Skip to main content

Closing the Circle: Stem Cell Rejuvenation and Longevity

  • Chapter
Stem Cell Aging: Mechanisms, Consequences, Rejuvenation

Abstract

Many organs with high cell turnover (e.g., intestine and blood as well as the germ line) are composed of short-lived cells that require continuous replenishment by stem cells (Potten and Morris J Cell Sci Suppl 10:45–62, 1988; Morrison et al. Annu Rev Cell Dev Biol 11: 35–71, 1995; Fuchs et al. Cell 100(1):143–155, 2000; Tani et al. Proc Natl Acad Sci U S A 97(20):10960–10965, 2000; Stappenbeck et al. Proc Natl Acad Sci U S A 100(3):1004–1009, 2003). Aging results in the inability of these tissues to maintain homeostasis. A number of theories have been proposed regarding the cellular and molecular mechanisms regulating aging, and genetic, behavioral, and environmental factors may all be involved. Declines in the functional capacity of both somatic organ cells but also adult stem cells impair tissue maintenance and regeneration during aging, which may limit lifespan and thus longevity. Tissues that depend on stem cell activity for long-term tissues maintenance of course will be most vulnerable to stem cell aging. High incidences of anemia, impaired wound healing, and intestinal dysfunction in geriatric patients indicate that such alteration can affect the health status of aging humans (de Craen et al. BMJ 327(7407):131–132, 2003). In addition, an age-dependent impairment of stem cell function and a reduction in regenerative capacity can limit stress reactions in response to diseases. Along these lines, “old age” represents a major risk factor for the evolution of, for example, liver cirrhosis as a consequence of chronic hepatitis (Poynard et al. J Hepatol 38(3):257–265, 2003) or various forms of leukemia. Vas et al. PLoS One 7(8):e42080, 2012).

Stem cells are defined by their long-term self-renewal as well as multi-lineage differentiation ability, which a priori should lead to “immortal stem cells.” Consequently, stem cells were initially thought to be endowed with unlimited self-renewal capacity and thus exempt from aging. However, as it has also been reported in this book, a measurable and successive age-dependent decline in stem cell activity from adulthood to old age exists, ranging from yeast to worms to flies to mice and human beings and include prominent stem cell populations like germ line stem cells, hematopoietic, intestinal, skin, retinoid, and muscle stem cells. Aging of stem cell thus (1) exists and (2) clearly contributes to tissue aging and (3) limits by this means healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade LN, Nathanson JL, Yeo GW, Menck CF, Muotri AR (2012) Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet 21(17):3825–3834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartke A (2008) Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings. Aging Cell 7(3):285–290

    Article  CAS  PubMed  Google Scholar 

  • Beckmann J, Scheitza S, Wernet P, Fischer JC, Giebel B (2007) Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins. Blood 109(12):5494–5501

    Article  CAS  PubMed  Google Scholar 

  • Beerman I, Maloney WJ, Weissmann IL, Rossi DJ (2010) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22(4):500–506

    Article  CAS  PubMed  Google Scholar 

  • Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15(1):37–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell DR, Van Zant G (2004) Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene 23(43):7290–7296

    Article  CAS  PubMed  Google Scholar 

  • Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448(7157):1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3(4):442–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6(10), e1001159

    Article  PubMed Central  PubMed  Google Scholar 

  • Blagosklonny MV (2010) Rapamycin and quasi-programmed aging: four years later. Cell Cycle 9(10):1859–1862

    Article  CAS  PubMed  Google Scholar 

  • Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E (2014) Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY) 6(6):481–495

    Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    Article  CAS  PubMed  Google Scholar 

  • Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella A, Garza D, Vidal M, Ge H, Morimoto RI (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9(3):1135–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell C, Risueno RM, Salati S, Guezguez B, Bhatia M (2008) Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr Opin Hematol 15(4):319–325

    Article  CAS  PubMed  Google Scholar 

  • Cerletti M, Jang YC, Finley LW, Haigis MC, Wagers AJ (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10(5):515–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8), e201

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2000) Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 28(4):442–450

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2003) Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol 31(11):1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng J, Turkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456(7222):599–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ, Longo VD (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14(6):810–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764

