Skip to main content

Abstract

Adult hematopoietic stem cells (HSCs) reside in the bone marrow (BM) and provide the basis to fulfill the hematopoietic needs of an organism. Their properties of self-renewal and multilineage differentiation are controlled by direct interaction with a specific microenvironment – the so-called stem cell ‘niche’. Conceptual advances in our understanding of the composition of the HSC compartment suggest that changes in the BM HSC microenvironment may reflect the aging process. The balance and extent of the effect of intrinsic versus extrinsic (environment) changes during aging on HSC are still under investigation. Growing evidence suggests that the BM HSC niche is very important in the regulation of cellular aging of HSCs. A young HSC niche would act as a protective environment, preventing HSC DNA damage, as well as replicative senescence through protection from radicals and toxic compounds, and prevention/amelioration of aging-associated signaling pathways resulting in epigenetic/genetic modifications, hematopoietic impairments, and cancer predisposition. To what extent the aging of the niche contributes to the “HSC aging” phenotype remains unknown. The analysis of the effect of aging on the activity of these specialized cell “niches” and their molecular products is the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allsopp RC, Morin GB et al (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102(2):517–520

    CAS  PubMed  Google Scholar 

  • Ara T, Tokoyoda K et al (2003) Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19(2):257–267

    CAS  PubMed  Google Scholar 

  • Arai F, Suda T (2007) Regulation of hematopoietic stem cells in the osteoblastic niche. Adv Exp Med Biol 602:61–67

    PubMed  Google Scholar 

  • Avigdor A, Goichberg P et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103(8):2981–2989

    CAS  PubMed  Google Scholar 

  • Baraibar MA, Friguet B (2013) Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging. Exp Gerontol 48(7):620–625

    CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    CAS  PubMed  Google Scholar 

  • Cancelas JA, Koevoet WL et al (2000) Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood 96(2):498–505

    CAS  PubMed  Google Scholar 

  • Cao JJ, Kurimoto P et al (2007) Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J Bone Miner Res 22(8):1271–1279

    CAS  PubMed  Google Scholar 

  • Casanova-Acebes M, Pitaval C et al (2013) Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153(5):1025–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers SM, Shaw CA et al (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8), e201

    PubMed Central  PubMed  Google Scholar 

  • Chitteti BR, Cheng YH et al (2013) Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone 54(1):58–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow A, Lucas D et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Haan G, Gerrits A (2007) Epigenetic control of hematopoietic stem cell aging the case of Ezh2. Ann N Y Acad Sci 1106:233–239

    PubMed  Google Scholar 

  • Dimitroff CJ, Lee JY et al (2001) CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol 153(6):1277–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding L, Saunders TL et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donnini A, Re F et al (2007) Intrinsic and microenvironmental defects are involved in the age-related changes of Lin - c-kit+ hematopoietic progenitor cells. Rejuvenation Res 10(4):459–472

    CAS  PubMed  Google Scholar 

  • Dykstra B, de Haan G (2008) Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 331(1):91–101

    PubMed  Google Scholar 

  • Fehrer C, Brunauer R et al (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6(6):745–757

    CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    CAS  PubMed  Google Scholar 

  • Florian MC, Dorr K et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frenette PS, Pinho S et al (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316

    PubMed  Google Scholar 

  • Geoffroy V, Kneissel M et al (2002) High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol 22(17):6222–6233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Nieto D, Li L et al (2012) Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood 119(22):5144–5154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green CB, Takahashi JS et al (2008) The meter of metabolism. Cell 134(5):728–742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenbaum A, Hsu YM et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanoun M, Frenette PS (2013) This niche is a maze; an amazing niche. Cell Stem Cell 12(4):391–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa ET, Cancelas JA (2012) Lack of communication rusts and ages stem cells. Cell Cycle 11(17):3149–3150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito K, Hirao A et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451

    CAS  PubMed  Google Scholar 

  • Ju Z, Rudolph KL (2006) Telomeres and telomerase in stem cells during aging and disease. Genome Dyn 1:84–103

    CAS  PubMed  Google Scholar 

  • Ju Z, Jiang H et al (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13(6):742–747

    CAS  PubMed  Google Scholar 

  • Katayama Y, Battista M et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    CAS  PubMed  Google Scholar 

  • Kawai M, Sousa KM et al (2010) The many facets of PPARgamma: novel insights for the skeleton. Am J Physiol Endocrinol Metab 299(1):E3–E9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai M, de Paula FJ et al (2012) New insights into osteoporosis: the bone-fat connection. J Intern Med 272(4):317–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenyon J, Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res 35(22):7557–7565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8(4):290–301

    CAS  PubMed  Google Scholar 

  • Kim M, Moon HB et al (2003) Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci 996:195–208

    PubMed  Google Scholar 

  • Lansdorp PM (2005) Role of telomerase in hematopoietic stem cells. Ann N Y Acad Sci 1044:220–227

    CAS  PubMed  Google Scholar 

  • Larsson J, Ohishi M et al (2008) Nf2/merlin regulates hematopoietic stem cell behavior by altering microenvironmental architecture. Cell Stem Cell 3(2):221–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewinsohn DM, Nagler A et al (1990) Hematopoietic progenitor cell expression of the H-CAM (CD44) homing-associated adhesion molecule. Blood 75(3):589–595

    CAS  PubMed  Google Scholar 

  • Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Jin F et al (2001) Impaired regeneration of the peripheral B cell repertoire from bone marrow following lymphopenia in old mice. Eur J Immunol 31(2):500–505

    CAS  PubMed  Google Scholar 

  • Li Z, Liu C et al (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6(6), e20526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Van Zant G et al (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106(4):1479–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtman MA (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9(4):391–410

    CAS  PubMed  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139

    CAS  PubMed  Google Scholar 

  • Liu H, Fergusson MM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806

    CAS  PubMed  Google Scholar 

  • Massberg S, Schaerli P et al (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendez-Ferrer S, Lucas D et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447

    CAS  PubMed  Google Scholar 

  • Mendez-Ferrer S, Chow A et al (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16(4):235–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendez-Ferrer S, Michurina TV et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meunier P, Aaron J et al (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154

    CAS  PubMed  Google Scholar 

  • Moerman EJ, Teng K et al (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3(6):379–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagasawa T, Hirota S et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592):635–638

    CAS  PubMed  Google Scholar 

  • Nagasawa T, Omatsu Y et al (2011) Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol 32(7):315–320

    CAS  PubMed  Google Scholar 

  • Naveiras O, Nardi V et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson SK, Johnston HM et al (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299

    CAS  PubMed  Google Scholar 

  • Nombela-Arrieta C, Pivarnik G et al (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15(5):533–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohneda O, Ohneda K et al (2001) ALCAM (CD166): its role in hematopoietic and endothelial development. Blood 98(7):2134–2142

    CAS  PubMed  Google Scholar 

  • Omatsu Y, Sugiyama T et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399

    CAS  PubMed  Google Scholar 

  • Papayannopoulou T, Priestley GV et al (2001) Synergistic mobilization of hemopoietic progenitor cells using concurrent beta1 and beta2 integrin blockade or beta2-deficient mice. Blood 97(5):1282–1288

    CAS  PubMed  Google Scholar 

  • Park D, Sykes DB et al (2012) The hematopoietic stem cell niche. Front Biosci 17:30–39

    CAS  Google Scholar 

  • Parmar K, Mauch P et al (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104(13):5431–5436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plowden J, Renshaw-Hoelscher M et al (2004) Innate immunity in aging: impact on macrophage function. Aging Cell 3(4):161–167

    CAS  PubMed  Google Scholar 

  • Presley CA, Lee AW et al (2005) Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy. Cell Commun Adhes 12(5–6):307–317

    CAS  PubMed  Google Scholar 

  • Priestley GV, Scott LM et al (2006) Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood 107(7):2959–2967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441(7097):1080–1086

    CAS  PubMed  Google Scholar 

  • Ratajczak J, Shin DM et al (2011) Higher number of stem cells in the bone marrow of circulating low Igf-1 level Laron dwarf mice–novel view on Igf-1, stem cells and aging. Leukemia 25(4):729–733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renault VM, Rafalski VA et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896

    CAS  PubMed  Google Scholar 

  • Rossi DJ, Bryder D et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sackstein R (2011) The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. Curr Opin Hematol 18(4):239–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sackstein R, Merzaban JS et al (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14(2):181–187

    CAS  PubMed  Google Scholar 

  • Schajnovitz A, Itkin T et al (2011) CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat Immunol 12(5):391–398

    CAS  PubMed  Google Scholar 

  • Scheiermann C, Kunisaki Y et al (2012) Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37(2):290–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  • Solana R, Pawelec G et al (2006) Aging and innate immunity. Immunity 24(5):491–494

    CAS  PubMed  Google Scholar 

  • Song Z, Wang J et al (2010) Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood 115(8):1481–1489

    PubMed  Google Scholar 

  • Stephan RP, Reilly CR et al (1998) Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood 91(1):75–88

    CAS  PubMed  Google Scholar 

  • Stolzing A, Jones E et al (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    CAS  PubMed  Google Scholar 

  • Sugimura R, He XC et al (2012) Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150(2):351–365

    CAS  PubMed  Google Scholar 

  • Sullivan C, Chen Y et al (2011) Functional ramifications for the loss of P-selectin expression on hematopoietic and leukemic stem cells. PLoS One 6(10), e26246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taniguchi Ishikawa E, Gonzalez-Nieto D et al (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci U S A 109(23):9071–9076

    PubMed Central  PubMed  Google Scholar 

  • Taniguchi Ishikawa E, Chang KH et al (2013) Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated beta1/beta2-integrin trafficking. Nat Commun 4:1660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trougakos IP, Pawelec G et al (2006) Clusterin/Apolipoprotein J up-regulation after zinc exposure, replicative senescence or differentiation of human haematopoietic cells. Biogerontology 7(5–6):375–382

    CAS  PubMed  Google Scholar 

  • Tzeng YS, Li H et al (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117(2):429–439

    CAS  PubMed  Google Scholar 

  • Vas V, Senger K et al (2012a) Aging of the microenvironment influences clonality in hematopoiesis. PLoS One 7(8), e42080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vas V, Wandhoff C et al (2012b) Contribution of an aged microenvironment to aging-associated myeloproliferative disease. PLoS One 7(2), e31523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner W, Saffrich R et al (2005) Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 23(8):1180–1191

    CAS  PubMed  Google Scholar 

  • Wagner W, Wein F et al (2007) Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 35(2):314–325

    CAS  PubMed  Google Scholar 

  • Wagner W, Wein F et al (2008) Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs 188(1–2):160–169

    CAS  PubMed  Google Scholar 

  • Wagner W, Bork S et al (2010) How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY) 2(4):224–230

    CAS  Google Scholar 

  • Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130(1–2):46–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams DA, Majumdar MK (1994) Analysis of steel factor (stem cell factor) isoforms in the hematopoietic microenvironment. Stem Cells 12(Suppl 1):67–74, discussion 75–67

    PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106

    CAS  PubMed  Google Scholar 

  • Wright DE, Wagers AJ et al (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294(5548):1933–1936

    CAS  PubMed  Google Scholar 

  • Xie Y, Yin T et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457(7225):97–101

    CAS  PubMed  Google Scholar 

  • Xing Z, Ryan MA et al (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108(7):2190–2197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazaki S, Iwama A et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113(6):1250–1256

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Ema H et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158

    CAS  PubMed  Google Scholar 

  • Zanjani ED, Flake AW et al (1999) Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function. Blood 94(7):2515–2522

    CAS  PubMed  Google Scholar 

  • Zhang J, Niu C et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    CAS  PubMed  Google Scholar 

  • Zhao T, Li J et al (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299(1):E110–E116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Gui J et al (2007) Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell 6(5):663–672

    CAS  PubMed  Google Scholar 

  • Zsebo KM, Williams DA et al (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63(1):213–224

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Cancelas MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Cancelas, J.A., Chang, KH. (2015). Aging of the Hematopoietic Stem Cell Niches. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_12

Download citation

Publish with us

Policies and ethics