinate production and in the changes of cell sap pH for plants with high and low resistance to anoxia. Plant Physiol 90:29–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menegus F, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings. Changes in the pH of intracellular compartments, glucose-6-phosphate level, and metabolic rate. Plant Physiol 95:760–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyashita Y, Good AG (2008) Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol 49:92–102

    Article  CAS  PubMed  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87:3503–3507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ratcliffe RG (1995) Metabolic aspects of the anoxic response in plant tissue. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation environment and plant biology series. BIOS Scientific Publishers, Oxford, pp 111–127

    Google Scholar 

  • Ratcliffe RG (1997) In vivo NMR studies of the metabolic response of plant tissues of anoxia. Ann Bot 79(suppl A):39–48

    Article  CAS  Google Scholar 

  • Ratcliffe RG (1999) Intracellular pH regulation in plants under anoxia. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of tissue pH in plants and animals, A reappraisal of current techniques. Cambridge University Press, Cambridge, pp 193–213

    Chapter  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180

    Article  CAS  Google Scholar 

  • Rivoal J, Ricard B, Pradet A (1991) Lactate dehydrogenase in Oryza sativa L. seedlings and roots. Identification and partial characterization. Plant Physiol 95:682–686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JKM, Wemmer D, Ray PM, Jardetzky O (1982) Regulation of cytoplasmic and vacuolar pH in maize root tips under different experimental conditions. Plant Physiol 69:1344–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984a) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci U S A 81:3379–3383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JKM, Callis J, Jardetzky O, Walbot V, Freeling M (1984b) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci U S A 81:6029–6033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JKM, Abdrade FH, Anderson IC (1985) Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol 77:492–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JKM, Hooks MA, Miaullis AP, Edwards S, Webster C (1992) Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using nuclear magnetic resonance spectroscopy. Plant Physiol 98:480–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  PubMed  Google Scholar 

  • Saglio PH, Drew MC, Pradet A (1988) Metabolic acclimation to anoxia induced by low (2–4 kPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiol 86:61–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saint-Ges V, Roby C, Bligny R, Pradet A, Douce R (1991) Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. Eur J Biochem 200:477–482

    Article  CAS  PubMed  Google Scholar 

  • Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44

    CAS  PubMed  Google Scholar 

  • Sato T, Harada T, Ishizawa K (2002) Stimulation of glycolysis in anaerobic elongation of pondweed (Potamogeton distinctus) turions. J Exp Bot 53:1847–1856

    Article  CAS  PubMed  Google Scholar 

  • Savchenko G, Wiese C, Neimanis S, Hedrich R, Heber U (2000) pH regulation in apoplastic and cytoplasmic cell compartments of leaves. Planta 211:246–255

    Article  CAS  PubMed  Google Scholar 

  • Schulte A, Lorenzen I, Böttcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Schumacher K (2006) Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9:595–600

    Article  CAS  PubMed  Google Scholar 

  • Schumacher K, Krebs M (2010) The V-ATPase: small cargo, large effects. Curr Opin Plant Biol 13:724–730

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+- pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4:718–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith FA, Raven JA (1976) H+ transport and regulation of cell pH. In: Lüttge U, Pitman MG (eds) Encyclopedia of plant physiology. New series, vol 2 part A Cells. Springer, Berlin, pp 317–346

    Google Scholar 

  • Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30:289–311

    Article  CAS  Google Scholar 

  • Stewart PA (1978) Independent and dependent variables of acid-base control. Respir Physiol 33:9–26

    Article  CAS  PubMed  Google Scholar 

  • Stoimenova M, Libourel IGL, Ratcliffe RG, Kaiser WM (2003) The role of nitrate reduction in the anoxic metabolism of roots. II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity. Plant Soil 253:155–167

    Article  CAS  Google Scholar 

  • Subbaiah CC, Zhang JK, Sachs MM (1994) Involvement of intracellular calcium in anaerobic gene expression and survival in maize seedlings. Plant Physiol 105:369–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Subbaiah CC, Buch DS, Sachs MM (1998) Mitochondrial contribution to anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Summers JE, Jackson MB (1994) Anaerobic conditions strongly promote extension by stems of overwintering tubers of Potamogeton pectinatus L. J Exp Bot 45:1309–1318

    Article  Google Scholar 

  • Summers JE, Raticliffe RG, Jackson MB (2000) Anoxia tolerance in the aquatic monocot Potamogeton pectinatus: absence of oxygen stimulates elongation in association with an unusually large Pasteur effect. J Exp Bot 51:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Annu Rev Plant Physiol 36:175–208

    Article  CAS  Google Scholar 

  • Sze H, Li X, Palmtren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D-T, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H (1972) Respiratory activity in rice seedlings germinated under strictly anaerobic conditions. Bot Mag Tokyo 85:207–218

    Article  CAS  Google Scholar 

  • Vartapetian BB, Sachs MM, Fagerstedt KV (2008) Plant anerobic stress. II. Strategy of avoidance of anaerobiosis and other aspects of plant life under hypoxia and anoxia. Plant Stress 2:1–19

    Google Scholar 

  • Xia J-H, Roberts JKM (1994) Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment. Plant Physiol 105:651–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia J-H, Roberts JKM (1996) Regulation of H+ extrusion and cytoplasmic pH in maize root tips acclimated to a low-oxygen environment. Plant Physiol 111:227–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia J-H, Saglio PH (1992) Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia. Plant Physiol 100:40–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia J-H, Saglio P, Roberts JKM (1995) Nucleotide levels do not critically determine survival of maize root tips acclimated to a low-oxygen environment. Plant Physiol 108:589–595

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Professor R. George Ratcliffe, Oxford University, Professor Timothy D. Colmer, and Dr. Hank Greenway, The University of Western Australia, for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiharu Ishizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ishizawa, K. (2014). Intracellular pH Regulation of Plant Cells Under Anaerobic Conditions. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_4

Download citation

Publish with us

Policies and ethics