Skip to main content
  • 1148 Accesses

Abstract

The retina is the main light-sensing layer of the eye. Degenerations of the retinal cells are leading causes of blindness worldwide. This cellular loss in the mammalian retina is not followed by any appreciable cellular regeneration. In this chapter, we will cover various age-associated retinal degenerations. We will provide evidence of retinal regeneration in nonmammalian systems as well as attempts to rejuvenate stem cell phenotype in mammalian retinas. We will finish with recent work using pluripotent stem cells, both embryonic stem cells as well as induced pluripotent stem cells, to generate new retinal cells for replacement purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270(2):517–521

    CAS  PubMed  Google Scholar 

  • Akita J et al (2002) Neuronal differentiation of adult rat hippocampus-derived neural stem cells transplanted into embryonic rat explanted retinas with retinoic acid pretreatment. Brain Res 954(2):286–293

    CAS  PubMed  Google Scholar 

  • Allingham RR, Liu Y, Rhee DJ (2009) The genetics of primary open-angle glaucoma: a review. Exp Eye Res 88(4):837–844

    CAS  PubMed  Google Scholar 

  • Andreoli MT et al (2009) Comprehensive analysis of complement factor H and LOC387715/ARMS2/HTRA1 variants with respect to phenotype in advanced age-related macular degeneration. Am J Ophthalmol 148(6):869–874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asami M et al (2007) Multipotent cells from mammalian iris pigment epithelium. Dev Biol 304(1):433–446

    CAS  PubMed  Google Scholar 

  • Azuma N et al (2005) Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor. Hum Mol Genet 14(8):1059–1068

    CAS  PubMed  Google Scholar 

  • Barber AC et al (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardos RL et al (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27(26):7028–7040

    CAS  PubMed  Google Scholar 

  • Bharti K et al (2012) A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLoS Genet 8(7), e1002757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boon CJ et al (2008) Basal laminar drusen caused by compound heterozygous variants in the CFH gene. Am J Hum Genet 82(2):516–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brzezinski JA 4th et al (2011) Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138(16):3519–3531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchholz DE et al (2013) Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med 2(5):384–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calkins DJ (2012) Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 31(6):702–719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron DA et al (2005) Gene expression profiles of intact and regenerating zebrafish retina. Mol Vis 11:775–791

    CAS  PubMed  Google Scholar 

  • Chacko DM et al (2000) Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun 268(3):842–846

    CAS  PubMed  Google Scholar 

  • Chang ML et al (2007) Reactive changes of retinal astrocytes and Müller glial cells in kainate-induced neuroexcitotoxicity. J Anat 210(1):54–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen B et al (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5(2):100–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chistiakov DA (2011) Diabetic retinopathy: pathogenic mechanisms and current treatments. Diabetes Metab Syndr 5(3):165–172

    PubMed  Google Scholar 

  • Cicero SA et al (2009) Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci U S A 106(16):6685–6690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Close JL et al (2006) Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia 54(2):94–104

    PubMed  Google Scholar 

  • Coffey PJ, Lund RD, Rawlins JN (1989) Retinal transplant-mediated learning in a conditioned suppression task in rats. Proc Natl Acad Sci U S A 86(18):7248–7249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coles BL et al (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A 101(44):15772–15777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coulombre JL, Coulombre AJ (1965) Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol 12(1):79–92

    CAS  PubMed  Google Scholar 

  • Das AV et al (2004) Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273(1):87–105

    CAS  PubMed  Google Scholar 

  • Das AV et al (2006a) Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling. Biochem Biophys Res Commun 339(2):708–716

    CAS  PubMed  Google Scholar 

  • Das AV et al (2006b) Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299(1):283–302

    CAS  PubMed  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51(6):987–1000

    CAS  PubMed  Google Scholar 

  • Dayer AG et al (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168(3):415–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Marzo A, Aruta C, Marigo V (2010) PEDF promotes retinal neurosphere formation and expansion in vitro. Adv Exp Med Biol 664:621–630

    PubMed  Google Scholar 

  • del Cerro M et al (1991) Intraretinal grafting restores visual function in light-blinded rats. Neuroreport 2(9):529–532

    PubMed  Google Scholar 

  • Del Debbio CB et al (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Müller cells in adult mammalian retina. PLoS One 5(8), e12425

    PubMed Central  PubMed  Google Scholar 

  • Del Rio-Tsonis K, Tsonis PA (2003) Eye regeneration at the molecular age. Dev Dyn 226(2):211–224

    PubMed  Google Scholar 

  • Diniz B et al (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells – improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54:5087–5096

    PubMed Central  PubMed  Google Scholar 

  • Faillace MP, Julian D, Korenbrot JI (2002) Mitotic activation of proliferative cells in the inner nuclear layer of the mature fish retina: regulatory signals and molecular markers. J Comp Neurol 451(2):127–141

