Advertisement

Introduction to Discrete Dislocation Dynamics

  • Hussein M. Zbib
Chapter
Part of the CISM Courses and Lectures book series (CISM, volume 537)

Abstract

This chapter is a review of the dislocation dynamics method and its applications in solving and various problems in crystalline materials. In such materials, a dislocation can be easily understood by considering that a crystal can deform irreversibly by slip, i.e. shifting or sliding along one of its atomic planes. If the slip displacement is equal to a lattice vector, the material across the slip plane will preserve its lattice structure and the change of shape will become permanent. However, rather than simultaneous sliding of two half-crystals, slip displacement proceeds sequentially, starting from one crystal surface and propagating along the slip plane until it reaches the other surface. The boundary between the slipped and still unslipped crystal is a dislocation and its motion is equivalent to slip propagation. In this picture, crystal plasticity by slip is a net result of the motion of a large number of dislocation lines, in response to applied stress. It is interesting to note that this picture of deformation by slip in crystalline materials was first observed in the nineteenth century by (1883) and Ewing and (1899). They observed that deformation of metals proceeded by the formation of slip bands on the surface of the specimen. Their interpretation of these results was obscure since metals were not viewed as crystalline at that time.

Keywords

Burger Vector Slip Plane Representative Volume Element Dislocation Loop Crystal Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. F. Akasheh, H. M. Zbib, J. P. Hirth, R. G. Hoagland, and A. Misra. Dislocation dynamics analysis of dislocation intersections in nanoscale multilayer metallic composites. J. Appl. Phys., 101:084314, 2007a.CrossRefGoogle Scholar
  2. F. Akasheh, H. M. Zbib, J. P. Hirth, R. G. Hoagland, and A. Misra. Interactions between gilde dislocations and parallel interfacial dislocations in nanoscale strained layers. J. Appl. Phys., 102, 2007b.Google Scholar
  3. F. Akasheh, H. M. Zbib, and T. Ohashi. Multiscale modeling of size effects in fcc crystals: Discrete dislocation dynamics and density based gradient crystal plasticity. Phil Mag, 87:1307–1326, 2007c.CrossRefGoogle Scholar
  4. M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford Science Publications, 1997.Google Scholar
  5. V. I. Al’shitz. The phonon-dislocation interaction and its role in dislocation dragging and thermal resistivity. In V.L. Indenbom and J. Lothe, editors, Elastic Strain and Dislocation Mobility, chapter 11. Elsevier Science Publishers B.V, 1992.Google Scholar
  6. N. W. Ashcroft and N. D. Mermin. Solid State Physics: Saunders College, 1976.Google Scholar
  7. K. J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, 1982.Google Scholar
  8. A. Bellou, C. Overman, H.M. Zbib, D. Bahr, and A. Misra. Strain hardening behavior in nanolayered metallic multilayers. Scripta Metallurgica, 64: 641–644, 2011.CrossRefGoogle Scholar
  9. G. R. Canova, Y. Brechet, and L. P. Kubin. 3d dislocation simulation of plastic instabilities by work softening in alloys. In S.I. Anderson et al, editor, Modelling of Plastic Deformation and Its Engineering Applications. Riso National Laboratory, 1992.Google Scholar
  10. G. R. Canova, Y. Brechet, L. P. Kubin, B. Devincre, V. Pontikis, and M. Condat. 3d simulation of dislocation motion on a lattice: Application to the yield surface of single crystals. In J. Rabiet, editor, Microstructures and Physical Properties. CH-Transtech, 1993.Google Scholar
  11. T. Diaz de la Rubia, H. M. Zbib, T. Khraishi, B. D. Wirth, M. Victoria, and M. Caturla. Multiscale modelling of plastic flow localization in irradiated materials. Nature, 406:871–874, 2000.CrossRefGoogle Scholar
