Skip to main content

Generalized Continuum Modelling of Crystal Plasticity

  • Chapter
Book cover Generalized Continua and Dislocation Theory

Part of the book series: CISM Courses and Lectures ((CISM,volume 537))

Abstract

The classical theory of continuum crystal plasticity is first recalled and then generalized to incorporate the effect of lattice curvature on material hardening. The specific notations used in this chapter are summarized in section 1.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • K. Abu Al-Rub, G.Z. Voyiadjis, and D.J. Bammann. A thermodynamic based higher-order gradient theory for size dependent plasticity. Int. J. Solids Structures, 44:2888–2923, 2007.

    Article  MATH  Google Scholar 

  • A. Acharya. Jump condition for GND evolution as a constraint on slip transmission at grain boundaries. Philosophical Magazine, 87:1349–1359, 2007.

    Article  Google Scholar 

  • A. Acharya. New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale. Journal of the Mechanics and Physics of Solids 58:766–778, 2010.

    Article  MathSciNet  Google Scholar 

  • A. Acharya and J.L. Bassani. Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids, 48: 1565–1595, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Acharya and A.J. Beaudoin. Grain size effects in viscoplastic polycrystals at moderate strains. Journal of the Mechanics and Physics of Solids, 48: 2213–2230, 2000.

    Article  MATH  Google Scholar 

  • E.C. Aifantis. The physics of plastic deformation. International Journal of Plasticity, 3:211–248, 1987.

    Article  MATH  Google Scholar 

  • E.C. Aifantis. Gradient deformation models at nano, micro and macro scales. J. of Engineering Materials and Technology, 121:189–202, 1999.

    Article  Google Scholar 

  • R.J. Asaro. Crystal plasticity. J. Appl. Mech., 50:921–934, 1983.

    Article  MATH  Google Scholar 

  • R.J. Asaro and J.R. Rice. Strain localization in ductile single crystals. J. Mech. Phys. Solids, 25:309–338, 1977.

    Article  MATH  Google Scholar 

  • M.F. Ashby. The deformation of plastically non-homogeneous materials. Philosophical Magazine, 21:399–424, 1970.

    Article  Google Scholar 

  • M.F. Ashby. The deformation of plastically non-homogeneous alloys. In A. Kelly and R.B. Nicholson, editors, Strengthening Methods in Crystals, pages 137–192. Applied Science Publishers, London, 1971.

    Google Scholar 

  • F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud. Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: FE model. International Journal of Plasticity, 17:513–536, 2001a.

    Article  MATH  Google Scholar 

  • F. Barbe, S. Forest, and G. Cailletaud. Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: Results. International Journal of Plasticity, 17:537–563, 2001b.

    Article  MATH  Google Scholar 

  • F. Barbe, S. Forest, S. Quilici, and G. Cailletaud. Numerical study of crystalline plasticity: measurements of the heterogeneities due to grain boundaries under small strains. La Revue de Métallurgie, 101:815–823, 2003.

    Article  Google Scholar 

  • L. Bardella. Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved. International Journal of Plasticity, 23:296–322, 2007.

    Article  MATH  Google Scholar 

  • S. Bargmann, M. Ekh, K. Runesson, and B. Svendsen. Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies. Philosophical Magazine, 90(10):1263–1288, 2010.

    Article  Google Scholar 

  • J.L. Bassani, A. Needleman, and E. Van der Giessen. Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions. Int. J. Solids Structures, 38:833–853, 2001.

    Article  MATH  Google Scholar 

  • C.J. Bayley, W.A.M. Brekelmans, and M.G.D. Geers. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structures, 43:7268–7286, 2006.

    Article  MATH  Google Scholar 

  • C.J. Bayley, W.A.M. Brekelmans, and M.G.D. Geers. A three-dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine, 87:1361–1378, 2007.

    Article  Google Scholar 

  • A. Bertram. Elasticity and Plasticity of Large Deformations. Springer, 2005.

    Google Scholar 

  • D. Besdo. Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mechanica, 20:105–131, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Besson, G. Cailletaud, J.-L. Chaboche, and S. Forest. Mécanique non linéaire des matériaux. ISBN 2-7462-0268-9, EAN13 9782746202689, 445 p., Hermès, France, 2001.