    CAS  PubMed  Google Scholar 

  • Fausett BV, Goldman D (2006) A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J Neurosci 26(23):6303–6313

    CAS  PubMed  Google Scholar 

  • Fausett BV, Gumerson JD, Goldman D (2008) The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J Neurosci 28(5):1109–1117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fimbel SM et al (2007) Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci 27(7):1712–1724

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2000) Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol 220(2):197–210

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4(3):247–252

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2002) Exogenous growth factors stimulate the regeneration of ganglion cells in the chicken retina. Dev Biol 251(2):367–379

    CAS  PubMed  Google Scholar 

  • Fischer AJ, Reh TA (2003) Potential of Müller glia to become neurogenic retinal progenitor cells. Glia 43(1):70–76

    PubMed  Google Scholar 

  • Fischer AJ et al (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 22(21):9387–9398

    CAS  PubMed  Google Scholar 

  • Gorin MB (2012) Genetic insights into age-related macular degeneration: controversies addressing risk, causality, and therapeutics. Mol Aspects Med 33(4):467–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grozdanic SD et al (2006) Morphological integration and functional assessment of transplanted neural progenitor cells in healthy and acute ischemic rat eyes. Exp Eye Res 82(4):597–607

    CAS  PubMed  Google Scholar 

  • Guo Y et al (2003) Engraftment of adult neural progenitor cells transplanted to rat retina injured by transient ischemia. Invest Ophthalmol Vis Sci 44(7):3194–3201

    PubMed  Google Scholar 

  • Gust J, Reh TA (2011) Adult donor rod photoreceptors integrate into the mature mouse retina. Invest Ophthalmol Vis Sci 52:5266–5272

    PubMed Central  PubMed  Google Scholar 

  • Hambright D et al (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haruta M et al (2004) In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci 45(3):1020–1025

    PubMed  Google Scholar 

  • Hayes S et al (2007) Notch signaling regulates regeneration in the avian retina. Dev Biol 312(1):300–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haynes T, Del Rio-Tsonis K (2004) Retina repair, stem cells and beyond. Curr Neurovasc Res 1(3):231–239

    PubMed  Google Scholar 

  • Haynes T et al (2007) BMP signaling mediates stem/progenitor cell-induced retina regeneration. Proc Natl Acad Sci U S A 104(51):20380–20385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hitchcock P et al (2004) Persistent and injury-induced neurogenesis in the vertebrate retina. Prog Retin Eye Res 23(2):183–194

    PubMed  Google Scholar 

  • Hollyfield JG (1968) Differential addition of cells to the retina in Rana pipiens tadpoles. Dev Biol 18(2):163–179

    CAS  PubMed  Google Scholar 

  • Hu Y et al (2012) A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res 48(4):186–191

    PubMed  Google Scholar 

  • Idelson M et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5(4):396–408

    CAS  PubMed  Google Scholar 

  • Ikeda H et al (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 102(32):11331–11336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue T et al (2006) Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin. Stem Cells 24(1):95–104

    CAS  PubMed  Google Scholar 

  • Inoue T et al (2010) Maximizing functional photoreceptor differentiation from adult human retinal stem cells. Stem Cells 28(3):489–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 33(4):399–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johns PR (1982) Formation of photoreceptors in larval and adult goldfish. J Neurosci 2(2):178–198

    CAS  PubMed  Google Scholar 

  • Julian D, Ennis K, Korenbrot JI (1998) Birth and fate of proliferative cells in the inner nuclear layer of the mature fish retina. J Comp Neurol 394(3):271–282

    CAS  PubMed  Google Scholar 

  • Kaneko H et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karl MO et al (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A 105(49):19508–19513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kassen SC et al (2007) Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev Neurobiol 67(8):1009–1031

    CAS  PubMed  Google Scholar 

  • Kassen SC et al (2009) CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. Exp Eye Res 88(6):1051–1064

    CAS  PubMed  Google Scholar 

  • Khan JC et al (2006) Age related macular degeneration and sun exposure, iris colour, and skin sensitivity to sunlight. Br J Ophthalmol 90(1):29–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klassen H, Lund RD (1990) Retinal graft-mediated pupillary responses in rats: restoration of a reflex function in the mature mammalian brain. J Neurosci 10(2):578–587

    CAS  PubMed  Google Scholar 

  • Kohno R et al (2006) Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation. Brain Res 1093(1):54–70

    CAS  PubMed  Google Scholar 

  • Kubota R et al (2002) A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Brain Res Dev Brain Res 134(1–2):31–41

    CAS  PubMed  Google Scholar 

  • Kurimoto Y et al (2001) Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci Lett 306(1–2):57–60

    CAS  PubMed  Google Scholar 

  • Kwan AS, Wang S, Lund RD (1999) Photoreceptor layer reconstruction in a rodent model of retinal degeneration. Exp Neurol 159(1):21–33

    CAS  PubMed  Google Scholar 

  • Lakowski J et al (2011) Effective transplantation of photoreceptor precursor cells selected via cell surface antigen expression. Stem Cells 29(9):1391–1404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamba DA et al (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103(34):12769–12774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009a) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:1–7

    Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009b) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4(1):73–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin H et al (2011) Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52(9):6308–6314

    CAS  PubMed  Google Scholar 

  • Lu B et al (2002) Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice. Brain Res 943(2):292–300

    CAS  PubMed  Google Scholar 

  • Lu B et al (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27(9):2126–2135

    CAS  PubMed  Google Scholar 

  • Lu B et al (2012) Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices 14(4):659–667

    CAS  PubMed  Google Scholar 

  • Lukiw WJ et al (2012) Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol 3(1):105–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lund RD, Hankin MH (1995) Pathfinding by retinal ganglion cell axons: transplantation studies in genetically and surgically blind mice. J Comp Neurol 356(3):481–489

    CAS  PubMed  Google Scholar 

  • Lund RD et al (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8(3):189–199

    CAS  PubMed  Google Scholar 

  • MacLaren RE et al (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207

    CAS  PubMed  Google Scholar 

  • MacNeil A et al (2007) Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 25(10):2430–2438

    PubMed  Google Scholar 

  • McLoon SC, Lund RD (1980) Specific projections of retina transplanted to rat brain. Exp Brain Res 40(3):273–282

    CAS  PubMed  Google Scholar 

  • McLoon LK, McLoon SC, Lund RD (1981) Cultured embryonic retinae transplanted to rat brain: differentiation and formation of projections to host superior colliculus. Brain Res 226(1–2):15–31

    CAS  PubMed  Google Scholar 

  • Meyer JS et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106(39):16698–16703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuda S et al (2005) Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster. Dev Biol 280(1):122–132

    CAS  PubMed  Google Scholar 

  • Moshiri A, McGuire CR, Reh TA (2005) Sonic hedgehog regulates proliferation of the retinal ciliary marginal zone in posthatch chicks. Dev Dyn 233(1):66–75

    CAS  PubMed  Google Scholar 

  • Nakamura K, Chiba C (2007) Evidence for Notch signaling involvement in retinal regeneration of adult newt. Brain Res 1136(1):28–42

    CAS  PubMed  Google Scholar 

  • Nakano T et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785

    CAS  PubMed  Google Scholar 

  • Nelson CM et al (2013) Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Müller glia proliferation during zebrafish retinal regeneration. J Neurosci 33(15):6524–6539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okada TS (1980) Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation. Curr Top Dev Biol 16:349–380

    CAS  PubMed  Google Scholar 

  • Ooto S et al (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101(37):13654–13659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osakada F et al (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27(15):4210–4219

    CAS  PubMed  Google Scholar 

  • Osakada F et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26(2):215–224

    CAS  PubMed  Google Scholar 

  • Osakada F et al (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122(Pt 17):3169–3179

    CAS  PubMed  Google Scholar 

  • Park CM, Hollenberg MJ (1989) Basic fibroblast growth factor induces retinal regeneration in vivo. Dev Biol 134(1):201–205

    CAS  PubMed  Google Scholar 

  • Phillips MJ et al (2012) Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 53(4):2007–2019

    PubMed Central  PubMed  Google Scholar 

  • Pittack C, Jones M, Reh TA (1991) Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113(2):577–588

    CAS  PubMed  Google Scholar 

  • Pollak J et al (2013) ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development 140(12):2619–2631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu G et al (2005) Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Exp Eye Res 80(4):515–525

    CAS  PubMed  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12(11):1101–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandran R, Zhao XF, Goldman D (2011) Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci U S A 108(38):15858–15863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond PA et al (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36

    PubMed Central  PubMed  Google Scholar 

  • Reh TA, Nagy T, Gretton H (1987) Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330(6143):68–71

    CAS  PubMed  Google Scholar 

  • Richard-Parpaillon L et al (2002) The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev Biol 244(2):407–417

    CAS  PubMed  Google Scholar 

  • Sahel JA, Albert DM, Lessell S (1990) Proliferation of retinal glia and excitatory amino acids. Ophtalmologie 4(1):13–16

    CAS  PubMed  Google Scholar 

  • Sakaguchi DS, Janick LM, Reh TA (1997) Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev Dyn 209(4):387–398

    CAS  PubMed  Google Scholar 

  • Sakami S et al (2005) Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina. Brain Res Dev Brain Res 155(1):49–59