  12. I. Demir and H. M. Zbib. A mesoscopic model for inelastic deformation and damage. Int. J. Enger. Science, 39:1597–1615, 2001.zbMATHCrossRefGoogle Scholar
  13. I. Demir, J.P. Hirth, and H. M. Zbib. Interaction between interfacial ring dislocations. Int. J. Engrg. Sci., 31:483–492, 1993.zbMATHCrossRefGoogle Scholar
  14. E. Van der Giessen and A. Needleman. Micromechanics simulations of fracture. Annu. Rev. Mater. Res., 32:141–162, 2002.CrossRefGoogle Scholar
  15. E. Van der Giessen and A. Needleman. Discrete dislocation plasticity: A simple planar model. Mater. Sci. Eng., 3:689–735, 1995.Google Scholar
  16. B. Devincre and L. P. Kubin. Mesoscopic simulations of dislocations and plasticity. Mater. Sci. Eng., A234-236:8, 1997.Google Scholar
  17. R. DeWit. The continuum theory of stationary dislocations. Solid State Phys, 10:249–292, 1960.CrossRefGoogle Scholar
  18. J. A. Ewing and W. Rosenhain. The crystalline structure of metals. Phil. Trans. Roy. Soc., A193:353–375, 1899.Google Scholar
  19. M. C. Fivel, C. F. Roberston, G. Canova, and L. Bonlanger. Three-dimensional modeling of indent-induced plastic zone at a mesocale. Acta Mater, 46(17):6183–6194, 1998.CrossRefGoogle Scholar
  20. N. M. Ghoniem and R. J. Amodeo. Computer simulation of dislocation pattern formation. Sol. Stat. Phenom., pages 379–406, 1988.Google Scholar
  21. N. M. Ghoniem and L. Sun. A fast sum method for the elastic field of 3-d dislocation ensembles. Phys. Rev. B, 60:128–140, 1999.CrossRefGoogle Scholar
  22. S. Groh, E. B. Marin, M. F. Horstemeyer, and H. M. Zbib. Multiscale modeling of plasticity in an aluminum single crystal. Int. Journal of Plasticity, in press, available online, 2009.Google Scholar
  23. I. Groma and G. S. Pawley. Role of the secondary slip system in a computer simulation model of the plastic behavior of single crystals. Mater. Sci. Engng, A164:306–311, 1993.CrossRefGoogle Scholar
  24. M. Hiratani and E. M. Nadgorny. Combined model of dislocation motion with thermally activated and drag-dependent stages. Acta Materialia, 40:4337–4346, 2001.CrossRefGoogle Scholar
  25. M. Hiratani and H. M. Zbib. Stochastic dislocation dynamics for dislocation-defects interaction. J. Enger. Mater. Tech., 124:335–341, 2002.CrossRefGoogle Scholar
  26. M. Hiratani and H. M. Zbib. On dislocation-defect interaction and patterning: Stochastic discrete dislocation dynamics. J. Nuc. Enger., 2003, in press, 2003.Google Scholar
  27. M. Hiratani, H. M. Zbib, and M. A. Khaleel. Modeling of thermally activated dislocation glide and plastic flow through local obstacles. Int. J. Plasticity, 19:1271–1296, 2003.zbMATHCrossRefGoogle Scholar
  28. J. P. Hirth. Injection of dislocations into strained multilayer structures. In Semiconductors and Semimetals, volume 37, pages 267–292. Academic Press, 1992.CrossRefGoogle Scholar
  29. J. P. Hirth and J. Lothe. Theory of dislocations. Wiley, 1982.Google Scholar
  30. J. P. Hirth, M. Rhee, and H. M. Zbib. Modeling of deformation by a 3d simulation of multipole, curved dislocations. J. Computer-Aided Materials Design, 3:164–166, 1996.CrossRefGoogle Scholar
  31. J. P. Hirth, H. M. Zbib, and J. Lothe. Forces on high velocity dislocations. Modeling & Simulations in Maters. Sci. & Enger., 6:165–169, 1998.CrossRefGoogle Scholar
  32. H. Huang, N. Ghoniem, T. Diaz de la Rubia, M. Rhee, H. M. Zbib, and J. P. Hirth. Development of physical rules for short range interactions in bcc crystals. ASME-JEMT, 121:143–150, 1999.Google Scholar
  33. C. Jinpeng, V. V. Bulatov, and S. Yip. Molecular dynamics study of edge dislocation motion in a bcc metal. Journal of Computer-Aided Materials Design, 6:165–173, 1999.CrossRefGoogle Scholar
  34. W. G. Johnston and J. J. Gilman. Dislocation velocities, dislocation densities, and plastic flow in lithium flouride crystals. J. Appl. Phys., 30: 129–144, 1959.CrossRefGoogle Scholar