    MATH  Google Scholar 

  • B.A. Bilby, R. Bullough, L.R.T. Gardner, and E. Smith. Continuous distributions of dislocations iv: Single glide and plane strain. Proc. Roy. Soc. London, A236:538–557, 1957.

    Google Scholar 

  • R. de Borst. Simulation of strain localization: a reappraisal of the Cosserat continuum. Engng Computations, 8:317–332, 1991.

    Article  Google Scholar 

  • R. de Borst, L.J. Sluys, H.B. Mühlhaus, and J. Pamin. Fundamental issues in finite element analyses of localization of deformation. Engineering Computations, 10:99–121, 1993.

    Article  Google Scholar 

  • O. Bouaziz, T. Iung, M. Kandel, and C. Lecomte. Physical modelling of microstructure and mechanical properties of dual-phase steel. Journal de Physique IV, 11:Pr4-223-229, 2001.

    Google Scholar 

  • C. Boutin. Microstructural effects in elastic composites. Int. J. Solids Structures, 33:1023–1051, 1996.

    Article  MATH  Google Scholar 

  • E.P. Busso, F.T. Meissonnier, and N.P. O’Dowd. Gradient-dependent deformation of two-phase single crystals. Journal of the Mechanics and Physics of Solids, 48:2333–2361, 2000.

    Article  MATH  Google Scholar 

  • G. Cailletaud. A micromechanical approach to inelastic behaviour of metals. Int. J. Plasticity, 8:55–73, 1992.

    Article  MATH  Google Scholar 

  • G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, and S. Quilici. Some elements of microstructural mechanics. Computational Materials Science, 27:351–374, 2003.

    Article  Google Scholar 

  • J.D. Clayton, D.L. McDowell, and D.J. Bammann. Modeling dislocations and disclinations with finite micropolar elastoplasticity. International Journal of Plasticity, 22:210–256, 2006.

    Article  MATH  Google Scholar 

  • H. Cleveringa, E. Van der Giessen, and A. Needleman. Discrete dislocation simulations and size dependent hardening in single slip. Journal de Physique IV, 8:Pr4-83-92, 1998.

    Google Scholar 

  • B.D. Coleman and W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. and Anal., 13:167–178, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, and S. Kruch. Size effects in generalised continuum crystal plasticity for two-phase laminates. Journal of the Mechanics and Physics of Solids, 58:1963–1994, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Cosserat and F. Cosserat. Théorie des corps déformables. Hermann, Paris, 1909.

    Google Scholar 

  • F. Delaire, J.L. Raphanel, and C. Rey. Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations. Acta mater., 48:1075–1087, 2000.

    Article  Google Scholar 

  • V.S. Deshpande, A. Needleman, and E. Van Der Giessen. A discrete dislocation analysis of near threshold fatigue crack growth. Acta materialia, 49:3189–3203, 2001.

    Article  Google Scholar 

  • T. Dillard, S. Forest, and P. Ienny. Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. European Journal of Mechanics A/Solids, 25:526–549, 2006.

    Article  MATH  Google Scholar 

  • P.H. Dluzewski. Finite deformation of polar media in angular coordinates. Arch. Mech., 43:783–793, 1991.

    MATH  Google Scholar 

  • P.H. Dluzewski. Finite elastic-plastic deformations of oriented media. In A. Benallal and D. Marquis, editors, MECAMAT’92, Int. Seminar on Multiaxial Plasticity. Cachan, 1992.

    Google Scholar 

  • W.J. Drugan. Asymptotic solutions for tensile crack tip fields without kinktype shear bands in elastic ideally-plastic single crystals. Journal of the Mechanics and Physics of Solids, 49:2155–2176, 2001.

    Article  MATH  Google Scholar 

  • M.K. Duszek-Perzyna and P. Perzyna. Adiabatic shear band localization in elastic-plastic single crystals. Int. J. Solids Structures, 30(1):61–89, 1993.

    Article  MATH  Google Scholar 

  • F. Eberl, F. Feyel, S. Quilici, and G. Cailletaud. Approches numériques de la plasticité cristalline. J. Phys. IV France, 8:Pr4-15-25, 1998.

    Google Scholar 

  • M. Eisenberg. On the relation between continuum plasticity and dislocation theories. Int. J. Engng. Sci., 8:261–271, 1970.

    Article  MATH  Google Scholar 

  • R.A.B. Engelen, M.G.D. Geers, and F.P.T. Baaijens. Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. International Journal of Plasticity, 19:403–433, 2003.

    Article  MATH  Google Scholar 

  • R.A.B. Engelen, N.A. Fleck, R.H.J. Peerlings, and M.G.D. Geers. An evaluation of higher-order plasticity theories for predicting size effects and localisation. International Journal of Solids and Structures, 43:1857–1877, 2006.

    Article  MATH  Google Scholar 

  • A.C. Eringen. Polar and non local fields theories, in Continuum Physics, volume IV. Academic Press, 1976.

    Google Scholar 

  • A.C. Eringen. Microcontinuum field theories. Springer, New York, 1999.

    MATH  Google Scholar 

  • A.C. Eringen and W.D. Claus. A micromorphic approach to dislocation theory and its relation to several existing theories. In J.A. Simmons, R. de Wit, and R. Bullough, editors, Fundamental Aspects of Dislocation Theory, pages 1023–1062. Nat. Bur. Stand. (US) Spec. Publ. 317, II, 1970.

    Google Scholar 

  • A.C. Eringen and E.S. Suhubi. Nonlinear theory of simple microelastic solids. Int. J. Engng Sci., 2:189–203, 389-404, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Estrin, B. Sluys, Y. Bréchet, and A. Molinari. A dislocation based gradient plasticity model. Journal de Physique IV, 8:Pr8-135-141, 1998.

    Google Scholar 

  • M. Fivel and S. Forest. Plasticité cristalline et transition d’échelle: cas du Monocristal. Techniques de l’Ingénieur, M4016, 23 pages, 2004.

    Google Scholar 

  • M.C. Fivel, C.F. Robertson, G.R. Canova, and L. Boulanger. Threedimensional modeling of indent-induced plastic zone at a mesoscale. Acta materialia, 46:6183–6194, 1998.

    Article  Google Scholar 

  • N.A. Fleck and J.W. Hutchinson. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 49:2245–2271, 2001.

    Article  MATH  Google Scholar 

  • N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Adv. Appl. Mech., 33:295–361, 1997.

    Article  Google Scholar 

  • S. Flouriot, S. Forest, G. Cailletaud, A. Köster, L. Rémy, B. Burgardt, V. Gros, S. Mosset, and J. Delautre. Strain localization at the crack tip in single crystal CT specimens under monotonous loading: 3D finite element analyses and application to nickel-base superalloys. International Journal of Fracture, 124:43–77, 2003.

    Article  Google Scholar 

  • S. Forest. Modeling slip, kink and shear banding in classical and generalized single crystal plasticity. Acta Materialia, 46(9):3265–3281, 1998.

    Article  Google Scholar 

  • S. Forest. The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE Journal of Engineering Mechanics, 135:117–131, 2009.

    Article  Google Scholar 

  • S. Forest. Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philosophical Magazine, 88: 3549–3563, 2008.

    Article  Google Scholar 

  • S. Forest. Homogenization methods and the mechanics of generalized continua-Part 2. Theoretical and Applied Mechanics, 28-29:113–143, 2002.

    Article  MathSciNet  Google Scholar 

  • S. Forest and E. C. Aifantis. Some links between recent gradient thermoelasto-plasticity theories and the thermomechanics of generalized continua. International Journal of Solids and Structures, 47:3367–3376, 2010.

    Article  MATH  Google Scholar 

  • S. Forest and M. Amestoy. Hypertemperature in thermoelastic solids. Comptes Rendus Mécanique, 336:347–353, 2008.

    Article  MATH  Google Scholar 

  • S. Forest and G. Cailletaud. Strain localization in single crystals: Effect of boundaries and interfaces. European Journal of Mechanics A/Solids, 14 (5):747–771, 1995.

    MATH  Google Scholar 

  • S. Forest and R. Sedláček. Plastic slip distribution in two-phase laminate microstructures: Dislocation-based vs. generalized-continuum approaches. Philosophical Magazine A, 83:245–276, 2003.

    Article  Google Scholar 

  • S. Forest and R. Sievert. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 160:71–111, 2003.

    Article  MATH  Google Scholar 

  • S. Forest and R. Sievert. Nonlinear microstrain theories. International Journal of Solids and Structures, 43:7224–7245, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Forest, G. Cailletaud, and R. Sievert. A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Archives of Mechanics, 49 (4):705–736, 1997.

    MATH  MathSciNet  Google Scholar 

  • S. Forest, R. Dendievel, and G.R. Canova. Estimating the overall properties of heterogeneous Cosserat materials. Modelling Simul. Mater. Sci. Eng., 7:829–840, 1999.

    Article  Google Scholar 

  • S. Forest, F. Barbe, and G. Cailletaud. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multiphase materials. International Journal of Solids and Structures, 37:7105–7126, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Forest, P. Boubidi, and R. Sievert. Strain localization patterns at a crack tip in generalized single crystal plasticity. Scripta Materialia, 44: 953–958, 2001a.

    Article  Google Scholar 

  • S. Forest, F. Pradel, and K. Sab. Asymptotic analysis of heterogeneous Cosserat media. International Journal of Solids and Structures, 38:4585–4608, 2001b.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Forest, E. van der Giessen, and L. Kubin, Editors. Scale transitions from atomistics to continuum plasticity. J. Phys. IV, France, Vol. 11, Pr5, Les Editions de Physique, 2001c.

    Google Scholar 

  • S. Forest, R. Sievert, and E.C. Aifantis. Strain gradient crystal plasticity: Thermomechanical formulations and applications. Journal of the Mechanical Behavior of Materials, 13:219–232, 2002.

    Article  Google Scholar 

  • J.T. Fourie. The flow stress gradient between the surface and centre of deformed copper single crystals. Philosophical Magasine, 15:735–756, 1967.

    Google Scholar 

  • J. Friedel. Dislocations. Pergamon, 1964.

    Google Scholar 

  • N. Germain, J. Besson, and F. Feyel. Simulation of laminate composites degradation using mesoscopic non-local damage model and non-local layered shell element. Modelling and Simulation in Materials Science and Engineering, 15:S425–S434, 2007.

    Article  Google Scholar 

  • P. Germain. La méthode des puissances virtuelles en mécanique des milieux continus, première partie: théorie du second gradient. J. de Mécanique, 12:235–274, 1973a.

    MATH  MathSciNet  Google Scholar 

  • P. Germain. The method of virtual power in continuum mechanics. part 2: Microstructure. SIAM J. Appl. Math., 25:556–575, 1973b.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Germain, Q.S. Nguyen, and P. Suquet. Continuum thermodynamics. J. of Applied Mechanics, 50:1010–1020, 1983.

    Article  MATH  Google Scholar 

  • P. Gumbsch and R. Pippan. Multiscale Modelling of Plasticity and Fracture by means of Dislocation Mechanics. CISM Lecture Notes, Udine, 2005.

    Google Scholar 

  • M.E. Gurtin. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. Journal of the Mechanics and Physics of Solids, 48:989–1036, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • M.E. Gurtin. On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. International Journal of Plasticity, 19:47–90, 2003.

    Article  MATH  Google Scholar 

  • M.E. Gurtin and L. Anand. Nanocrystalline grain boundaries that slip and separate: A gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. Journal of the Mechanics and Physics of Solids, 56:184–199, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • M.E. Gurtin and L. Anand. Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck & Hutchinson and their generalization. Journal of the Mechanics and Physics of Solids, 57:405–421, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  • M.E. Gurtin and A. Needleman. Boundary conditions in small-deformation, single-crystal plasticity that account for the burgers vector. Journal of the Mechanics and Physics of Solids, 53:1–31, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • H.T. Hahn and W. Jaunzemis. A dislocation theory of plasticity. Int. J. Engng. Sci., 11:1065–1078, 1973.

    Article  MATH  Google Scholar 

  • F. Hehl and E. Kröner. Zum Materialgesetz eines elastischen Mediums mit Momentenspannungen. Z. Naturforschg., 20a:336–350, 1958.

    Google Scholar 

  • J.P. Hirth and J. Lothe. Theory of Dislocations. Wiley Intersciences, 1982.

    Google Scholar 

  • T. Hoc, C. Rey, and J.L. Raphanel. Experimental and numerical analysis of localization during sequential test for an IF-Ti steel. Acta Mater., 49: 1835–1846, 2001.

    Article  Google Scholar 

  • C. Huet. Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids, 38:813–841, 1990.

    Article  MathSciNet  Google Scholar 

  • J.W. Hutchinson. Plasticity at the micron scale. Int. J. Solids Structures, 37:225–238, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Jaoul. Etude de la plasticité et application aux métaux. Dunod, Paris, 1965.

    Google Scholar 

  • D. Jeulin and M. Ostoja-Starzewski. Mechanics of Random and Multiscale Microstructures. CISM Courses and Lectures No. 430, Udine, Springer Verlag, 2001.

    MATH  Google Scholar 

  • C.B. Kafadar and A.C. Eringen. Micropolar media: I the classical theory. Int. J. Engng Sci., 9:271–305, 1971.

    Article  MATH  Google Scholar 

  • T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of Solids and Structures, 40:3647–3679, 2003.

    Article  MATH  Google Scholar 

  • S. Kessel. Lineare Elastizitätstheorie des anisotropen Cosserat-Kontinuums. Abhandlungen der Braunschweig. Wiss. Ges., 16, 1964.

    Google Scholar 

  • S. Kessel. Spannungsfelder einer Schraubenversetzung und einer Stufenversetzung im Cosseratschen Kontinuum. ZAMM, 50:547–553, 1970.

    MATH  Google Scholar 

  • W.T. Koiter. Couple-stresses in the theory of elasticity. i and ii. Proc. K. Ned. Akad. Wet., B67:17–44, 1963.

    Google Scholar 

  • E. Kröner. Die Versetzung als elementare Eigenspannungsquelle. Z. Naturforschg., 11:969–985, 1956.

    Google Scholar 

  • E. Kröner. Kontinuumstheorie der Versetzungen und Eigenspannungen. Ergebnisse der angewandten Mathematik, Vol. 5, Springer-Verlag, 1958.

    Google Scholar 

  • E. Kröner. On the physical reality of torque stresses in continuum mechanics. Int. J. Engng. Sci., 1:261–278, 1963.

    Article  Google Scholar 

  • E. Kröner. Initial studies of a plasticity theory based upon statistical mechanics. In M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, editors, Inelastic Behaviour of Solids, pages 137–147. McGraw-Hill, 1969.

    Google Scholar 

  • E. Kröner. Statistical Continuum Mechanics. CISM Courses and Lectures No. 92, Udine, Springer Verlag, Wien, 1971.

    Google Scholar 

  • Kröner, E. Mechanics of generalized continua, Proc. of the IUTAMSymposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications, Freudenstadt, Stuttgart. Springer Verlag, 1967.

    Google Scholar 

  • L. Kubin and A. Mortensen. Geometrically necessary dislocations and strain-gradient plasticity. Scripta materialia, 48:119–125, 2003.

    Article  Google Scholar 

  • D. Lachner, H. Lippmann, and L.S. Tóth. On Cosserat plasticity and plastic spin for isotropic materials. Archives of Mechanics, 46:531–539, 1994.

    Google Scholar 

  • R.W. Lardner. Dislocation dynamics and the theory of the plasticity of single crystals. ZAMP, 20:514–529, 1969.

    Article  MATH  Google Scholar 

  • H. Lippmann. Eine Cosserat-Theorie des plastischen Fließens. Acta Mechanica, 8:255–284, 1969.

    Article  MATH  Google Scholar 

  • J. Mandel. Une généralisation de la théorie de la plasticité de W.T. Koiter. Int. J. Solids Structures, 1:273–295, 1965.

    Article  Google Scholar 

  • J. Mandel. Plasticité classique et viscoplasticité. CISMCourses and Lectures No. 97, Udine, Springer Verlag, Berlin, 1971.

    Google Scholar 

  • J. Mandel. Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Structures, 9:725–740, 1973.

    Article  MATH  Google Scholar 

  • G.A. Maugin. The Thermomechanics of plasticity and fracture. Cambridge University Press, 1992.

    Google Scholar 

  • G.A. Maugin. The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mechanica, 35:1–70, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  • G.A. Maugin. Internal variables and dissipative structures. J. Non-Equilib. Thermodyn., 15:173–192, 1990.

    Article  Google Scholar 

  • G.A. Maugin. Thermomechanics of nonlinear irreversible behaviors. World Scientific, 1999.

    Google Scholar 

  • G.A. Maugin and W. Muschik. Thermodynamics with internal variables, Part I. general concepts. J. Non-Equilib. Thermodyn., 19:217–249, 1994.

    Article  MATH  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, and D.J. Bammann. Dislocation-based micropolar single crystal plasticity: Comparison if multi-and single cristerion theories. Journal of the Mechanics and Physics of Solids, 59:398–422, 2011.

    Article  MathSciNet  Google Scholar 

  • F.A. McClintock, P.A. André, K.R. Schwerdt, and R.E. Stoeckly. Interface couples in crystals. Nature, 4636:652–653, 1958.

    Article  Google Scholar 

  • L. Méric and G. Cailletaud. Single crystal modeling for structural calculations. Part 2: Finite element implementation. J. of Engng. Mat. Technol., 113:171–182, 1991.

    Article  Google Scholar 

  • L. Méric, P. Poubanne, and G. Cailletaud. Single crystal modeling for structural calculations. Part 1: Model presentation. J. Engng. Mat. Technol., 113:162–170, 1991.

    Article  Google Scholar 

  • L. Méric, G. Cailletaud, and M. Gaspérini. F.E. calculations of copper bicrystal specimens submitted to tension-compression tests. Acta metall. mater., 42:921–935, 1994.

    Article  Google Scholar 

  • R.D. Mindlin. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal., 16:51–78, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  • R.D. Mindlin. Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Structures, 1:417–438, 1965.

    Article  Google Scholar 

  • R.D. Mindlin and N.N. Eshel. On first strain gradient theories in linear elasticity. Int. J. Solids Structures, 4:109–124, 1968.

    Article  MATH  Google Scholar 

  • H. Mughrabi. On the role of stress gradients and long-range internal stresses in the composite model of crystal plasticity. Mater. Sci. Eng. A, 317: 171–180, 2001.

    Article  Google Scholar 

  • H. Mughrabi. Investigations of plastically deformed copper single crystals in the stress-applied state. Physica Status Solidi, 39:317–327, 1970.

    Article  Google Scholar 

  • H. Mughrabi. Introduction to the viewpoint set on: Surface effect in cyclic deformation and fatigue. Scripta Metallurgica and Materiala, 26:1499–1504, 1992.

    Article  Google Scholar 

  • H.B. Mühlhaus and I. Vardoulakis. The thickness of shear bands in granular materials. Géotechnique, 37:271–283, 1987.

    Article  Google Scholar 

  • Mura, T. On dynamic problems of continuous distribution of dislocations. Int. J. Engng. Sci., 1:371–381, 1963.

    Article  MathSciNet  Google Scholar 

  • Mura, T. Continuous distribution of dislocations and the mathematical theory of plasticity. Phys. stat. sol., 10:447–453, 1965.

    Article  Google Scholar 

  • W. Nowacki. Theory of asymmetric elasticity. Pergamon, 1986.

    Google Scholar 

  • J.F. Nye. Some geometrical relations in dislocated crystals. Acta Metall., 1:153–162, 1953.

    Article  Google Scholar 

  • R.N. Pangborn, S. Weissmann, and I.R. Kramer. Dislocations distribution and prediction of fatigue damage. Metallurgical Transaction, 12A:109–120, 1981.

    Google Scholar 

  • C. Papenfuss and S. Forest. Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. Journal of Non-Equilibrium Thermodynamics, 31:319–353, 2006.

    Article  MATH  Google Scholar 

  • A. Paquin. Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels. International Journal of Plasticity, 17:1267–1302, 2001.

    Article  MATH  Google Scholar 

  • R. Parisot, S. Forest, A. Pineau, F. Grillon, X. Démonet, and J.-M. Mataigne. Deformation and Damage Mechanisms of Zinc Coatings on Galvanized Steel Sheets, Part I: Deformation Modes. Metallurgical and Materials Transactions, 35A:797–811, 2004.

    Article  Google Scholar 

  • R.H.J. Peerlings, M.G.D. Geers, R. de Borst, and W.A.M. Brekelmans. A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Structures, 38:7723–7746, 2001.

    Article  MATH  Google Scholar 

  • R.H.J. Peerlings, T.J. Massart, and M.G.D. Geers. A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput. Methods Appl. Mech. Engrg., 193: 3403–3417, 2004.

    Article  MATH  Google Scholar 

  • H. Petryk. Material instability and strain-rate discontinuities in incrementally nonlinear continua. J. Mech. Phys. Solids, 40:1227–1250, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Pilvin. Une approche simplifiée pour schématiser l’effet de surface sur le comportement mécanique d’un polycristal. J. Phys. IV France, 4: Pr4-33-38, 1998.

    Google Scholar 

  • J. M. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, and M. Berveiller. A new mean field micromechanical approach to capture grain size effects. Computational Materials Science, 45(3):604–610, 2009.

    Article  Google Scholar 

  • J.R. Rice. Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids, 19: 433–455, 1971.

    Article  MATH  Google Scholar 

  • E. Sanchez-Palencia. Comportement local et macroscopique d’un type de milieux physiques hétérogènes. International Journal of Engineering Science, 12:331–351, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Sanchez-Palencia and A. Zaoui. Homogenization techniques for composite media. Lecture Notes in Physics No. 272, Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

  • C. Sansour. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. Journal de Physique IV, 8:Pr8-341-348, 1998a.

    Google Scholar 

  • C. Sansour. A theory of the elastic-viscoplastic cosserat continuum. Archives of Mechanics, 50:577–597, 1998b.

    MATH  Google Scholar 

  • A. Sawczuk. On yielding of Cosserat continua. Archives of Mechanics, 19: 3–19, 1967.

    Google Scholar 

  • R. Sedláček and S. Forest. Non-local plasticity at microscale: A dislocation-based model and a Cosserat model. physica status solidi (b), 221:583–596, 2000.

    Article  Google Scholar 

  • R. Sedláček, J. Kratochvil, and E. Werner. The importance of being curved: bowing dislocations in a continuum description. Philosophical Magazine, 83:3735–3752, 2003.

    Article  Google Scholar 

  • J.Y. Shu and N.A. Fleck. Strain gradient crystal plasticity: size-dependent deformation of bicrystals. Journal of the Mechanics and Physics of Solids, 47:297–324, 1999.

    Article  MATH  Google Scholar 

  • J.Y. Shu, N.A. Fleck, E. Van der Giessen, and A. Needleman. Boundary layers in constrained plastic flow: comparison of non local and discrete dislocation plasticity. Journal of the Mechanics and Physics of Solids, 49:1361–1395, 2001.

    Article  MATH  Google Scholar 

  • R. Sievert. Eine Systematik für elastisch-plastische Stoffgleichungen. Schriftenreihe Physikalische Ingenieurwissenschaft, Band 23, Techn. Univ. Berlin, 1992.

    Google Scholar 

  • F. Šiška, S. Forest, P. Gumbsch, and D. Weygand. Finite element simulations of the cyclic elastoplastic behavior of copper thin films. Modeling and Simulation in Materials Science and Engineering, 15:S217–S238, 2007.

    Article  Google Scholar 

  • F. Šiška, D. Weygand, S. Forest, and P. Gumbsch. Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity. Computational Materials Science, 45: 793–799, 2009.

    Article  Google Scholar 

  • V.P. Smyshlyaev and N.A. Fleck. The role of strain gradients in the grain size effect for polycrystals. Journal of the Mechanics and Physics of Solids, 44:465–495, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • L. St-Pierre, E. Héripré, M. Dexet, J. Crépin, G. Bertolino, and N. Bilger. 3D simulations of microstructure and comparison with experimental microstructure coming from oim analysis. International Journal of Plasticity, 24:1516–1532, 2008.

    Article  MATH  Google Scholar 

  • P. Steinmann. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Structures, 31:1063–1084, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Steinmann. Views on multiplicative elastoplasticity and the continuum theory of dislocations. International Journal of Engineering Science, 34: 1717–1735, 1996.

    Article  MATH  Google Scholar 

  • R. Stojanović. Recent developments in the theory of polar continua. CISM Courses and Lectures No. 27, Udine, Springer Verlag, Berlin, 1970.

    MATH  Google Scholar 

  • P. Suquet. Continuum micromechanics. CISM Courses and Lectures No. 377, Udine, Springer Verlag, Berlin, 1997.

    MATH  Google Scholar 

  • K. Tanaka and T. Mura. A dislocation model for fatigue crack initiation. Journal of Applied Mechanics, 48:97–103, 1981.

    Article  MATH  Google Scholar 

  • V. Taupin, S. Berbenni, C. Fressengeas, and O. Bouaziz. On particle size effects: An internal length mean field approach using field dislocation mechanics. Acta Materialia, 58:5532–5544, 2010.

    Article  Google Scholar 

  • C. Teodosiu. A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum. In J.A. Simmons, R. de Wit, and R. Bullough, editors, Fundamental Aspects of Dislocation Theory, pages 837–876. Nat. Bur. Stand. (US) Spec. Publ. 317, II, 1970.

    Google Scholar 

  • C. Teodosiu. Large plastic deformation of crystalline aggregates. CISM Courses and Lectures No. 376, Udine, Springer Verlag, Berlin, 1997.

    MATH  Google Scholar 

  • C. Teodosiu and F. Sidoroff. A theory of finite elastoviscoplasticity of single crystals. Int. J. of Engng Science, 14:165–176, 1976.

    Article  MATH  Google Scholar 

  • C. Teodosiu, J. Raphanel, and L. Tabourot. Finite element simulation of the large elastoplastic deformation of multi-crystals. In C. Teodosiu and F. Sidoroff, editors, Large Plastic Deformations MECAMAT’91, pages 153–158. Balkema, Rotterdam, 1993.

    Google Scholar 

  • H. Tian-Hu. Lagrange multiplier method of the general variational principles of finite deformation theory of couple stress and its application in the strain gradient plasticity. International Journal of Engineering Science, 42:1949–1969, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Van der Giessen, V.S. Deshpande, H.H.M Cleveringa, and A. Needleman. Discrete dislocation plasticity and crack tip fields in single crystals. J. Mech. Phys. Solids, 49:2133–2153, 2001.

    Article  MATH  Google Scholar 

  • J. Zarka. Généralisation de la théorie du potentiel plastique multiple en viscoplasticité. Journal of the Mechanics and Physics of Solids, 20:179–195, 1972.

    Article  MATH  Google Scholar 

  • A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz. Cosserat continuum modelling of grain size effects in metal polycrystals. Proc. Appl. Math. Mech., 5:79–82, 2005.

    Article  Google Scholar 

  • A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz. Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure-Part 2: Crystal plasticity. Philosophical Magazine, 87:1425–1446, 2007a.

    Article  Google Scholar 

  • A. Zeghadi, F. Nguyen, S. Forest, A.-F. Gourgues, and O. Bouaziz. Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure-Part 1: Anisotropic elastic behaviour. Philosophical Magazine, 87:1401–1424, 2007b.

    Article  Google Scholar 

  • A. Ziegenbein, H. Neuhäuser, J. Thesing, R. Ritter, H. Wittich, E. Steck, and M. Levermann. Local plasticity of Cu-Al polycrystals-measurements and FEM simulation. J. Phys. IV France, 8:Pr8-407-412, 1998.

    Google Scholar 

  • H. Zorski. Statistical theory of dislocations. Int. J. Solids Structures, 4: 959–974, 1968.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Forest, S. (2012). Generalized Continuum Modelling of Crystal Plasticity. In: Sansour, C., Skatulla, S. (eds) Generalized Continua and Dislocation Theory. CISM Courses and Lectures, vol 537. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1222-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1222-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1221-2

  • Online ISBN: 978-3-7091-1222-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics