Skip to main content

Biogenesis of Adventitious Roots and Their Involvement in the Adaptation to Oxygen Limitations

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

Adventitious root formation is an adaptive response that contributes to flooding tolerance. Formation of adventitious roots is controlled by auxin and was shown to depend on auxin synthesis, transport, and signaling. Preexisting and newly formed adventitious root primordia emerge upon soil waterlogging or submergence to replace the primary root system which becomes easily dysfunctional in oxygen-poor soil or flood waters. Adventitious roots reduce the distance for oxygen and nutrient supply from the shoot. Formation of aerenchyma and of a barrier to radial oxygen loss support root oxygenation of adventitious roots. In semiaquatic species such as rice, adventitious root growth is induced by ethylene, which rapidly accumulates in submerged tissues. Gibberellic acid (GA) promotes ethylene-induced root growth whereas abscisic acid is strongly inhibitory such that an altered hormone homeostasis with elevated ethylene and GA and lowered ABA levels favors root growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. doi:10.1111/j.1365-3040.2012.02513.x

    PubMed  Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration, and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 86:687–703

    Article  Google Scholar 

  • Azuma T, Hirano T, Deki Y, Uchida N, Yasuda T, Yamaguchi T (1995) Involvement of the decrease in levels of abscisic acid in the internodal elongation of submerged floating rice. J Plant Physiol 146:323–328

    Article  CAS  Google Scholar 

  • Ballester A, San-José MC, Vidal N, Fernández-Lorenzo JL, Vieitez AM (1999) Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature plants of chestnut. Ann Bot 83:619–629

    Article  CAS  Google Scholar 

  • Barrett-Lennard EG, Leighton PD, Buwalda F, Gibbs J, Armstrong W, Thomson CJ, Greenway H (1988) Effects of growing wheat in hypoxic nutrient solution and of subsequent transfer to aerated solutions. I. Growth and carbohydrate status of shoots and roots. Aust J Plant Physiol 15:585–598

    Article  CAS  Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70

    CAS  PubMed  Google Scholar 

  • Bleecker AB, Schuette JL, Kende H (1986) Anatomical analysis of growth and development patterns in the internode of deepwater rice. Planta 169:490–497

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calvo-Polanco M, Señorans J, Zwiazek JJ (2012) Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. BMC Plant Biol. doi:10.1186/1471-2229-12-99

    PubMed Central  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  CAS  PubMed  Google Scholar 

  • Coudert Y, Bès M, Le TV, Pré M, Guiderdoni E, Gantet P (2011) Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice. BMC Genomics 12:387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C (1988) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611

    Article  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldman KA, Benfey PN (1986) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of Arabidopsis root. Cell 86:423–433

    Article  Google Scholar 

  • Díaz-Sala C, Hutchison KW, Goldfarb B, Greenwood MS (1996) Maturation-related loss in rooting competence by stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481–490

    Article  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153:217–224

    Article  CAS  PubMed  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30:875–889

    Article  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Pacurar DI, Novák O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He CJ, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signalling. Cell 101:555–567

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Park WJ, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Husbands A, Bell EM, Shuai B, Smith HM, Springer PS (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 35:6663–6671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchison KW, Singer PB, McInnis S, Diaz-Sala C, Greenwood MS (1999) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol 120:827–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethylene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol 118:49–62

    Article  CAS  Google Scholar 

  • Kamiya N, Itoh JI, Morikami A, Nagato Y, Matsuoka M (2003) The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant J 36:45–54

    Article  CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Sugiyama M (2006) A novel plant-specific family gene, ROOT PRIMORDIUM DEFECTIVE 1, is required for the maintenance of active cell proliferation. Plant Physiol 140:591–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM (2012) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Jung JW, Lim C, Lee M, Kim B, Kim M, Bruce WB, Benfey PN (2005) Conservation and diversification of SCARECROW in maize. Plant Mol Biol 59:619–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  Google Scholar 

  • Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19:1110–1119

    Article  CAS  PubMed  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol 119:21–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S, Mairhofer S, Whitworth M, Wang J, Ljung K, Marchant A, Sandberg G, Holdsworth MJ, Palme K, Pridmore T, Mooney S, Bennett MJ (2011) Short-root regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol 155:384–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    CAS  PubMed  Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci U S A 97:942–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mustroph A, Zanetti ME, Jang CJ, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106:18843–18848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signalling. Planta 224:133–144

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Cuin T, Shabala L, Zhou M, Mendham N, Shabala S (2007) Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol 145:266–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paolillo DJ Jr, Bassuk NL (2005) On the occurrence of adventitious branch roots on root axes of trees. Am J Bot 92:802–809

    Article  PubMed  Google Scholar 

  • Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purnobasuki H, Suzuki M (2004) Aerenchyma formation and porosity in root of a mangrove plant, Sonneratia alba (Lythraceae). J Plant Res 117:465–472

    Article  PubMed  Google Scholar 

  • Ramírez-Carvajal GA, Morse AM, Dervinis C, Davis JM (2009) The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol 150:759–771

    Article  PubMed Central  PubMed  Google Scholar 

  • Ranathunge K, Lin J, Steudle E, Schreiber L (2011) Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ 34:1223–1240

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Kende H (1983) How does deep water rice solve its aeration problem. Plant Physiol 72:447–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ridge RW, Sack FD (1992) Cortical and cap sedimentation in gravitropic Equisetum roots. Am J Bot 79:328–334

    Article  CAS  PubMed  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C, Vielba JM, Ferro E, Covelo G, Solé A, Abarca D, de Mier BS, Díaz-Sala C (2007) Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol 27:1459–1470

    Article  PubMed  Google Scholar 

  • Sánchez MC, Vieitez AM (1991) In vitro morphogenetic competence of basal sprouts and crown branches of mature trees. Tree Physiol 8:59–70

    Article  PubMed  Google Scholar 

  • Sassa N, Matsushita Y, Nakamura T, Nyunoya H (2001) The molecular characterization and in situ expression pattern of pea SCARECROW gene. Plant Cell Physiol 42:385–394

    Article  CAS  PubMed  Google Scholar 

  • Schussler EE, Longstreth DJ (1996) Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). Am J Bot 83:1266–1273

    Article  Google Scholar 

  • Shimamura S, Yoshida S, Mochizuki T (2007) Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann Bot 100:1431–1439

    Article  PubMed  Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    Article  CAS  PubMed  Google Scholar 

  • Shuai B, Reynaga-Peña CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solé A, Sánchez C, Vielba JM, Valladares S, Abarca D, Díaz-Sala C (2008) Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiol 28:1629–1639

    Article  PubMed  Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Kovalev A, Gorb SN, Sauter M (2012) Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. Plant Cell. http://www.plantcell.org/cgi/doi/10.1105/tpc.112.101790

  • Steffens B, Sauter M (2005) Epidermal cell death in rice (Oryza sativa L.) is regulated by ethylene, gibberellin and abscisic acid. Plant Physiol 139:713–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612

    Article  CAS  PubMed  Google Scholar 

  • Suge H (1985) Ethylene and gibberellin: regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol 26:607–614

    CAS  Google Scholar 

  • Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51:123–131

    Article  CAS  PubMed  Google Scholar 

  • Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659

    Article  CAS  PubMed  Google Scholar 

  • Thomson CJ, Colmer TD, Watkins ELJ, Greenway H (1992) Tolerance of wheat (Triticum aestivum cvs Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol 120:335–344

    Article  Google Scholar 

  • Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532

    Article  CAS  PubMed  Google Scholar 

  • Trought MCT, Drew MC (1980) The development of waterlogging damage in young wheat plants in anaerobic solution cultures. J Exp Bot 31:1573–1585

    Article  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC (2001) A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol 125:955–968

    Article  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  CAS  PubMed  Google Scholar 

  • Webb T, Armstrong W (1983) The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J Exp Bot 34:579–603

    Article  CAS  Google Scholar 

  • Webb J, Jackson MB (1986) A transmission and cryo-scanning electron microscopy study of the formation of aerenchyma (cortical gas-filled space) in adventitious roots of rice (Oryza sativa). J Exp Bot 37:832–841

    Article  Google Scholar 

  • Wiengweera A, Greenway H, Thomson CJ (1997) The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann Bot 80:115–123

    Article  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarembinski TI, Theologis A (1997) Expression characteristics of Os-ACS1 and Os-ACS2, two members of the 1-aminocyclopropane-1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol Biol 33:71–77

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianka Steffens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Sauter, M., Steffens, B. (2014). Biogenesis of Adventitious Roots and Their Involvement in the Adaptation to Oxygen Limitations. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_15

Download citation

Publish with us

Policies and ethics