  35. A. Khan, H. M. Zbib, and D. A. Hughes. Stress patterns of deformation induced planar dislocation boundaries. MRS, 2001.Google Scholar
  36. A. Khan, H. M. Zbib, and D. A. Hughes. Modeling planar dislocation boundaries using a multi-scale approach. Int. J. Plasticity, in press, 2003.Google Scholar
  37. T. A. Khraishi and H. M. Zbib. Dislocation dynamics simulations of the interaction between a short rigid fiber and a glide dislocation pile-up. Comp. Mater. Sci., 24:310–322, 2002a.CrossRefGoogle Scholar
  38. T. A. Khraishi and H. M. Zbib. Free surface effects in 3d dislocation dynamics: formulation and modeling. ASME J. of Engineering Materials and Technology, 124(3):342–351, 2002b.CrossRefGoogle Scholar
  39. T. A. Khraishi, H. M. Zbib, and T. Diaz de la Rubia. The treatment of traction-free boundary condition in three-dimensional dislocation dynamics using generalized image stress analysis. Materials Science and Engineering, A309-310:283–287, 2001.Google Scholar
  40. T. A. Khraishi, H. M. Zbib, T. Diaz de la Rubia, and M. Victoria. Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations. Metall. Mater. Trans., 33B: 285–296, 2002.Google Scholar
  41. T. A. Khraishi, L. Yan, and Y. L. Shen. Dynamic simulations of dislocation-particle interaction in metal-matrix composites (mmcs). International Journal of Plasticity, in press, 2003.Google Scholar
  42. U. F. Kocks, A. S. Argon, and M. F. Ashby. Thermodynamics and kinetics of slip. Pergamon Press, 1975.Google Scholar
  43. T. J. Koppenaal and D. Kuhlmann-Wilsdorf. The effect of prestressing on the strength of neutron-irradiated copper single crystals. Appl. Phys. Lett., 4:59, 1964.CrossRefGoogle Scholar
  44. L. P. Kubin. Dislocation patterning during multiple slip of fcc crystals. Phys. Stat. Sol (a), 135:433–443, 1993.CrossRefGoogle Scholar
  45. L. P. Kubin and G. Canova. The modelling of dislocation patterns. Scripta Metall, 27:957–962, 1992.CrossRefGoogle Scholar
  46. K. C. Le and H. Stumpf. A model of elasticplastic bodies with continuously distributed dislocations. Int. J. Plasticity, 12:611–628, 1996.zbMATHCrossRefGoogle Scholar
  47. J. Lepinoux and L. P. Kubin. The dynamic organization of dislocation structures: A simulation. Scripta Metall., 21:833–838, 1987.CrossRefGoogle Scholar
  48. I. N. Mastorakos and H. M. Zbib. Shielding and amplification of a penny-shape crack due to the presence of dislocations. Int. J. Fract., 142: 103–117, 2006.zbMATHCrossRefGoogle Scholar
  49. I. N. Mastorakos and H. M. Zbib. Dd simulations of dislocation-crack interaction during fatigue. Journal of ASTM International, 4(8):1–9, 2007.CrossRefGoogle Scholar
  50. I. N. Mastorakos and H. M. Zbib. Dislocation-cracks interaction during fatigue: A discrete dislocation dynamics simulation. Journal of Materials, 60(4):59–63, 2008.Google Scholar
  51. I.M. Mastorakos, A. Bellou, D.F. Bahr, and H.M. Zbib. Size dependent strength in nanolaminate metallic systems. Journal Materials Research, 26:1179–1187, 2011.CrossRefGoogle Scholar
  52. T. J. McKrell and J. M. Galligan. Instantaneous dislocation velocity in iron at low temperature. Scripta Materialia, 42:79–82, 2000.CrossRefGoogle Scholar
  53. O. Mügge. Neues Jahrb., Min 13, 1883.Google Scholar
  54. T. Ohashi, M. Kawamukai, and H. M. Zbib. A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int. J. Plasticity, 23:8970914, 2007.CrossRefGoogle Scholar
  55. C. Overman, N. R. Overman, D. F. Bahr, and H. M. Zbib. Yield and deformation in biaxially stressed multilayer metallic thin films. Journal of Engineering Materials and Technology, in press, 2009.Google Scholar
  56. D. Raabe. Introduction of a hybrid model for the discrete 3d simulation of dislocation dynamics. Comput. Mater. Sci., 11:1–15, 1998.CrossRefGoogle Scholar
  57. S. Rao, T. A. Parthasarathy, and C. Woodward. Atomistic simulation of cross-slip processes in model fcc structures. Phil. Mag. A, 79:1167, 1999.CrossRefGoogle Scholar