    Article  CAS  PubMed  Google Scholar 

  • de Craen AJ, Gussekloo J, Teng YK, Macfarlane PW, Westendorp RG (2003) Prevalence of five common clinical abnormalities in very elderly people: population based cross sectional study. BMJ 327(7407):131–132

    Article  PubMed Central  PubMed  Google Scholar 

  • Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298(5594):830–834

    Article  CAS  PubMed  Google Scholar 

  • Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR (2008) Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell 7(6):805–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, Alvarez S, Diolaiti ME, Ugarte F, Forsberg EC, Le Beau MM, Stohr BA, Mendez J, Morrison CG, Passegue E (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513):198–202

    Article  CAS  PubMed  Google Scholar 

  • Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Florian MC, Nattamai KJ, Dorr K, Marka G, Uberle B, Vas V, Eckl C, Andra I, Schiemann M, Oostendorp RA, Scharffetter-Kochanek K, Kestler HA, Zheng Y, Geiger H (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana L, Kennedy BK, Longo VD, Seals D, Melov S (2014) Medical research: treat ageing. Nature 511(7510):405–407

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100(1):143–155

    Article  CAS  PubMed  Google Scholar 

  • Geiger H, Van Zant G (2002) The aging of lympho-hematopoietic stem cells. Nat Immunol 3(4):329–333

    Article  CAS  PubMed  Google Scholar 

  • Geiger H, Rennebeck G, Van Zant G (2005) Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci U S A 102(14):5102–5107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger H, Koehler A, Gunzer M (2007) Stem cells, aging, niche, adhesion and Cdc42: a model for changes in cell-cell interactions and hematopoietic stem cell aging. Cell Cycle 6(8):884–887

    Article  CAS  PubMed  Google Scholar 

  • Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13(5):376–389

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Karpac J, Tran SL, Jasper H (2014) PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156(1–2):109–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, Depinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16(INK4a). Nature 443(7110):421–426

    CAS  PubMed  Google Scholar 

  • Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A, Rudolph KL (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13(6):742–747

    Article  CAS  PubMed  Google Scholar 

  • Kamminga LM, de Haan G (2006) Cellular memory and hematopoietic stem cell aging. Stem Cells 24:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohler A, Schmithorst V, Filippi MD, Ryan MA, Daria D, Gunzer M, Geiger H (2009) Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114(2):290–298

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123(3):980–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106(4):1479–1487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Li L, Zou P, Wang J, Shao L, Zhou D, Liu L (2014) Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 97(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Mair W, McLeod CJ, Wang L, Jones DL (2010) Dietary restriction enhances germline stem cell maintenance. Aging Cell 9(5):916–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayack SR, Shadrach JL, Kim FS, Wagers AJ (2010) Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 463(7280):495–500

    Article  CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Tevy MF, Borghesan M, Delle Vergini MR, Vinciguerra M (2014) Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 50:137–148

    Article  PubMed  Google Scholar 

  • Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347(6228):1374–1377

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells [see comments]. Nat Med 2(9):1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Mueller MM, Castells-Roca L, Babu V, Ermolaeva MA, Muller RU, Frommolt P, Williams AB, Greiss S, Schneider JI, Benzing T, Schermer B, Schumacher B (2014) DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage. Nat Cell Biol 16(12):1168–1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, Afonso LC, Aguilar-Pimentel JA, Becker L, Garrett L, Hans W, Hettich MM, Holtmeier R, Holter SM, Moreth K, Prehn C, Puk O, Racz I, Rathkolb B, Rozman J, Naton B, Ordemann R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Ehninger G, Graw J, Hofler H, Klingenspor M, Klopstock T, Ollert M, Stypmann J, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Ehninger D (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123(8):3272–3291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GT, Meinecke P, Kleijer WJ, Vijg J, Jaspers NG, Hoeijmakers JH (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444(7122):1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Norddahl GL, Pronk CJ, Wahlestedt M, Sten G, Nygren JM, Ugale A, Sigvardsson M, Bryder D (2011) Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 8(5):499–510

    Article  CAS  PubMed  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439(7075):470–474

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed Central  PubMed  Google Scholar 

  • Potten CS, Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci Suppl 10:45–62

    Article  CAS  PubMed  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poynard T, Mathurin P, Lai CL, Guyader D, Poupon R, Tainturier MH, Myers RP, Muntenau M, Ratziu V, Manns M, Vogel A, Capron F, Chedid A, Bedossa P, PANFIBROSIS Group (2003) A comparison of fibrosis progression in chronic liver diseases. J Hepatol 38(3):257–265

    Article  CAS  PubMed  Google Scholar 

  • Rajendran L, Beckmann J, Magenau A, Boneberg EM, Gaus K, Viola A, Giebel B, Illges H (2009) Flotillins are involved in the polarization of primitive and mature hematopoietic cells. PLoS One 4(12), e8290

    Article  PubMed Central  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441(7097):1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, Wlaschek M (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5(5):379–389

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–729

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696

    Article  CAS  PubMed  Google Scholar 

  • Salat D, Liefke R, Wiedenmann J, Borggrefe T, Oswald F (2008) ETO, but not leukemogenic fusion protein AML1/ETO, augments RBP-Jkappa/SHARP-mediated repression of notch target genes. Mol Cell Biol 28(10):3502–3512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaetzlein S, Kodandaramireddy NR, Ju Z, Lechel A, Stepczynska A, Lilli DR, Clark AB, Rudolph C, Kuhnel F, Wei K, Schlegelberger B, Schirmacher P, Kunkel TA, Greenberg RA, Edelmann W, Rudolph KL (2007) Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130(5):863–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snoeck HW (2005) Quantitative trait analysis in the investigation of function and aging of hematopoietic stem cells. Methods Mol Med 105:47–62

    CAS  PubMed  Google Scholar 

  • Stappenbeck TS, Mills JC, Gordon JI (2003) Molecular features of adult mouse small intestinal epithelial progenitors. Proc Natl Acad Sci U S A 100(3):1004–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454(7204):651–655

    Article  CAS  PubMed  Google Scholar 

  • Tani H, Morris RJ, Kaur P (2000) Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 97(20):10960–10965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vas V, Senger K, Dorr K, Niebel A, Geiger H (2012) Aging of the microenvironment influences clonality in hematopoiesis. PLoS One 7(8), e42080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vilchez D, Simic MS, Dillin A (2014) Proteostasis and aging of stem cells. Trends Cell Biol 24(3):161–170

    Article  CAS  PubMed  Google Scholar 

  • Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie XS, Longo FM, Wyss-Coray T (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20(6):659–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wahlestedt M, Norddahl GL, Sten G, Ugale A, Frisk MA, Mattsson R, Deierborg T, Sigvardsson M, Bryder D (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121(21):4257–4264

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Geiger H, Rudolph KL (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23(4):532–536

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Karpac J, Jasper H (2014) Promoting longevity by maintaining metabolic and proliferative homeostasis. J Exp Biol 217(Pt 1):109–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegue E (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waterstrat A, Oakley E, Miller A, Swiderski C, Liang Y, Van Zant G (2008) Mechanisms of stem cell aging. In: Rudolph KL (ed) Telomeres and telomerase in ageing, disease and cancer. Springer Publishing, Berlin, Germany, pp 111–140

    Google Scholar 

  • Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, Jackson TL, Gaiano N, Oliver T, Reya T (2007) Imaging hematopoietic precursor division in real time. Cell Stem Cell 1(5):541–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xing Z, Ryan MA, Daria D, Nattamai KJ, Van Zant G, Wang L, Zheng Y, Geiger H (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108(7):2190–2197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaglia T, Milan G, Ruhs A, Franzoso M, Bertaggia E, Pianca N, Carpi A, Carullo P, Pesce P, Sacerdoti D, Sarais C, Catalucci D, Kruger M, Mongillo M, Sandri M (2014) Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. J Clin Invest 124(6):2410–2424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Deutsche Forschungsgemeinschaft (SFB 1074 and 1149) and the GRK 1079 CEMMA (Deutsche Forschungsgemeinschaft), the BMBF-funded Program SyStaR, and the Exzellenz-Programm of the Baden-Württemberg-Stiftung and from the National Institute of Health, HL076604, DK077762, and AG040118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carolina Florian PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Florian, M.C., Geiger, H. (2015). Closing the Circle: Stem Cell Rejuvenation and Longevity. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_16

Download citation

Publish with us

Policies and ethics