    CAS  PubMed  Google Scholar 

  • Sakami S, Etter P, Reh TA (2008) Activin signaling limits the competence for retinal regeneration from the pigmented epithelium. Mech Dev 125(1–2):106–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanvitale CE et al (2013) A new class of small molecule inhibitor of BMP signaling. PLoS One 8(4), e62721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz SD et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    CAS  PubMed  Google Scholar 

  • Seiler MJ, Aramant RB (1998) Intact sheets of fetal retina transplanted to restore damaged rat retinas. Invest Ophthalmol Vis Sci 39(11):2121–2131

    CAS  PubMed  Google Scholar 

  • Simo R (2011) Neurodegeneration as an early event in diabetic retinopathy. Endocrinol Nutr 58(5):211–213

    PubMed  Google Scholar 

  • Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5):595–606

    CAS  PubMed  Google Scholar 

  • Sridhar A, Steward MM, Meyer JS (2013) Nonxenogeneic growth and retinal differentiation of human induced pluripotent stem cells. Stem Cells Transl Med 2:255–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stone L (1950a) The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes. J Exp Zool 113:9–31

    Google Scholar 

  • Stone LS (1950b) Neural retina degeneration followed by regeneration from surviving retinal pigment cells in grafted adult salamander eyes. Anat Rec 106(1):89–109

    CAS  PubMed  Google Scholar 

  • Stone LS, Steinitz H (1957) Regeneration of neural retina and lens from retina pigment cell grafts in adult newts. J Exp Zool 135(2):301–317

    CAS  PubMed  Google Scholar 

  • Straznicky K, Gaze RM (1971) The growth of the retina in Xenopus laevis: an autoradiographic study. J Embryol Exp Morphol 26(1):67–79

    CAS  PubMed  Google Scholar 

  • Sugino IK et al (2011) Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci 52(8):4979–4997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun G et al (2006) Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 289(1):243–252

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  PubMed  Google Scholar 

  • Takahashi M et al (1998) Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 12(6):340–348

    CAS  PubMed  Google Scholar 

  • Takahashi K et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    CAS  PubMed  Google Scholar 

  • Tansley K (1946) The development of the rat eye in graft. J Exp Biol 22:221–224

    CAS  PubMed  Google Scholar 

  • Tarallo V et al (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847–859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thakkinstian A et al (2006) Association between apolipoprotein E polymorphisms and age-related macular degeneration: a HuGE review and meta-analysis. Am J Epidemiol 164(9):813–822

    PubMed  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  PubMed  Google Scholar 

  • Thummel R et al (2008) Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev Neurobiol 68(3):392–408

    PubMed Central  PubMed  Google Scholar 

  • Tropepe V et al (2000) Retinal stem cells in the adult mammalian eye. Science 287(5460):2032–2036

    CAS  PubMed  Google Scholar 

  • Tucker BA et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6(4), e18992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tucker BA et al (2013) Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl Med 2(1):16–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vihtelic TS et al (2006) Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp Eye Res 82(4):558–575

    CAS  PubMed  Google Scholar 

  • Vugler A et al (2008) Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 214(2):347–361

    CAS  PubMed  Google Scholar 

  • Wan J et al (2007) Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363(2):347–354

    CAS  PubMed  Google Scholar 

  • Wan J et al (2008) Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vision Res 48(2):223–234

    CAS  PubMed  Google Scholar 

  • Wan J, Ramachandran R, Goldman D (2012) HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev Cell 22(2):334–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239(4844):1142–1145

    CAS  PubMed  Google Scholar 

  • Wu DM et al (2001) Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina. Invest Ophthalmol Vis Sci 42(9):2115–2124

    CAS  PubMed  Google Scholar 

  • Xu S et al (2007) The proliferation and expansion of retinal stem cells require functional Pax6. Dev Biol 304(2):713–721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young MJ et al (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16(3):197–205

    CAS  PubMed  Google Scholar 

  • Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    CAS  PubMed  Google Scholar 

  • Yurco P, Cameron DA (2005) Responses of Müller glia to retinal injury in adult zebrafish. Vision Res 45(8):991–1002

    PubMed  Google Scholar 

  • Yurco P, Cameron DA (2007) Cellular correlates of proneural and Notch-delta gene expression in the regenerating zebrafish retina. Vis Neurosci 24(3):437–443

    PubMed  Google Scholar 

  • Zhao X et al (2005) Growth factor-responsive progenitors in the postnatal mammalian retina. Dev Dyn 232(2):349–358

    CAS  PubMed  Google Scholar 

  • Zhu Y et al (2013) Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One 8(1), e54552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber ME et al (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130(21):5155–5167

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak A. Lamba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Gutierrez, M., Lamba, D.A. (2015). Retinal Repair Using Stem Cells. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_15

Download citation

Publish with us

Policies and ethics