  58. M. Rhee, H. M. Zbib, J. P. Hirth, H. Huang, and T. D. de la Rubia. Models for long/short range interactions in 3d dislocation simulation. Modeling & Simulations in Maters. Sci. & Enger, 6:467–492, 1998.CrossRefGoogle Scholar
  59. D. Ronnpagel, T. Streit, and T. Pretorius. Including thermal activation in simulation calculation of dislocation glide. Phys. Stat. Sol., 135:445–454, 1993.CrossRefGoogle Scholar
  60. R. Sandstrom. Subgrain growth occurring by boundary migration. Acta Metall., 25:905–911, 1977.CrossRefGoogle Scholar
  61. K. W. Schwarz and J. Tersoff. Interaction of threading and misfit dislocations in a strained epitaxial layer. Applied Physics Letters, 69(9):1220, 1996.CrossRefGoogle Scholar
  62. M. A. Shehadeh, H. M. Zbib, and T. Diaz de la Rubia. Multiscale dislocation dynamics simulations of shock compressions in copper single crystal. Int. J. Plasticity, 21:2396–2390, 2005a.CrossRefGoogle Scholar
  63. M. A. Shehadeh, H. M. Zbib, T. Diaz de la Rubia, and V. V. Bulatov. Modeling the dynamic deformation and patterning in fcc single crystals at high strain rates: dislocation dynamic plasticity analysis. Phil Mag., 85:1667–1684, 2005b.CrossRefGoogle Scholar
  64. M. A. Shehadeh, E. M. Bringa, H. M. Zbib, J. M. McNaney, and B. A. Remington. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleation. Applied Physics Letters, 89: 171–918, 2006.CrossRefGoogle Scholar
  65. K. Shizawa and H. M. Zbib. Thermodynamical theory of strain gradient elastoplasticity with dislocation density: Part i-fundamentals. Int. J. Plasticity, 15:899–938, 1999.zbMATHCrossRefGoogle Scholar
  66. N. Urabe and J. Weertman. Dislocation mobility in potassium and iron single crystals. Mater. Sci. Engng, 18:41, 1975.CrossRefGoogle Scholar
  67. H. Y. Wang and R. LeSar. o(n) algorithm for dislocation dynamics. Philosophical Magazine A, 71:149–164, 1995.CrossRefGoogle Scholar
  68. W. Wasserbäch. Plastic deformation and dislocation arrangement of nb-34 at. ta alloy crystals. Phil. Mag. A, 53:335–356, 1986.CrossRefGoogle Scholar
  69. H. Yasin, H. M. Zbib, and M. A. Khaleel. Size and boundary effects in discrete dislocation dynamics: Coupling with continuum finite element. Materials Science and Engineering, A309-310:294–299, 2001.Google Scholar
  70. H. M. Zbib and T. Diaz de la Rubia. A multiscale model of plasticity. Int. J. Plasticity, 18(9):1133–1163, 2002.zbMATHCrossRefGoogle Scholar
  71. H. M. Zbib, M. Rhee, and J. P. Hirth. 3d simulation of curved dislocations: Discretization and long range interactions. In T. Abe and T. Tsuta, editors, Advances in Engineering Plasticity and its Applications, pages 15–20. Pergamon, 1996.Google Scholar
  72. H. M. Zbib, M. Rhee, and J. P. Hirth. On plastic deformation and the dynamics of 3d dislocations. International Journal of Mechanical Science, 40:113–127, 1998.zbMATHCrossRefGoogle Scholar
  73. H. M. Zbib, M. Rhee, J. P. Hirth, and T. Diaz de la Rubia. A 3d dislocation simulation model for plastic deformation and instabilities in single crystals. J. Mech. Behavior of Mater., 11:251–255, 2000.CrossRefGoogle Scholar
  74. H. M. Zbib, S. Shehadeh, S. Khan, and G. Karami. Multiscale dislocation dynamics plasticity. Int. J. for Multiscale Computational Engineering, 1:73–89, 2003.CrossRefGoogle Scholar
  75. H. M. Zbib, S. Akarapu, F. Akasheh, C. Overman, and D. F. Bahr. Deformation and size effects in small scale structures. In A. Khan et al, editor, proceedings of the 15th International Symposium on Plasticity and its Current Applications, pages 220–222, 2009.Google Scholar
  76. H.M. Zbib, C. Overman, F. Akasheh, and D.F. Bahr. Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. International Journal of Plasticity, 27:1618–1638, 2011.zbMATHCrossRefGoogle Scholar

Copyright information

© CISM, Udine 2012

Authors and Affiliations

  • Hussein M. Zbib
    • 1
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations